
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/jqc.2024.047423

ARTICLE

Optimized General Uniform Quantum State Preparation

Mark Ariel Levin*

University of Maryland, College Park, Maryland, 20742, USA

*Corresponding Author: Mark Ariel Levin. Email: marklevin.co@gmail.com

Received: 05 November 2023 Accepted: 16 January 2024 Published: 24 April 2024

ABSTRACT

Quantum algorithms for unstructured search problems rely on the preparation of a uniform superposition,
traditionally achieved through Hadamard gates. However, this incidentally creates an auxiliary search space
consisting of nonsensical answers that do not belong in the search space and reduce the efficiency of the algorithm
due to the need to neglect, un-compute, or destructively interfere with them. Previous approaches to removing this
auxiliary search space yielded large circuit depth and required the use of ancillary qubits. We have developed an
optimized general solver for a circuit that prepares a uniform superposition of any N states while minimizing depth
and without the use of ancillary qubits. We show that this algorithm is efficient, especially in its use of two wire gates,
and that it has been verified on an IonQ quantum computer and through application to a quantum unstructured
search algorithm.

KEYWORDS
State preparation; unstructured Search; Grover’s Algorithm

1 Introduction

All quantum unstructured search algorithms begin with a uniform superposition representing
the search space that is then gradually modified through interference to arrive at a superposition of
only correct answers. Typically, uniform state preparation is performed using Hadamard gates, which
put a wire into equal superposition of 0 and 1. However, using Hadamard gates to create a uniform
superposition means that the size of the search space can only be 2k where k is the number of wires.
This means additional nonsensical answers are introduced that decrease search efficiency.

As mentioned in [1], there is need in some cases for a restricted search space. Mukherjee describes
a process to find a potential unitary of an initializer for such a restricted search space, namely the
Gram-Schmidt procedure. While this works to run this process on a simulator, it cannot be run on an
actual quantum computer without first implementing a sequence of gates for this unitary. He gives
[2–4] as examples to implement the unitary but these do not leverage what is known about the search
space and thus do not maximize depth efficiency. In searching for an implementation, we discovered
that another potential unitary for the initializer is a Quantum Fourier Transform with an Nth root of
unity. However, we could not find any implementation of this for any N that is not 2k. This process
also introduces similar inefficiencies because it imposes unnecessary constraints on the unitary matrix.

https://www.techscience.com/journal/jqc
https://www.techscience.com/
http://dx.doi.org/10.32604/jqc.2024.047423
https://www.techscience.com/doi/10.32604/jqc.2024.047423
mailto:marklevin.co@gmail.com


16 JQC, 2024, vol.6

The only condition necessary for such a state initializer is

U |0〉�log2 N� = 1√
N

N−1∑
n=0

∣∣n(2)

〉
(1)

We developed an algorithm that accomplishes this while minimizing 2-wire gate complexity.

The current optimal solver for general non-uniform state-preparation is [5]. For a state represented
by d wires, the depth of circuits created by this solver is O(Nd) with constant ancillary wires
and O(log (Nd)) with O(Nd log N) ancillary qubits. However, in scenarios where only a uniform
superposition is required, as is often the case in unstructured search problems, our proposed solver
offers a notable efficiency advantage. With a reduced circuit depth of O(log2 N), fewer 2-wire gates,
and the absence of ancillary wires, our solver not only streamlines the preparation process but also
minimizes resource requirements, and the opportunity for error [6], making it a more efficient choice
for such applications.

As an example of an unstructured search application of our solver, we will focus hereafter
specifically on Graph Coloring Problems. A graph G consists of a set of vertices/nodes V and a set of
edges E. Each vertex v has a set of Nv possible colors of which it can exhibit exactly one. An edge
between two vertices constitutes a constraint that those two vertices cannot be the same color. A
solution to G is a coloring such that each vertex has been assigned a color from among its color-set
and all constraints are satisfied.

We have implemented a Grover’s Algorithm [7] based approach to such problems as described in
[1] to demonstrate an application of our algorithm. For this implementation, each vertex v ∈ V is
represented by �log2 Nv� wires. As such, the number of wires needed to solve a given graph is

E + 1 +
V∑
v

�log2 Nv� (2)

Using Hadamard gates for state preparation means a search space that is
V∏
v

2�log2 Nv� (3)

which is significantly greater than or equal to the restricted search space
V∏
v

2log2 Nv =
V∏
v

Nv (4)

Consequently, using Hadamard gates for state preparation can mean a significant reduction in
efficiency, as the number of repetitions needed is proportional to the square root of the size of the
search space. If instead we create a restricted superposition of any given number of states, we can
significantly decrease the number of repetitions of Grover’s Algorithm that are needed.

This optimization is applicable not only for Graph Coloring Problems, but (at minimum) all
applications of Grover’s Algorithm. Previously, Grover’s Algorithm has been successfully employed
to obtain quantum speedup for various combinatorial optimization problems ([8–12]) all of which can
potentially be further optimized via this modification. One thing to note for Grover’s Algorithm in
particular, is that the sub-circuit for generating the restricted superposition is needed not only for the
initializer but for the mirror of the diffuser in each repetition, making it very important to minimize



JQC, 2024, vol.6 17

the number of inefficient 2 wire gates. We believe we have developed an optimal general case solver for
the uniform state preparation circuit of any possible N.

2 Process
2.1 Algorithm

Algorithm 1: Generate Circuit
Input: Integer N
Ouput: Circuit qc

1 Let j = �log2 N�
2 Initialize an empty circuit qc with j wires
3 Let i = the number of contiguous 0s at the end of N(2)

4 Apply a
π

2
RY to each of the first i wires of qc

5 Initialize a list c that will track entangled wires
6 for x = j - 1 decrementing to i - 2 exclusive do
7 if the x order digit of (N − 1)(2)holds 1 do
8 Apply an angle(n,x,c) RY rotation to wire x controlled by the last element of c if c has any
9 Add wire x to the end of c
10 for x = i - 1 to j - 1 exculsive do
11 if x = the last element of c do
12 Remove the last element of c

13 Apply a
π

2
CRY to wire x of qc anti-controlled by the last element of c

14 return qc

The circuit for the uniform superposition of N states needs j = �log2 N� wires. If N is a multiple
of 2i for some integer i greater than 0, the first i wires do not need to be entangled because they have
an equal desired probability of 1 and 0 independent of the other wires (line 4). Once those wires are in
superposition, the other wires need to be entangled beginning with the highest order wire. The angle
function is used to determine the angle of RY gate to apply to this wire to achieve the desired probability
of 1 and 0. For the subsequent wires, in order of decreasing magnitude, if their corresponding digit in
(N − 1)(2) is 1, the angle function is used to determine the angle of CRY gate to apply to that wire with
the most recently rotated wire as the control. This “upward arc” of the algorithm generates the largest
element of the superposition.

A subsequent “downward arc” back-fills the remaining elements. First the lowest order wire
outside of the first i wires is put into equal superposition anti-controlled by the next lowest order
wire that was rotated in the upward arc (recorded in line 9). This is because among the states in the
superposition where that control wire holds 0 at this point in the process, half should hold 1 in the
target wire. This is repeated on each wire in order of increasing magnitude, excluding the highest order
wire, each controlled by the next lowest order wire that was entangled in the upward arc.

The desired probability of observing 1 on the highest order wire is the proportion of states in the

desired superposition that have 1 on that bit, thus p = n mod2x

n
for the highest order wire. For the

other wires, the desired probability of observing 1 on the target wire coincident with observing 1 on
the control wire is the proportion of states in the superposition that have 1 in the target bit given 1 in



18 JQC, 2024, vol.6

the control bit, thus p = n mod2x

n mod2clast
where clast is the last element of c. The desired magnitude of the 1

state for a given wire is m = √
p and to achieve that magnitude we perform an RY or CRY rotation by

2 sin−1
(m) depending on whether the wire is of the highest magnitude.

Function angle(n,x,c)

Input: Integer n, integer x, and list c
Ouput: Float θ radians

1 if c has elements do

2 θ = 2 sin−1

√
n mod2x

n mod2clast

3 else do

4 θ = 2 sin−1

√
n mod2x

n
5 return θ

2.2 Efficiency

The number of 2-wire gates required to create a uniform superposition for any given N is equal to
count1(N − 1) – 2 maxp (N) + ⌈

log2 N
⌉

– 2, where count1 (x)$ is the number of bits holding 1 in the
binary representation of x and maxp (x) is the maximum integer i such that x/2i is an integer greater
than 1. This can be written mathematically as

�log2 N�−1∑
i=1

(⌊
n mod2i

2i−1

⌋
− 2

⌊
1 −

(
N
2i

mod1
)⌋)

+ ⌈
log2 N

⌉ − 1 (5)

which is O(log2 N).

2.3 Example 1

Suppose we wanted a superposition of 7 states, see Fig. 1. This superposition consists of elements
0 through 6, which are represented in binary as 000, 001, 010, 011, 100, 101, and 110. The wires that
represent the value of each bit are labeled in order of decreasing magnitude, q2, q1, q0. Of these 7
states, 3 begin with 1. Thus we want a 3/7 probability of observing 1 on the highest order qubit, q2.
The magnitude of the 1 state for this qubit should then be

√
3/7. In order to obtain this magnitude,

we perform a RY rotation on q2 by 2 sin−1 √
3/7. Of the 3 states with 1 in q2, 1 has 1 in q1. Thus we

perform a 2 sin−1 √
1/3 CRY rotation on q1 controlled by q2. Of the 6 states that do not have 1 in both

q1 and q2, half have 1 in q0. We perform a
π

2
CRY rotation on q0 anti-controlled by q1. Finally, of the

4 states with 0 in q2, half have 1 in q1. The last operation is a
π

2
CRY rotation on q1 anti-controlled by

q2.

2.4 Example 2

Suppose instead that we wanted a superposition of 22 states, see Fig. 2. We follow the same general
process with a few modifications. First, because 22 is even, the superposition has an even distribution
of 1 and 0 in q0, so it can be put into uniform superposition on its own via a

π

2
RY rotation and

not entangled. Second, the largest element in the superposition, 21, is represented in binary as 10101.



JQC, 2024, vol.6 19

Because q3 in 21(2) holds 0, after performing an RY on q4, we skip q3 and perform a CRY on q2. For

the same reason, when we perform the
π

2
anti-controlled CRY rotations on the downward arc of the

circuit, q3 is not the control when q2 is rotated. Instead it is controlled by q4.

Figure 1: Circuit to initialize a uniform superposition of 7 states

Figure 2: Circuit to initialize a uniform superposition of 22 states

3 Results
3.1 Simulator vs. Quantum Computer

All results in this section come from the circuit for N = 27, see Fig. 3.

Figure 3: Circuit to initialize a uniform superposition of 27 states

When run on a noiseless simulator, the algorithm creates a perfect superposition of N states,
however, each noisy simulator has a different consistent bias when running, see Fig. 4a, likely stemming
from inexact rotation angles. Each quantum computer also has a different bias that is consistent across



20 JQC, 2024, vol.6

runs in the same calibration, see Fig. 4b. However, when a histogram for the frequency of each output
is constructed with all of the results from the simulators and the machines, see Fig. 4c, the mean bias
is very small, though the variance varies greatly between them. This indicates that the bias results from
flaws in the hardware, and that the algorithm is sound in principle.

Figure 4: Frequency of each state in the superposition for N = 27 with 10,000 shots when run on (a)
IonQ’s aria noise simulator and (b) their aria machine. (c) Histogram for each state in the superposition
for N = 27 with 10,000 shots and results combined from IonQ’s harmony and aria noise simulators,
their harmony machine, and two different calibrations of their aria machine across 100 runs of each

It may be of note that the bias when run on a quantum computer is not consistent across
calibrations. This was discovered when a group of identical runs on IonQ’s harmony machine were
spread out over the course of 2 weeks and thus were run under different calibrations, see Fig. 5. In this
way, the circuits generated by this solver can incidentally be used as a test of the fidelity of a calibration
including 2-wire gates.

3.2 Simulated Modified Grover’s Algorithm

When applying this process to Grover’s Algorithm for Graph Coloring problems, we saw a remark-
able improvement in efficiency that was polynomially proportional to 2�log2 N� − N and exponentially
proportional to the number of vertices/nodes in the graph. This seems to arise naturally from the
difference in search space observed in Eqs. (3) and (4). On graphs where 2�log2 N� − N > 1, see Figs. 6b,



JQC, 2024, vol.6 21

6c, the modified algorithm is more efficient regardless of the number of nodes. However, for certain
trivial graph problems where 2�log2 N� − N = 1, a small decrease in efficiency was seen, but this is
irrelevant because all such graph problems were trivial and solving is only necessary for non-trivial
graph problems. Examples where this is the case include 3-color graphs with 3 or less nodes, see Fig. 6a,
and 7-color graphs with 7 or less nodes, see Fig. 6d. For these graphs, the modified algorithm seems to
over-shoot the solution on low-iteration runs and thus requires more runs than the original algorithm
to regain a correct solution. However, as the number of nodes increases, the two efficiencies converge
until they cross, and the modified algorithm becomes more efficient for the non-trivial graphs. This
is clear in Fig. 6a, and though Fig. 6d ends at 7 nodes, the same trend can be extrapolated. Similar
results were observed with both noisy and noise-less simulators.

Figure 5: Consistent bias across consecutive runs of N = 27 on IonQ harmony but not across
calibrations



22 JQC, 2024, vol.6

Figure 6: Average number of Grover repetitions needed to observe correct answers via a stochastic
iterative stepping process as suggested in [13] for a line graph with (a) 3, (b) 5, (c) 6, and (d) 7 colors.
These results were simulated on the qiskit Aer simulator with the qiskit FakeVigo noise model. Other
approaches to estimate repetitions include [14–16]

Unfortunately, trivial graphs predominate in these experiments because of the limitations of
the simulator on which they were conducted. When more nodes were attempted than shown in the
datapoints, the simulator failed either due to time out, or simply being unable to handle the number
of wires required, see Eq. (2). It is notable that timeout always occurred with fewer or equal nodes for
the original version than for the modified version. Graphs where N = 2k are not included because no
modification is made in those cases.

With this modified version of Grover’s Algorithm, the initializer and the mirror of the diffuser
both have increased depth in each iteration. We have already discussed how we limit the depth of
our circuits so that this increased depth is minimized, but the increase in depth is also negligible in
comparison to the depth of the oracle and the decomposition of the multi-controlled CNOT in the
diffuser, both of which are unchanged by our modification. The data in Fig. 6 demonstrate that as a
trade-off for this slight increase in the depth of each iteration, we can significantly reduce the number



JQC, 2024, vol.6 23

of iterations required to reach a correct solution. Overall, this balances out to significantly decrease
the overall depth of Grover’s Algorithm.

4 Conclusion

We were able to accomplish a significant improvement in the efficiency of quantum unstructured
search by eliminating the auxiliary search space created by traditional methods of state preparation
while minimizing the number of 2-wire gates required to do so. Although we have only provided
the example of a Grover’s Algorithm approach to graph coloring problems as a viable application,
colleagues of ours have already begun making use of these state preparations to improve the efficiency
of quantum walk, machine learning, and other applications. This solver can be used to varying degrees
of effect to modify any algorithm that requires a uniform state preparation that is unattainable via
simple Hadamard superposition.

Acknowledgement: Thank you to Dr. Franz Klein from University of Maryland for his advisory role,
helping me to consider potential applications of my work and for his advice and revisions during the
writing of this paper.

Funding Statement: The author received no specific funding for this work.

Author Contributions: Mark Levin was the sole researcher and author of this work.

Availability of Data and Materials: All data in this work can be generated using https://github.com/
TheMLevin/GroverGraphSolver.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Mukherjee, “A grover search-based algorithm for the list coloring problem,” arXiv:2108.09061, 2022.
[2] R. Roberts, C. K. Li, and X. Yin, “Decomposition of unitary matrices and quantum gates,” Int. J. Quantum.

Inf., vol. 11, no. 1, pp. 1350015, 2013. doi: 10.48550/arXiv.1210.7366.
[3] Mikko Mött önen et al., “Quantum circuits for general multiqubit gates,” Phys. Rev. Lett., vol. 93, no. 13,

pp. 130502, 2004. doi: 10.1142/S0219749913500159.
[4] Mikko Mött önen Juha, J. J. Vartiainen, and M. M. Salomaa, “Efficient decomposition of quantum gates,”

Phys. Rev. Lett., vol. 93, no. 13, pp. 130502, 2004. doi: 10.1103/PhysRevLett.92.177902.
[5] X. M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth: Implementations

and applications,” Phys. Rev. Lett., vol. 129, pp. 230504, 2022. doi: 10.1103/PhysRevLett.129.230504.
[6] F. Yan et al., “Tunable coupling scheme for implementing high-fidelity two-qubit gates,” Phys. Rev. Appl.,

vol. 10, no. 5, pp. 054062, 2018. doi: 10.1103/PhysRevApplied.10.054062.
[7] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proc. Twenty-Eighth Annu.

ACM Symp. Theory Comput., 1996, pp. 212–219.
[8] S. Jeffery, R. Kothari, F. L. Gall, and F. Magniez, “Improving quantum query complexity of

boolean matrix multiplication using graph collision,” Algorithmica, vol. 76, no. 1, pp. 1–16, 2016. doi:
10.48550/arXiv.1112.5855.

[9] K. Khadiev and A. Ilikaev, “Quantum algorithms for the most frequently string search, intersection of two
string sequences and sorting of strings problems,” in Theory and Practice of Natural Computing, Cham:
Springer, 2019, pp. 234–245.

https://github.com/TheMLevin/GroverGraphSolver
https://github.com/TheMLevin/GroverGraphSolver
https://doi.org/10.48550/arXiv.1210.7366
https://doi.org/10.1142/S0219749913500159
https://doi.org/10.1103/PhysRevLett.92.177902
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1103/PhysRevApplied.10.054062
https://doi.org/10.48550/arXiv.1112.5855


24 JQC, 2024, vol.6

[10] D. Kravchenko, K. Khadiev, and D. Serov, “On the quantum and classical complexity of solving
subtraction games,” in Computer Science—Theory and Applications, Cham: Springer, 2019, pp. 228–236.

[11] T. Lee, F. Magniez, and M. Santha, “Improved quantum query algorithms for triangle detection and
associativity testing,” Algorithmica, vol. 77, no. 2, pp. 459–486, 2017. doi: 10.48550/arXiv.1210.1014.

[12] A. Shukla and P. Vedula, “Trajectory optimization using quantum computing,” J. Global. Optim., vol. 75,
no. 1, pp. 199–225, 2019. doi: 10.1007/s10898-019-00754-5.

[13] M. Boyer et al., “Tight bounds on quantum searching,” arXiv:quant-ph/9605034, 1996.
[14] C. Durr and P. Hoyer, “A quantum algorithm for finding the minimum,” arXiv: quant-ph/9607014, 1996.
[15] S. Aaronson and P. Rall, “Quantum approximate counting, simplified,” in Symp. Simpl. Algorithms, SIAM,

2020, pp. 24–32.
[16] M. Mosca, “Counting by quantum eigenvalue estimation,”Theor. Comput. Sci., vol. 264, no. 1, pp. 139–153,

2001. doi: 10.1016/S0304-3975(00)00217-6.

https://doi.org/10.48550/arXiv.1210.1014
https://doi.org/10.1007/s10898-019-00754-5
https://doi.org/10.1016/S0304-3975(00)00217-6

	Optimized General Uniform Quantum State Preparation
	1 Introduction
	2 Process
	3 Results
	4 Conclusion
	References


