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ABSTRACT: Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation
by interconnecting multiple quantum processor units (QPUs). A key challenge in this domain is efficiently allocating
logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard. Traditional
approaches, primarily focused on graph partitioning strategies, have sought to reduce the number of required Bell pairs
for executing non-local CNOT operations, a form of gate teleportation. However, these methods have limitations in
terms of efficiency and scalability. Addressing this, our work jointly considers gate and qubit teleportations introducing
a novel meta-heuristic algorithm to minimise the network cost of executing a quantum circuit. By allowing dynamic
reallocation of qubits along with gate teleportations during circuit execution, our method significantly enhances
the overall efficacy and potential scalability of DQC frameworks. In our numerical analysis, we demonstrate that
integrating qubit teleportations into our genetic algorithm for optimizing circuit blocking reduces the required
resources, specifically the number of EPR pairs, compared to traditional graph partitioning methods. Our results,
derived from both benchmark and randomly generated circuits, show that as circuit complexity increases—demanding
more qubit teleportations—our approach effectively optimises these teleportations throughout the execution, thereby
enhancing performance through strategic circuit partitioning. This is a step forward in the pursuit of a global quantum
compiler which will ultimately enable the efficient use of a ‘quantum data center’ in the future.
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1 Introduction
Quantum computers can, in principle, perform tasks that have previously been impossible or highly

inefficient on classical computers [1], such as factoring large numbers using Shor’s algorithm [2,3] or
simulating quantum systems [4,5]. However, the scaling of monolithic quantum processors towards doing
useful, error-free computations is difficult to achieve [6]. To address this, companies such as IBM are
exploring inter-connected distributed quantum processor units (QPUs), which require quantum networking
to execute complex circuits at scale. Similar to classical distributed computing, the execution of a quantum
circuit may be performed across many smaller quantum computers. In this scenario, a quantum network is
needed to perform the necessary operations between each QPU.

Quantum circuits are a visual way to represent the temporal order of single or multi-qubit gates, to
perform a designed algorithm. Quantum gates are unitary operations that operate on a logical qubit state
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∣ψ⟩ = α∣0⟩ + β∣1⟩. A logical qubit is the unit of information used in a quantum computation and may be
constructed from many physical qubits inside a QPU to perform error correction. A more detailed review
of quantum information and quantum computing can be found in the seminal text by Nielsen et al. [7]. In
Distributed Quantum Computing (DQC) there are three important types of operations, single-qubit gates
(e.g., Pauli rotation, Hadamard), local CNOT (cx) (control and target qubits within the same processor), and
non-local CNOT (also called telegate). In the latter, a CNOT operation should be executed between qubits
that are stored in different QPUs. The Hadamard gate, Pauli gates, and CNOT operations form a universal
set for quantum computation [8], meaning that any arbitrary unitary transformation of a quantum state can
be expressed by only these three gates [9], henceforth we will assume that all circuits have been decomposed
into this universal set of operations. The CNOT gate is a two-qubit operator which requires the control of
one qubit by another and is given by the following matrix:

CNOT =
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⎢
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1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

To execute a distributed algorithm, the logical qubits must be mapped to physical qubits in the QPUs
and a means for performing operations between non-local qubits must be established. Two types of non-
local operations can occur, qubit or gate teleportation. Qubit teleportation is the process of transferring a
logical qubit state from one QPU to another via the use of a Bell state (EPR pair) [10] and some classical
communication. Gate teleportation, on the other hand, does not move the qubit state but allows one qubit to
control the operation on another, distant qubit. The circuits required to perform both qubit teleportation and
a teleported controlled operation between two distant logical qubits [11] are shown in Fig. 1. Both operations
make use of Bell states which need to be distributed by the network (one-half to each QPU). This is a costly
procedure and hence there is a need for minimising 2 the teleportations to reduce the load on the network
and to maximise the likelihood of successfully executing a quantum circuit before qubits decohere.

Figure 1: Circuits that implement (a) a teleportation operation of a state ∣ψ⟩ from QPU 1 to QPU 2, and (b) a
teleportation of a CNOT operation between a control qubit and target qubit that are stored in different QPUs. Both
operations require a Bell state ∣Φ+⟩ as well as the transmission of classical bits that correspond to the outcome of qubit
measurements

When executing a quantum circuit on a single QPU, it’s crucial for the compiler to dynamically map
logical qubits to neighboring physical positions. This mapping allows gate operations by enabling direct
interactions. Numerous studies have addressed the challenges and solutions related to quantum circuit
compilation (e.g., [12–14]) in the case of a single QPU. Our work, however, assumes a fully connected
architecture for QPUs, where each qubit can directly interact with any other. A similar assumption would
be the existence of an efficient compiler that handles the qubit mapping inside each QPU separately. Such
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assumptions allow us to abstract away the constraints of the compilation problem, focusing instead on
optimising the network operations necessary for distributed quantum computation. Assuming only gate
teleportations as a means towards DQC, previous works have used various heuristic methods to minimise
solely the number of non-local (controlled) operations within a circuit [15–19].

Although previous works have primarily considered the minimisation of gate teleportation, this work
sets out to jointly consider gate and qubit teleportations as enablement of DQC. Thus, the network
cost is associated with the Bell pairs requested from both teleportation operations. Recently the authors
in [20] introduced a graph partitioning framework that incorporates qubit teleportations into network cost
calculations. While their work also recognizes the importance of qubit teleportations in DQC, it differs from
ours in its constraint of equalizing operation counts across QPUs. Our study, in contrast, views the generation
of Bell pairs for network operations as the primary limiting factor, thereby allowing for more flexible
QPU operation allocations. Recently, reference [21] employs Quadratic Unconstrained Binary Optimisation
to minimise the network cost assuming only qubit teleportations. In the latter work, the authors divide
a quantum circuit into predetermined slices such that each such slice can be run without the need for
gate teleportations. Finally, in [22], the authors employ a window-based partitioning of a quantum circuit
considering also qubit teleportations. Nevertheless, the optimisation over the latter is realized through a
tuning parameter that determines how “hard” should be for a qubit to migrate to a different QPU. In contrast,
in our work, we optimise the slicing of the circuit by allowing gate teleportations within each slice and qubit
teleportations across slices to facilitate distributed quantum computation.

Specifically, this paper addresses the problem of modeling and minimising the network cost of executing
a quantum circuit into a DQC framework. Allowing both gate and qubit teleportations, we dynamically
allocate the logical qubits to physical qubits into the quantum processors to execute a quantum algorithm
distributedly. Since both teleportation operations require a Bell pair our goal is to minimise the number of
teleportations needed to complete the execution. For this purpose, we propose a novel meta-heuristic called
Optimised Distributed Quantum Circuit Execution via Meta-Heuristic Approach (ODQC-MHA) that uses
a genetic algorithm. Our method significantly enhances the overall efficacy and potential scalability of the
DQC framework by dynamically allocating the qubits across distributed QPUs.

The rest of the paper is organised as follows, in Section 2 we introduce the logical qubit alloca-
tion problem for static assignment within a monolithic QPU as well as a straightforward partitioning
heuristic. Section 3 introduces qubit teleportations to the qubit mapping problem and we describe our
meta-heuristic for solving this problem approximately. Section 4 shows the results of the performance of
our metaheuristic against benchmark circuits and randomly generated circuits. Finally, Section 5 concludes
the paper.

2 Qubit Allocation to Minimise Gate Teleportations
Focusing only on gate teleportations as the means towards DQC, one way to decrease the network cost

is to leverage graph partitioning algorithms [23–25] in an appropriately generated graph. In this section, we
describe such process for the case of two and multiple QPUs (Sections 2.2 and 2.3, respectively).

In this study, we operate under the assumption that there is complete connectivity both between and
within the QPUs. This means we overlook any compilation within a QPU and presume that the compiler
handles the required swaps in a non-fully connected QPU to ensure adjacent qubits. Research has been done
on simulating circuits on realistic, constrained processor architectures by minimising the number of swaps
required to execute controlled operations [26]. In practice constraints on the connectivity within a processor
are likely to exist, however, one would need a global compiler to be able to maximise the ability to execute a
circuit on NISQ devices.
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2.1 Minimising Gate Teleportation: Model & Problem Description
In the graph representation of a circuit denoted as G = (V , E), V represents a set of n qubits and E

defines connections between qubits. The edge-weight function

c∶V × V → N0 (2)

whereN0 denotes the set of natural numbers including zero represents the frequency of controlled operations
between qubits u and v. Therefore, c (u, v) = 0 indicates the absence of an edge and thus of a CNOT gate
between u and v. The cost of a partition cost(V1 , V2) is defined as the sum of all weights c(u, v)where u ∈ V 1
and v ∈ V2 belong to different partitions. The aim is to find k partitions of the graph each of, at most, size
v = n/k such that the capacity of the edges between partitions is minimised, thus reducing the number non-
local controlled operations, and the number of Bell pairs required. The constraint of almost equal partitions
is to minimise the maximum number of physical qubits needed from a QPU. Minimising the number of
non-local operations is crucial because entanglement is a costly resource and distributing it into a network of
QPUs requires extra time steps and is error-prone [27]. A schematic showing the graph partitioning method
is shown in Fig. 2.

Figure 2: Example of initial qubit allocation process via graph partitioning to minimise non-local operations between
3 processors of sizes: (6, 8, 12). The edge weight is signified by the line colour, darker lines represent higher number of
non-local operations
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2.2 K-L Algorithm for 2 QPUs
One commonly used heuristic method for bi-partitioning a weighted graph is the Kernighan-Lin

algorithm [23]. The K-L algorithm works by taking the weighted graph G = (V , E) and c as the edge-weight
function. By swapping pairs of vertices ui ∈ V1 and vi ∈ V2 with maximum cost improvement, the swapped
pair are locked in place and the same process is done with another pair until all vertices are locked. The best
configuration is chosen and the algorithm is run again until a close to optimal configuration is found. The
downside of the K-L algorithm is that it can only be used for bi-partitioning of a graph. In the next section we
propose a similarly simple heuristic for partitioning a graph, into any size partitions k. Such extension enables
the division of a quantum circuit’s logical qubits across multiple QPUs, beyond just two, when available. For
all cases where the K-L algorithm is used in this study, sufficiently high numbers of iterations are used to
ensure that the algorithm is allowed to “converge”.

2.3 Greedy Partitioning Algorithm in the Case of Multiple QPUs
In this section we describe Greedy Partitioning Algorithm in the case of multiple QPUs (GPA), a

straightforward and practical heuristic approach for distributing qubits in circuits with varying numbers of
qubits and depth, across any quantity and scale of QPUs. The heuristic works by always contracting the largest
weighted edge to build supernodes—respresenting QPUs—one by one. Once a supernode (QPU) has been
filled to capacity, none of the nodes within can be swapped later in the algorithm. The largest weighted edge
that is adjacent to the supernode is always contracted at each step of the heuristic, with no look-ahead. This
method is computationally inexpensive and so can be used as a quick heuristic for qubit allocation within
our proposed meta-heuristic (proposed in Section 3). The pseudo-code for GPA is shown in Algorithm 1.
This heuristic is performed once to produce a good allocation of qubits to processors where the number of
interactions between each processor is reduced. The algorithm is implemented in python and utilises the
NetworkX framework to do the edge contractions. Here, an edge contraction is the process of producing a
graph in which two node v1 and v2 are replaced with a single node, v, such that v is adjacent to the union of
the nodes to which v1 and v2 were originally adjacent, also called ‘vertex identification’.

Algorithm 1: Greedy partitioning algorithm (GPA)
1 procedure AssignQubitsToQPUs (G, QPU List)
2 Filled ← {}
3 Allocation ← {}
4 QPUOrder ← sort QPU List by capacity, descending
5 for QPU in QPUOrder do
6 Supernode ← {}
7 while Supernode size < QPU capacity and G has unallocated nodes do
8 TargetNode ← select node in G with max weighted edge to Supernode, not in Filled
9 Merge TagetNode into Supernode
10 Update Allocation to include TargetNode → QPU
11 end while
12 Add Supernode to Filled
13 end for
14 return Allocation
15 end procedure
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3 Minimising Remote Operations: Model & Problem Description
Focusing only on gate teleportations as the means towards DQC, one way to decrease the network cost

is to leverage graph partitioning algorithms [23–25] in an appropriately generated graph. In this section,
we describe such a process for the case of two and multiple QPUs (Sections 2.2 and 2.3, respectively). In
this study, we operate under the assumption that there is complete connectivity both between and within
the QPUs. This means we overlook any compilation within a QPU and presume that the compiler handles
the required swaps in a non-fully connected QPU to ensure adjacent qubits. Research has been done on
simulating circuits on realistic, constrained processor architectures by minimising the number of swaps
required to execute controlled operations [26]. In practice constraints on the connectivity within a processor
are likely to exist, however, one would need a global compiler to be able to maximise the ability to execute a
circuit on NISQ devices.

3.1 Optimised Distributed Quantum Circuit Execution via Meta-Heuristic Approach (ODQC-MHA)—
High Level Design
In this section, we introduce the ODQC-MHA framework by describing its high-level design. ODQC-

MHA allows the circuit to be analysed in blocks of varying size, using any algorithm for k partitioning a graph
within each block. For each block, we attempt to minimise the number of gate teleportations while allowing
qubit teleportations between blocks to reallocate the logical qubits when needed. Finding the optimal
blocking is challenging because of the many possible combinations, however, this problem is to be solved
by our heuristic. Note that each allocation has no information about the previous block’s allocation and so a
meta-heuristic is required to minimise the gate and qubit teleportations together. The high-level description
of the proposed framework is illustrated in Fig. 3. Note that to enhance circuit execution efficiency, qubit
teleportations are allowed between blocks. Given the vast search space comprising various circuit partitions
and qubit placements, the approach combines any partitioning algorithm for intra-block qubit placements
(this can be K-L, GPA, or any other procedure) with a genetic algorithm to jointly consider the qubit
teleportations. The proposed genetic algorithm evaluates its utility given a circuit partition based on the
placements suggested by the particular partitioning algorithm used, focusing on achieving the optimisation
objective of minimising the network cost. Note that this is not a joint optimisation but a meta-heuristic
that uses the output of some heuristic (K-L, Greedy algorithm, etc.) to explore the solution space more
thoroughly. The problem of graph partitioning is NP-HARD per block hence the blocking model proposed
in this paper is hard to solve without a novel heuristic. In the next sections, a genetic algorithm is proposed
to approximate an optimal ‘blocking’ of the circuit to minimise the total number of Bell pairs required for
qubit and gate teleportations.
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Figure 3: A high level overview diagram of the proposed framework (ODQC-MHA) for blocking/partitioning
quantum circuits. The circuit is broken into blocks of arbitrary size (number of layers). Within each block, logical qubit
allocation is performed using graph partitioning methods in order to reduce the number of Bell pairs required for
nonlocal operations. After this, between each block, qubit teleportations are performed to reallocate the logical qubits
according to each blocks allocation

3.2 Optimised Distributed Quantum Circuit Execution via Meta-Heuristic Approach (ODQC-MHA)—
Genetic Algorithm
Genetic algorithms mimic natural evolution by evolving solutions to problems through a process of

selection, mutation, and crossover [28]. They start with a diverse population of individuals, where each indi-
vidual’s “genotype” encodes a potential solution, and its “phenotype”—its performance or fitness—reflects
the solution’s effectiveness. Over successive generations, individuals with higher fitness are more likely to pass
their genes to the next generation, allowing the algorithm to “naturally select” increasingly effective solutions.
In our approach, we utilize a genetic algorithm to optimise the distribution of computational tasks in a
quantum computing network, specifically aiming to minimise the requisite number of Bell pairs for efficient
quantum communication. The core of our algorithm is defined by a population of candidate solutions,
denoted as P = {p1 , p2, . . . , pN}, where each candidate solution pi represents a potential configuration of
dividing the target quantum circuit into distinct blocks.

Each candidate solution p ∈ P is characterized by its genotype, Gp, which in our model is a sequence
of integers Gp = {g1 , g2, . . . , gK}, where g1 , . . . , gk ∈ N, and K represents a predefined maximum number of
blocks for the quantum circuit. Here, gi signifies the depth (i.e., the number of layers) of the circuit within
block i of the network. Note that a large value for K increases the search space exponentially allowing for
more combinations of circuit blockings to be checked by the algorithm. Intuitively, the configuration of these
blocks is subject to a constraint where the sum of all gi values must equal the total number of layers in the
quantum circuit. Notably, it is permissible for any gi to be zero, indicating blocks that are empty and thus not
contributing to the overall division of the circuit. For instance, a genotype Gp = [12, 42, 64, 38, 203, 0, 34]
represents a circuit partitioned into blocks with respective depths of 12, 42, 64, 38, 203, 34. Although in this
specific example, we allow up to 7 blocks for the circuit, this specific genotype, Gp, utilizes only 6 of them.
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The phenotype, Xp, associated with an individual p ∈ P with genotype Gp, quantifies the total number
of Bell pairs required for the candidate solution’s block configuration. This total encapsulates both gate
teleportations within individual blocks and qubit teleportations across the network. The phenotype thus
serves as a measure of the solution’s effectiveness in optimising quantum communication. To evaluate the
phenotype and thus the viability of each candidate solution, we introduce a fitness function, evaluateFitness:
P→N, that maps the individual to a natural number. In our case, this function is counting the total number
of Bell pairs and hence teleportations are needed under the configuration under 5 consideration.

Through the iterative processes of selection, crossover, and mutation, our genetic algorithm seeks
to evolve the population towards configurations that minimise Bell pair usage, thereby enhancing the
efficiency and feasibility of DQC tasks. By continuously refining the genotypes within the population
based on their fitness scores, the algorithm drives towards an optimal or near-optimal distribution of
computational loads and quantum communication requirements across the network. This framework not
only provides a method for optimising quantum network configurations but also offers insights into the
trade-offs between computational depth and quantum communication resources, laying the groundwork for
further innovations in DQC architectures.

3.3 Optimised Distributed Quantum Circuit Execution via Meta-Heuristic Approach (ODQC-MHA)—A
Detailed Description
The Optimised Distributed Quantum Circuit Execution via Meta-Heuristic Approach (ODQC-MHA)

makes use of a genetic algorithm formalism to find a minimum number of total Bell pairs required for a
distributed execution of a given quantum circuit by finding an arrangement of block lengths that minimises
the total cost. This section provides a detailed description of the ODQC-MHA components that were
abstracted away in Fig. 3, complementing also the overview provided in Fig. 4.

Figure 4: Structure of genetic algorithm. GenerateIndividuals(): create N lists, of a given size, representing the number
of layers per block of a circuit. selection():‘Hall of Fame’ selection process ensures that the best individual to ever
exist is chosen as the optimal. Crossover(): randomly chooses two individuals from the mating pool to create each
new generation of superior individuals. Mutate: individuals are randomly chosen to mutate, mutate 1 occurs every
mutation and mutate 2 occurs with probability 1/10 for each mutation. HoF Winner: the best individual that has existed
throughout the generations is selected as the optimal ‘blocking’ solution
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3.3.1 Efficient Qubit Teleportation Decisions
For each individual in the genetic algorithm, the quantum circuit is segmented into blocks based on the

number of layers specified by the individual’s genotype. To optimise the allocation of qubits across multiple
QPUs, a method such as graph partitioning (e.g., GPA) is employed. This step aims to find an approximately
optimal distribution of qubits over the available processors for each block. Given the allocation for each block,
the challenge arises in transitioning qubits from their configuration in one block to the next. This transition
is not straightforward due to the flexibility in QPU assignments: any given allocation might correspond to
any QPU. This leads to a complex problem, especially as the number of QPUs increases, where finding the
most efficient mapping between allocations in consecutive blocks becomes computationally intensive. To
address this, we construct a bipartite graph G = (I, J , L), where nodes in disjoint set I represent the processor
allocations in block i, and nodes in set J represent the allocations in block i + 1 (Fig. 5). The edges in this
graph, L, denote the potential mappings between allocations, with weights reflecting the minimum number
of qubit differences (and thus qubit teleportations) required for each mapping. By negating these weights
and applying a maximum weighted matching algorithm [29], we identify the mapping that minimises the
number of qubit teleportations needed for reallocation between blocks. This approach significantly reduces
the complexity of finding optimal qubit transitions between blocks.

Figure 5: Bipartite graph representing the re allocation between multiple QPUs, it is clear to see that there are multiple
ways to map a given allocation to QPU

3.3.2 Components of the Genetic Algorithm
Initialisation (generateIndividuals)—firstly the initial population is generated. Toward that goal, we

generate homogeneous lists of a given length, which corresponds to the maximum number of blocks available
in the solution. Then applying the mutate function (described later) to each individual 100,000 times we
generate diverse genotypes for the initial population. It is important that these individuals are highly varied
due to the size and complexity of the solution space.

Evaluation of Fitness (evaluateFitness)—the fitness function evaluates the efficiency of a given qubit
allocation and teleportation scheme. It does so by summing the total number of gate teleportations within
each block (determined by the initial qubit allocations) and the qubit teleportations between blocks (as
optimised by the bipartite graph matching). The objective of the genetic algorithm is to minimise this sum,
thereby reducing the overall quantum communication and computation overhead in the DQC framework.
The evaluation process effectively quantifies the “cost” of a particular configuration of qubit allocations and
transitions, guiding the genetic algorithm toward solutions that optimise the use of quantum resources. By
focusing on minimising the combined total of gate and qubit teleportations, the algorithm seeks configura-
tions that offer the best balance between computational efficiency and the practical constraints of DQC. This
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structured approach allows for a clear understanding of how qubit teleportation and allocation decisions
impact the overall efficiency of quantum computing operations, providing a solid basis for optimising
DQC architectures.

Crossover Function—the crossover function is the process of generating offspring from the selected
parent genes. These offspring are generated such that they share some elements from either parent. The
crossover function used is a simple two-point crossover which chooses a subset of random size from each
pair of parents and swaps them. Since the genotype’s values must sum up to the total number of layers in the
quantum circuit, we employ a rebalancing routine to enforce that constraint after the crossover.

Mutation Function—The mutation function involves randomly choosing 2 indices i and j, i ≠ j in the
individual, with a predefined probability of occurence. Defining a mutation constant, c, a fair coin is flipped
and the mutation constant is either added to gi and subtracted from g j or vice versa. Also, each mutation
has a probability p of introducing a zero element to the individual, by subtracting a randomly chosen indices
value from itself and spreading the value among the remaining indices.

Selection Process—The selection process entirely replaces the parental population, requiring that the
selection procedure is stochastic and allows the same individual to be selected more than once. We used
the selTournament() function as part of the DEAP framework, which was found to be a suitable mutation
function for searching the solution space thoroughly.

3.3.3 Overview
The genetic algorithm adjusts the size of each block—between which qubit teleportations are done to

get from one allocation to the next—to try and minimise the total number of Bell pairs required. The size of
a block is allowed to go to zero and if so, it is ignored by the calculation of teleportations. In other words,
the optimal ‘blocking’ of the circuit may contain fewer blocks than the initial candidate solution. Note that
this meta-heuristic can use any algorithm for the allocation of qubits inside a given block to calculate the
Bell pairs needed for the gate teleportations. For example, if there are just two QPUs one could implement
K-L algorithm and in a multi-QPU framework the proposed GPA is more suitable. In the next section, we
implement ODQC-MHA using the DEAP python framework [30] to execute the genetic algorithm with
these definitions, to converge on a close to optimal blocking of the circuit that required the minimum number
of gate and qubit teleportations combined for a given quantum circuit. Hereafter, the term ODQC-MHA(K-
L) refers to the meta-heuristic that applies the K-L algorithm to each block. Conversely, ODQC-MHA(GPA)
denotes the variant where the GPA is employed for graph partitioning in each block.

4 Performance Evaluation

4.1 Pre-Processing
In this section, we describe the steps taken to analyse benchmark circuits to evaluate the performance of

ODQC-MHA. Each circuit analysed is represented in a QASM (QUantum ASeMbley) [31] file that contains
all of the logical instruction information in order. The QASM file is parsed, and the circuit is then represented
as a directed acyclic graph (DAG). The DAG shows the dependencies of each gate and allows us to determine
which operations can occur simultaneously (in the same layer). Given that we have the DAG, we can divide
the circuit, by layer, into the blocks given by an individual’s genotype Gp, as explained previously. For each
block, an interaction matrix is constructed using the QASM instructions, this matrix is then used to build a
network [32] graph object for which the standard graph partitioning algorithms can be used. ODQC-MHA
can be applied to any circuit of any size, although the execution time scales with the number of qubits and



J Quantum Comput. 2025;7 11

the maximum number of blocks. Note that the bottleneck here is the number of qubits in the circuits as this
determines the size of the graph to be partitioned.

For each comparison, the mean value for the number of combined gate and qubit teleportations when
using ODQC-MHA for multiple trials on each circuit is taken to be the average performance of the algorithm.
The ratio of this mean value to the number of teleportations when using K-L (for two QPUs) and GPA
(for > 2 QPUs), with no circuit blocking, is presented as the percentage improvement of ODQC-MHA. The
maximum number of QPUs considered in this study is three, this is because the main comparison presented
is with the commonly used K-L algorithm, which applies only to the two QPU cases. ODQC-MHA is agnostic
to any efficient graph partitioning algorithm for > 2 QPUs, within each block.

4.2 Non-Random Quantum Circuits (2 QPUs)
Initially, we ran ODQC-MHA(K-L) on quantum circuits from QASMBench [33]. Information about

the benchmark circuits used is shown in Table 1. The results of this analysis are shown in Fig. 6a, showing
the percentage improvement over using K-L for the entire circuit, i.e., no qubit teleportations. We compare
three configurations of ODQC-MHA(K-L), with the maximum allowed numbers of blocks (MAB) of; 10, 50,
and 100.

Table 1: Benchmark quantum circuits for Section IV-B

ID Circuit name Qubits Depth (CX only) Unary gates CX gates
1 Adder_n118 118 4 1107 845
2 sym9_146 12 91 180 148
3 cycle10_2 110 12 3386 3402 2648
4 Inc_237 16 3463 5983 4636
5 cm85a_209 14 3818 6428 4986
6 rd84_253 12 4466 7698 5960
7 root_255 13 5354 9666 7493
8 mlp4_245 16 6190 10,620 8232
9 clip_206 14 10,734 19,055 14,772
10 Dist_223 13 11,911 21,422 16,624

While the improvement varies across the circuits, we see a clear trend. For increasing depth there is a
region for which 100 MAB shows the smallest improvement while 10 MAB shows the largest, in the central
region we see that 50 MAB shows the most improvement, and for the higher end of circuit depth, 100 MAB.
We identify a likely reason for this trend, for smaller circuits it is possible to ‘overblock’, that is, it becomes
hard to converge on a solution—on average—due to the starting size of an individual genotype. It is worth
noting that we believe this analysis on small benchmark circuits is arbitrary because the performance of the
heuristic depends strongly on the distribution of CNOT gates, in the next section, we discuss the performance
of the algorithm on average, using large randomly generated circuits.

The inconsistent performance between different configurations across different circuits suggests a
limitation with the design of ODQC-MHA. Future work might include optimising the allowed size of an
individual, the population size, and the number of generations, depending on the circuit at hand. This
should allow the algorithm to search the given solution space more efficiently and prevent converging on
local minima.
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Figure 6: (a) Comparison percentage improvement for ODQC-MHA(KL) on benchmark circuits for varying maxi-
mum allowed number of blocks (MAB) (10, 50, 100), across 2 QPUs. The benchmark circuits are ordered by increasing
circuit depth. Each data point is the mean of 100 executions of ODQC-MHA(K-L). Circuit ID I; (b) Comparison of
ODQC-MHA(K-L) for varying maximum allowed number of blocks (10, 50, 100), to ODQC-MHA(K-L) for 1 block
on randomly generated circuits, distributed over 2 processors. Each data point is the mean value of multiple runs of
ODQCMHA(K-L) on different randomly generated, 16 qubit, circuits. The percentage difference is plotted

4.3 Random Quantum Circuits (2 QPUs)
To demonstrate the effectiveness of ODQC-MHA on average, we ran qubit allocation on randomly

generated circuits containing only CNOT gates, which are the only universal gates that are considered in
the algorithm. This demonstrates the average behaviour on large circuits where the distribution of CNOT
gates tends towards homogeneity. In principle, any bias in the distribution of CNOTs should be exploited by
a good heuristic method.

Firstly, we generated random, 16 qubit circuits of varying numbers of CNOT gates, in the same range
as the benchmark circuits used. We ran ODQC-MHA(K-L) to allocate across 2 QPUs for each circuit. This
analysis was done 100 times, and the average performance was plotted in Fig. 6b. This was done for different
initial configurations of ODQC-MHA(K-L), allowing for a maximum number of blocks (length of genotype)
of 10, 50 and 100. The genetic algorithm could—on average—converge on a solution with fewer bell pairs
required across all the randomly generated circuits, with a general trend towards smaller improvement for an
increasing number of gates. However, we again observed the same trend as explained before, a region where
each configuration performed best. This effect is shown dramatically in the first point (left). This indicates
that ODQC-MHA(K-L) requires further optimisation to select an optimal number of blocks. Due to resource
limitations, we are not able to analyse the limit that an improvement is shown by increasing the allowed
maximum number of blocks.

Next, we generated random circuits of 8, 16, and 32 qubits with up to 100,000 CX gates, in order to test
the performance of ODQC-MHA(K-L) on larger circuits. The results are plotted in Fig. 7a. We saw a similar
improvement trend across different numbers of gates. Interestingly, the reduction in the number of bell pairs
increases for a greater number of qubits. This could be because, for the same number of CNOT gates across
more qubits, the interactions are more sparsely distributed and will likely have shorter depth.
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Figure 7: (a) Comparison of ODQC-MHA(K-L) to K-L on randomly generated circuits of varying number of qubits
(8, 16, 32) on randomly generated circuits, across 2 QPUs; (b) Comparison of ODQC-MHA(GPA) to GPA on randomly
generated 16 qubit circuits, for different maximum allowed number of blocks (10, 50, 100)

4.4 Random Quantum Circuits (3 QPUs)
Finally, to demonstrate the performance of ODQC-MHA using a different heuristic for graph parti-

tioning within each block, we performed the same analysis but distributed each circuit across 3 QPUs using
ODQC-MHA(GPA) within each block, presented in Fig. 7b. Here we observe a similar trend as for 2 QPUs,
however, the first value for maximum allowed blocks of 100 shows anomalously high improvement. We can
attribute this to the fact that the smallest circuits have larger variance in the distribution of CX gates and so
the genetic algorithm may get ‘lucky’ on certain circuit configurations. In the future, this analysis could be
extended to greater than 3 QPUs.

4.5 Discussion
In the limit that the number of gates is large, we would expect that the performance of the K-L algorithm

at allocating the qubits across two processors would tend to the performance of randomly allocating the
qubits across two processors. This would mean that half of the CNOT gates are executed remotely. However,
for any finite circuit depth, the optimal solution will always be better than half of the CNOT gates. This
also applies to our metaheuristic, because the genetic algorithm can always find a block length where the
performance of K-L is better than half and so—if allowed to execute properly—will be able to exploit sections
of the circuit where K-L performs well at allocating the qubits.

5 Conclusion
Compiling circuits for DQC will be paramount to the future and scaling of quantum computers, within

a ‘quantum data center’. In this letter we addressed the problem of qubit allocation within a compilation,
using a meta-heuristic which optimises for the minimum number of qubit and gate teleportations. The results
when comparing our method to the standard method of graph partitioning using the K-L algorithm show a
significant improvement.
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