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Abstract: Multi-user detection is one of the important technical problems for modern 
communications. In the field of quantum communication, the multi-access channel on 
which we apply the technology of quantum information processing is still an open 
question. In this work, we investigate the multi-user detection problem based on the 
binary coherent-state signals whose communication way is supposed to be seen as a 
quantum channel. A binary phase shift keying model of this multi-access channel is 
studied and a novel method of quantum detection proposed according to the conclusion 
of the quantum measurement theory. As a result, the average interference between 
deferent users is presented and the average error probability of the quantum detection is 
derived theoretically. Finally, we show the maximum channel capacity of this effective 
detection for a two-access quantum channel. 
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1 Introduction 
For optical communication, some quantum resources, such as entangled states and 
squeezed states, cannot maintain long-distance quantum properties due to large-scale 
diffraction loss in space. However, the coherent state of light field produced by 
conventional laser emitters can maintain coherence under the loss of diffraction. If it is used 
as a signal carrier, it will be a better choice [Dixon (1984); Flikkema (1997); Simon, Omura 
and Scholtz (1994); Vilnrotter (2012); Vilnrotter and Lau (2001)]. The classical optical 
receivers for deep space communications are currently under consideration, which use 
photon counting or coherent detection to detect coherent state signals, and even extract 
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information from single photon on average. Dolinar receiver is introduced in reference 
[Helstrom (1976)]. Dolinar receiver is the first classical structured receiver. It uses real-time 
optical feedback and physical measurements. Error probability can theoretically reach 
Helstrom bound. However, it is pointed out in literature [Lau, Vilnrotter, Dolinar et al. 
(2006); Cook, Martin and Geremia (2007)] that precise local laser intensity control is very 
challenging, and it is difficult to achieve the desired results when the data rate is high. 
Literature [Sasaki and Hirota (1996)] describes a different method proposed by Sasaki and 
Hiroshima, which does not use optical feedback but achieves quantum optimum bounds by 
unitary transformation and photon counting. However, the practical implementation of 
Sasaki-Hiroshita receiver requires multi-photon non-linear optical processing, which also 
leads to complex receiver structure. According to the recent results of quantum mechanics, 
the optimal quantum measurement of binary signals can be achieved by partitioning the 
signals into disjoint parts and then performing the optimal measurement of each segment. 
On the other hand, with the development of large-capacity multi-access communication 
such as CDMA wireless communication, multi-user detection technology has become an 
effective way to combat multi-access interference (inter-user interference). Verdu took 
the lead in putting forward multi-user detection model and optimal multi-user detection 
algorithm [Verdu (1998)]. Because most of the multi-user detection algorithms are NP-
hard to solve, the application of multi-user detection technology is facing great 
difficulties. Subsequently, a series of novel quantum methods have been proposed [Liu, 
Wang, Yuan et al. (2016); Liu, Gao, Yu et al. (2018); Liu, Xu, Yang et al. (2018); Liu, 
Chen, Liu et al. (2018); Qu, Wu, Wang et al. (2017); Qu, Zhu, Wang et al. (2018); Qu, Li, 
Xu et al. (2019); Qu, Cheng and Wang (2019); Wang, Yang and Mousoli (2018)]. 
Firstly, the detection problem in classical multi-user communication can be solved more 
quickly by using quantum parallelism. In 2002, S. Imre et al. proposed a method to obtain 
the optimal solution of quantum multiuser detection in classical multiple access channels 
through quantum registers and quantum search algorithm [Imre and Bahlzs (2002); Imre 
and Bahlzs (2002)].  
The second is to solve the detection problem of multi-user quantum information in 
quantum channel. Concha et al. [Concha and Poor (2000)] proposed the analysis method 
of multi-user detection in quantum channel. Concha et al. [Concha and Poor (2004)] then 
proposed the modeling method of multi-access quantum channel, and gave the result that 
the bit error rate of the system is close to the single user boundary. The optical field 
model of multi-input and multi-output quantum optical systems is presented in Concha et 
al. [Concha (2001); Concha and Poor (2002)]. Allahverdyan et al. [Allahverdyan and 
Saakian (1997)] propose a multi-access quantum channel model. The results show that 
quantum multiuser detection algorithm is superior to classical optimal multiuser detection 
algorithm under the same conditions. 
This paper investigates the multi-user detection in the case of binary coherent-state signals. 
The channel model is given and the theoretical analysis and performance for the proposed 
quantum detection method shown. 
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2 Multi-user detection based on minimum error discrimination (MED) 
measurement 
Theoretically the complex envelope α  of a coherent state signal is able to be any value 
within the complex plane. Therefore here we consider following case: Let 
{ }| 0,1 1k k Kα = −  be a set of 2K symmetric complex values which have different 

angels but share the same module α . It can be seen in Fig. 1. 
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Figure 1: Symmetrical coherent states 
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It can be seen from Fig. 1 an arbitrary α  has a negative argument other than its central 
symmetric one. There are totally K  pairs of α . 
According to the analysis above, we propose a multi address access channel based on the 
coherent signals. In order to facilitate the unification of formulas and indicators we 
assume the number of users is from 0  to 1K − , obviously K  users in total。If 2K  
coherent states are assigned to K  users the j th user is supposed to have one pair of 

coherent states { },j j Kα α + . Here { }0,1, 1j K∈ −  and j K jα α+ = − . Every 

user deploys BPSK method to send information through coherent states { },j j Kα α +  

like Fig. 2 shows. 
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Figure 2: Multi-access channel based on BPSK 

The user shown in Fig. 2 has the following priori assumptions for his signal 
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For an ideal quantum multiple access channel, when the signal states transmitted by 
different users are orthogonal, there is no inter-user interference. For coherent state 
multiple access channels, because the coherent states are always non-orthogonal, the 
inter-user interference will always exist. Therefore, the average inter-user interference 
can be reflected by the degree of overlap of coherent state signals of different users, i.e., 
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The value of r  is from 0 to 1, the closer to 0, the smaller the interference, the closer to 1, 
the stronger the interference. Fig. 3 shows the curve of average user interference with 
uniform change of user number from K=2 to K=20. 
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3 Two-user detection based on MED measurement 
Equations and mathematical expressions must be inserted into the main text. Two different 
types of styles can be used for equations and mathematical expressions. They are: in-line 
style, and display style. Next, we take the two-access channel of two users as the research 
object. The coherent state two-access channel for two users is shown in Fig. 4. 
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Figure 4: Two users’ channel 

Two users have a set of coherent state signals modulated by BPSK respectively. 
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Based on the analysis of the previous section and the conclusion of MED measurement in 
reference [Eldar, Megretski and Verghese (2004); Elron and Eldar (2005)], the 
measurement probability of two-user MED measurement falling on each result can be 
calculated as follows: 
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The above formula represents the signal state α  sent by user 0 and the probability of 
the measurement result k at the receiving end. Based on the equality and symmetry of the 
transcendental probability of the transmitted signal, a more general expression of the 
measurement probability is deduced as follows. 

( ) ( )( )0
0| 2 mod 4 |j

lP k H P k j l H= − −  (7) 

Among them { }0,1,2,3k∈ , { }, 0,1j l∈ . Thus, from the upper formula, it can be seen 
that the detection error probability measured by two-user MED is as follows. 
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As far as the channel capacity of two-user communication is concerned, the maximum 
channel capacity of coherent state two-access channel will be obtained theoretically by 
MED measurement. The maximum channel capacity obtained here is equivalent to the 
Von Neumann Entropy of coherent state signals. The mixed state of the transmitted 
signal is 
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According to Eq. (9), MED measurement can be used. The maximum channel capacity of 
coherent state two-access channel is 
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4 Conclusion 
Figures and tables should be inserted in the text of the manuscript. According to the 
calculation results of Fig. 3, it depicts the curves of the interference between users whose 
average photon number of varies uniformly from 0 to 5. It is easy to know that the 
communication performance gets dramatically better as the average photon number or the 
users’ amount gets larger because of the interference between users decreasing. In order 
to access the larger channel capacity derived by Eq. (10), the higher average photon 
number is supposed to be applicable for practical detection even if we just take two users 
of coherent-state model under consideration. 
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