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Abstract: Suppose a practical scene that when two or more parties want to schedule an 
appointment, they need to share their calendars with each other in order to make it 
possible. According to the present result the whole communication cost to solve this 
problem should be their calendars’ length by using a classical algorithm. In this work, we 
investigate the appointment schedule issue made by N users and try to accomplish it in 
quantum information case. Our study shows that the total communication cost will be 
quadratic times smaller than the conventional case if we apply a quantum algorithm in the 
appointment-scheduling problem. 
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1 Introduction 
Communication complexity mainly deals with the following problems: Two independent 
parties want to calculate a common task based on their input, and make the 
communication between them as little as possible. This model was first proposed by Yao 
[Yao (1979)]. Subsequent studies show that the communication complexity of some 
bilateral and tripartite computational problems will be reduced when quantum computing 
and communication are allowed, which is proved impossible by classical algorithms [Yao 
(1993); Brassard (2003)]. In addition, in the field of quantum algorithm research, Shor 
[Shor (1997)] proposed a quantum algorithm for decomposition of large number prime 
factors, which transformed the classical NP problem into P problem. 
Grover [Grover (1996, 1998, 2005)] proposed that the quadratic polynomial acceleration 
of classical algorithms could be achieved by applying quantum mechanism to the search 
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of disordered databases. This algorithm is studied in Høyer et al. [Høyer (2000); Mosca 
(1998); Younes, Rowe and Miller (2003); Younes, Rowe and Miller (2004)], and various 
improved algorithms under specific conditions are given. Subsequently, a series of novel 
quantum methods have been proposed [Liu, Wang, Yuan et al. (2016); Liu, Gao, Yu et al. 
(2018); Liu, Xu, Yang et al. (2018); Liu, Chen, Liu et al. (2018); Qu, Wu, Wang et al. 
(2017); Qu, Zhu, Wang et al. (2018); Qu, Li, Xu et al. (2019); Qu, Cheng and Wang 
(2019); Wang, Yang and Mousoli (2018)].   
At present, the research on the complexity of quantum communication begins to go deep 
into multi-party Computation (MPC) [Shakshuki, Koo, Benoit et al. (2008); Wang, 
Venkataraman, Wang et al. (2009); Han, Kim, Choi et al. (2007)]. 
Here we consider the following multi-user computing model with arbitrary number of 
users. A calendar is a tool commonly used in people’s daily life. Many people use 
different ways or tools to remind themselves of upcoming appointments. The 
determination of itinerary requires users to agree on their respective schedules in order to 
have the right time to participate in common affairs. The process of user multi-party pre-
negotiation and schedule determination can be seen as a typical multi-party Dating (MPD) 
problem. Han et al. [Han, Kim, Choi et al. (2007)] gives some application models and 
performance improvements on MPD in classical communication. 
In this paper, we study the classical communication complexity and quantum 
communication complexity of MPD without sharing any information resources shared 
in advance. 

2 The multi-party dating based on the composite Boolean-valued function 
We describe the MPD model based on the composite Boolean-valued function. 
Supposing that there are K users, marked as user 1 to user K, provided with the function 

 (1) 

in turn. The kth user wants to compute the function , . The function 
 could be arbitrary function in the application, but only satisfying that 

they share the same function domain and codomain. Besides, denote the function 
 as an arbitrary K-ary Boolean-valued function, only to satisfy that 

 and , . 
Without loss of generality, denote the domain of function  as 

, the length of X is N. For the convenience let N be an integer 
that satisfies  (As for the case of , simply have , the expanded 
part of X does not influence on the solving of the problem), therefore it is feasible to use 
the length of  bits information to describe the function domain. And similarly, 
supposing that the codomain of  is , and the length to store 
the codomain information is  bits. So we have 

 (2) 
 (3) 
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 (4) 
In summary, the goal of our research on the multiparty computation task is to find a 
solution x to equation  by comparing the results of K arbitrary 
functions  calculation held by the multi-users. 

3 Method: the distributed Oracle operator and quantum distributed algorithm 
Based on the foregoing MPD model, we construct the quantum distributed (QD) 
algorithm with distributed Oracle operator (DOO) and Grover’s iteration [Grover (1996)]. 

3.1 The function and operator definitions related to the QD Algorithm 
The initialization of the algorithm starts with user 1. First, user 1 needs to prepare an n 
qubits state , then apply the Hadamard transformation  on it, which will make the 
n qubits at an uniform superposition state . Quantum state  is used to 
save the N values of the user function domain, where  are the N 
eigenstates corresponding to the indices of the N values in the function domain. The 
quantum state  is the initial input of user 1, the h qubits  is used to save the 
calculated message about x for the kth user. 
Second, define the quantum state sequence  and , where 

 (5)
  (6) 

It can be seen that  and  are  and  qubits respectively. 
Especially we have  when  and  when , both of which are of 
n qubits length. 
Moreover, define the unitary operator sequence , where  is a  
dimensional operator. 
It is used to operate on the last qubit of the input states, add it to  with the mod H. 
Especially when ,  is an n dimensional unitary operator. 
It can be verified that the operator  is a reversible unitary transformation, and the 
reversible operator of  satisfies the condition . The same type of operators 
with  is applied in the Deutsch-Jozsa algorithm once. In the quantum computation, the 
quantum calculation circuits which satisfy the reversible transformation condition are 
proved to be physically realizable. 
Still, define the  dimensional unitary operator Oracle, which is an expansion 
of the Oracle operator in the Grover’s quantum search algorithm [Grover (1996)], that is 

             (7) 
Obviously, the Oracle operator is unitary as well as reversible, therefore is physically 
realizable. 
Finally, apply the operator sequence  and operator Oracle we defined to 
the quantum state sequence  and , then there are 

 (8) 
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 (9) 

 (10) 
We separate the DOO algorithm into three phases. Phase 1 is a forward communication 
process from user 1 to user K. During this phase, every user applies the unitary operator 
in the sequence  to the quantum states in the sequence  in 
order, and transfers the result to the next user one by one. Therefore, the result of each 
user’s calculation will finally be transferred to user K. 
In the second phase, user K applies the Oracle operator to quantum state  and gets the 
quantum state . Meanwhile, all the quantum states corresponding to the solution of 
the MPD model will get a phase reverse, so that the solution can be marked. 
The third phase is the reverse communication process from user K to user 1. Every user 
applies the unitary operator in the sequence  to the quantum states in 
the sequence  in turn, and transfers the result to the next user, then the 
quantum states carrying the solution mark will be delivered to user 1. So the entire 
process of DOO algorithm is as follows. 

3.1.1 DOO algorithm 
(1) The forward communication phase from user 1 to user K. 
Step 1: The initial input is that user 1 receives the quantum state  . 
Step 2: The current user receives quantum state , then adds h qubits  to its last 
qubit as the auxiliary quantum state. 
Step 3: The current user applies operator  to the outcome of Step 2 to get quantum state 

. 
Step 4: The current user transfers quantum state  to the next user. 
Step 5: The next user goes to Step 2 to start. Repeating this process till the quantum state 

 is transferred to the last user K.  
(2) User K executes the Oracle operator on the received quantum state , gets state . 
Sends  to user . 
(3) The backward communication phase from user  to user 1 
Step 1: The initial input is that user  receives the quantum state . 
Step 2: The current user receives the quantum state ，applies the operator  to it 
and gets state . 
Step 3: The current user removes the last h qubits  from the quantum state 

 and gets the state . 
Step 4: The current user sends  to the previous user. 
Step 5: The previous user goes to Step 2 and start operating. Repeating this process till 
the quantum state  is transferred to user 1. 
Step 6: User 1 gets the quantum state , applies the operator  to it and gets the 
state ; Then removes the last h qubits  and gets . 
Algorithm ends. 
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3.1.2 QD algorithm 
In the DOO algorithm, we take the quantum state as the information carrier. Through the 
process of delivering and sharing quantum states within multi users, each user executes 
the corresponding operation on the quantum state signal to cooperate with a joint 
distributed computation task. As for the MPD model, the operation the DOO algorithm 
performs on the input quantum state  can be written as: 

. (11) 
This means when every turn of DOO algorithm is carried out, the quantum eigenstates 
corresponding to the solutions will get a phase reverse. 
In order to implement QD algorithm, we need to apply the aforementioned DOO 
algorithm to the Grover iteration. Here we present one time of the Grover iteration steps: 
Step 1: Applying the DOO algorithm. Check whether each value index is the solution of 
MPC model or not. 
Step 2: Apply Hadamard transform  to the result of Step 1. 
Step 3: Carry on conditional phase shift to the outcome of Step 2, so as to make every 
base state other than  gets  phase shift, i.e. . 
Step 4: Apply the Hadamard transform  to the result of Step 3. 
According to the features of the Grover’s algorithm, we notice that as the iteration times 
approach  the weights of some eigenstates of the n qubits representing the function 
domain will grow big enough, where these eigenstates are all solutions to the MPD model. 
If we measure the eigenstates on the n qubits after iteration, we will obtain the solution to 
the problem with an ultimately large probability. 

3.2 Lemma and theorems 

Lemma 1: 1
1 2

log K
P
−

−
−  and 2K  is of the same order of infinity. 

Proof:  
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Theorem 1: The classical communication complexity required for the worst case of MPD 
is ( )2KO K ⋅ . 

Proof: We can conclude that the amount of information communicated in classical 
algorithm is  

( ) ( ) 1
1 2

1 1 log K
Pn K CK K CK−

−
−

− + = − + . (14) 

where C is a constant, CK denotes the amount of ancillary communication which 
prepares for communication and sends back the final result. 
Applying the result of Lemma 1, we obtain the communication complexity of classical 
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algorithm to be  

( )2KO K ⋅ . (15) 

Theorem 2: Employing quantum algorithm, the worst case communication complexity is 

( )2 2KO K . 

Proof: One time of iteration process consists of transmission from user 1 to user K each 
sends a quantum state to its next one by one in turn, of which the amount of 
communication is ( ) ( )1 log 1 / 2K N K K− + − , and the reverse transmission phase 
from user K to user 1 feeding back their quantum states one by one in turn, of which the 
amount of communication is the same as above. 
So one time of complete iteration claims the communication cost of 
( ) ( )2 1 log 1K N K K− + − . 

Overall the algorithm needs iterations of ( )O N  times, henceforth, the communication 

complexity of quantum algorithm amounts to ( ) ( )( )( )2 1 log 1O K N K K N− + − . 

Due to the conclusion of Lemma 1, it results in ( )2 2KO K . 

4 Conclusion 
According to Theorem 1 and 2, we can conclude that the communication complexity of 

appointment scheduling is able to get ( )2 2KO K  by using quantum algorithm, which 

is comprehensively lower than ( )2KO K ⋅  by handling it in classical way. So we can 
figure that the highest speed-up made by quantum algorithm can reach the quadratic level 
when the users’ number increases large sufficiently. 
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