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ABSTRACT

In this paper, knitted aramid fiber (AF) was used as the support, and graphene oxide (GO) was loaded on the
support by the polydopamine (PDA) method. Epoxy resin (EP) was poured to obtain composite materials. The
tribological and mechanical properties of the composites were tested, and the wear surface of the composites was
characterized by scanning electron microscopy (SEM) and three-dimensional morphology. The results show that
knitted AF can markedly improve the mechanical properties of the composites. As a two-dimensional material, GO
plays an effective lubrication role, and GO effectively enhances the tribological properties of the composites. AF
can reduce the wear rate of composites and improve the tribological properties of composites. During the friction
process, AF and GO play a synergistic role, which can form a friction transfer film between the matrix and the
friction medium, thereby avoiding direct contact between the matrix and the friction medium and improving the
tribological properties of the composites. EP/AF/PDA (Dopamine hydrochloride)/GO has the best modification
effect on the tribological properties of the composites. Compared with the friction coefficient of pure EP, the friction
coefficient of EP/AF/PDA/GO is reduced by 48.36%, and the volume wear rate is reduced by 96.99% compared with
pure EP.
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1 Introduction

Epoxy resin (EP) is widely used in aerospace, automotive, and mechanical equipment [1–3] in
mining due to its excellent mechanical properties, thermal stability, superior electrical insulation,
and chemical resistance [4], as well as ease of processing and low cost, with applications in coatings,
composites [5], casting materials [6], adhesives [7], fire retardant material [8], and injection molding
materials. However, its high brittleness [9] and high friction coefficient [10] have limited its widespread
application. To address this issue, adding other materials (such as sponges, fibers, etc.) to EP materials
to improve the performance of the obtained composite materials is widely used. Fibers such as aramid
fiber (AF) [11–14], carbon fiber (CF) [15–17], and basalt fiber (BF) [18–20] have been introduced
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into the epoxy resin to improve its performance. AF, in particular, is commonly used in polymer
composites due to its low density, high specific strength, high specific modulus, and high-temperature
resistance [21,22] developed aramid pulp/carbon fiber reinforced polybenzoxazine composites as
high-performance friction materials with high thermal degradation temperature, glass transition
temperature, and good wear resistance. Through the method of knitted aramid fiber, the fiber can
form a support, so that it can play a greater role in the composite material [23,24].

To achieve the desired effect of fiber reinforcement, it is vital to improve the interactions between
the matrix and the filler surface [25–28]. Therefore, methods for modifying the fiber surface have
been developed, including surface etching [29], plasma processing [30], and coating [31,32], to improve
the performance of the fiber/resin composite. Surface etching involves chemically etching the fiber
surface, which affects the fiber’s properties. Reference [33] used LiF/HCl solution etching Ti3AlC2 to
synthesize Ti3C2Tx MXene and it was utilized for surface modification of polyethylene (PE) fiber to
form a stable absorptive buffer layer on the fiber interface. Inspired by the strong adhesion ability
of polydopamine (PDA) originating from the mussel secretory gland, dopamine. Sun et al. [34] used
a PDA coating quickly and uniformly formed on CF through the rapid synthesis under anoxic
conditions by ultrasound, to change the interface of the composite. To improve the frictional properties
of the composites, nanomaterials such as graphene oxide (GO) [35], carbon nanotubes (CNF) [19],
and reduced graphene oxide (rGO) [36] are often added. Compared to CNF and rGO, GO contains
carboxyl (-COOH), hydroxyl (-OH), and epoxy (-O-) functional groups [37], which can enhance the
chemical interactions between the polymer matrix and the nanomaterials. Thus, GO can effectively
improve the tribological properties of composites. Wang et al. designed a porous 3D graphene
lubricant using polyurethane (PU) foam carrier, and then poured monomer-casting polyamide 6
(MCPA6) into the 3D graphene lubricant to prepare a self-lubricating composite material [38].
However, direct coating of GO on the fiber surface is challenging [39]. Feng et al. [40] adhered PDA-
modified reduced graphene oxide (PDA-rGO) to the nickel foam skeleton; the self-polymerized PDA
layer binds GO to the fiber through chemical interactions and improves the tribological properties of
the composites [41]. According to published reports, there is no report on the use of polydopamine
modification to load GO onto knitted aramid fibers to improve the properties of epoxy resin.

Based on the above survey, in this study, the tribological properties of EP were improved by
incorporating a knitted aramid fiber/polydopamine/graphene oxide woven support framework into
the EP matrix. AF can improve the mechanical properties of the matrix and reduce the volume wear
rate. Coating the surface of AF by PDA can make the surface of AF load other substances. We selected
GO as the modified material on account of GO was two-dimensional functional material with certain
lubrication properties. The purpose of this study was to investigate the effect of PDA and GO on the
properties of knitted aramid fiber composites, and to provide a basis for future research.

2 Experiments
2.1 Materials

The aramid fiber is from Dongguan Shenglan Rope Belt Weaving Co., Ltd. (Dongguan, China).
Dopamine hydrochloride (PDA; C8H11NO2·HCl) from Hefei BASF Biotechnology Co., Ltd. (Hefei,
China). Tris (Tris; NH2C(CH2OH)) was purchased from Tianjin Deen Chemical Reagent Co., Ltd.
(Tianjin, China). Graphite flakes (800 mesh), sulfuric acid (95%–98%), potassium permanganate were
purchased from Qingdao Tianshengda Graphite Co., Ltd. (Qingdao, China), Luoyang Haohua Chem-
ical Co., Ltd. (Luoyang, China), Tianjin Chemical Co., Ltd. (Tianjin, China). Hydrogen peroxide
(30%), sodium hydroxide (analytically pure), sodium nitrate (analytically pure) and hydrochloric acid
(37%) were all from Tianjin Damao Chemical Reagent Factory (Tianjin, China). E-44 epoxy resin
and 650 curing agent (polyamide resin) are provided by Dingyuan Danbao Resin Co., Ltd. (Zhenjiang,
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China). Unless otherwise stated, all chemical reagents and solvents are used as received without further
purification.

2.2 Knitted AF Modified and Load GO

2.2.1 Preparation of PDA Modified Knitted AF

Aramid fabric with 30 mm × 30 mm aramid rope was knitted by hand knitting method. With
0.5 g dopamine hydrochloride, 0.3 g TRIS configuration solution 250 mL, with 10% HCl solution to
adjust the solution pH = 8.5, get 2 g/L PDA solution. The treated aramid fabric was then placed in
the solution for 24 h and continuously stirred. The soaked fabric was rinsed with distilled water for
three times and dried at 60°C for 6 h to obtain AF/PDA.

2.2.2 Preparation of GO and AF/PDA Load GO

Graphene oxide was prepared by the improved Hummers method [42] and graphene oxide was
prepared by ultrasonic method.

The GO solution was prepared according to the required graphene oxide concentration, and the
AF/PDA fabric obtained in the previous step was placed in it, soaked for 24 h, and dried at 80°C for
10 h to obtain AF/PDA/GO.

2.3 Preparation of EP/AF/PDA/GO

Put the cleaned beaker on the balance, put it into the rotor, weigh a certain amount of epoxy resin,
then add ethanol in proportion, stir it with a magnetic stirrer, and then weigh the polyamide resin in
proportion, and stir it evenly. After ultrasonic defoaming for 30 min in an ultrasonic cleaner, it was
poured into a mold with an AF/PDA/GO support skeleton, dried at 45°C for 4 h, and then placed
for 2 d to solidify and demould. The preparation process of EP/AF/PDA/GO composites is shown in
Fig. 1a.

Figure 1: (Continued)



194 JPM, 2024, vol.41, no.3

Figure 1: (a) Schematic diagram of EP/AF/PDA/GO composites preparation process, (b) Interaction
mechanism between different components

2.4 Characterizations and Instruments

The worn surfaces of EP, EP/AF, EP/AF/PDA, EP/AF/PDA/GO composites were characterized
by scanning electron microscopy (SEM, JSM-IT100, JEOL Inc., Tokyo, Japan). FTIR analysis was
performed using an IRTracer-100 spectrometer (FTIR, Nicolet iS50, Thermo Scientific, Huntham,
MA, USA) to characterize the composite and modified fiber groups in the range of 400–4000 cm−1. The
three-dimensional surface morphology of the wear track of EP composites was measured by scanning
electron microscopy (SEM, JSM-IT100, JEOL Inc., Tokyo, Japan).

2.5 Mechanical and Tribological Tests

The hardness of the samples was tested by Shore hardness tester (LXD-D, Dongguan Three
Measuring Tools Co., Ltd., Dongguan, China) according to GB 2411-80. Each sample was tested 5
times, and the average value was taken as the hardness. According to GB/T 1040, 224–228, the samples
were made into dumbbell type, 3 in each group, a total of 4 groups. The tensile strength and modulus
of EP and its composites were tested by electronic universal testing machine controlled by CMT4503
microcomputer (CMT4503, Master Industrial Systems Inc., Shenzhen, China), and the tensile speed
was set to 2 mm/min. The tensile strength and modulus values are calculated according to the following
equations:

σ = p
b − h

(1)

E = �σ

�ε
(2)

where σ (MPa) is the tensile strength, p(N) is the breakage load, b(mm) is the sample width, and h(mm)
is the sample thickness; E is the tensile modulus, Δσ indicates the increase in stress on the specimen,
Δε is the strain of the tensile specimen.

According to the standard test method of GB 3960–1983, the friction and wear properties of EP
composites were evaluated on MM-2HL ring block tester (MM-2HL, Jinan HengXu Testing Machine
Technology Co., Ltd., Jinan, China). The sample size is 30 mm × 7 mm × 6 mm, and the dual material
is carbon steel (45#) ring. Before the test, the surface of the dual material was polished with 1000#
sandpaper and washed with ethanol. The friction test was carried out at room temperature. The normal
load was 40 N and the sliding speed was 0.21 m/s. Three friction and wear tests were carried out on
each sample. After the test, the wear volume ΔV (mm3) of the specimen is calculated according to the
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following formula [23]:

�V = B ·
[
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]
(3)

In the formula, B(mm) is the width of the specimen, R(mm) is the radius of the carbon steel ring,
and b(mm) is the width of the wear scar. The specific wear rate W (mm3/Nm) was calculated according
to the following formula:

W = ΔV
Ld

(4)

In the formula, L(N) is the load and d(m) is the total sliding distance.

3 Result and Discussion
3.1 Microstructure of the AF with Different Surface Treatments

Fig. 1b shows the physical and chemical changes on the surface of AF. During the preparation
process, the polydopamine coating was coated on the surface of AF through the polymerization
reaction of dopamine, so that there were a large number of active groups on the surface of AF. After
that, graphene oxide was fixed on the surface of AF by physical and chemical action by soaking
graphene oxide solution, to obtain AF/PDA/GO. Fig. 2a is the electron microscope image of AF after
cleaning without modification. It can be seen from the image that the surface of AF itself is smooth
and composed of multiple strands of fibers. The surface roughness is low, resulting in poor bonding
with the matrix. During the friction process, the matrix is easy to peel off, resulting in a large amount
of friction and wear, reducing the service life of the parts. Fig. 2b is the AF electron microscope image
after loading PDA [23,43]. The surface is loaded with a large number of polydopamine molecules,
which can effectively increase the roughness of the AF surface and improve the combination of AF
and EP. It has an effective effect on reducing the wear of the matrix during the friction process. At
the same time, it has a positive effect on the loading of GO. It is difficult for flake GO to be directly
loaded onto the AF surface. This situation can be improved by introducing PDA. Fig. 2c shows the
surface of AF/PDA after the introduction of GO [44], and it can be observed that GO is loaded on the
surface of the fiber.

Figure 2: SEM of (a) AF, (b) AF/PDA, (c) AF/PDA/GO

The infrared spectra of EP and its composites are shown in Fig. 3a. It can be seen from the figure
that the broad peak at 3300–3600 cm−1 of pure epoxy resin is related to the-OH stretching vibration of
EP. At 830 cm−1, the C-O-C stretching vibration is the characteristic peak of the epoxy group [45], and
the peaks at 2933 and 2852 cm−1 are mainly C-H stretching vibration. The peaks at 1500 and 1600 cm−1

are mainly the C=C stretching vibration of aromatic hydrocarbons [46]. The peaks at 1251, 1182, and
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1045 cm−1 are mainly C-O stretching vibration. The peak at 553 cm−1 is an OH stretching vibration.
Compared with pure EP, the modified matrix did not change significantly, which may be because the
epoxy resin itself has a large number of epoxy groups, thus masking the characteristic peaks of the
added modified substances. We conducted infrared tests on unpolished fibers and modified fibers,
and the results are shown in Fig. 3b. The infrared characteristic peaks of aramid fiber are very similar
to those of PDA and GO, which makes it difficult to distinguish the results.

(a) (b)

Figure 3: FTIR spectra of (a) EP, EP/AF, EP/AF/PDA and EP/AF/PDA/GO, (b) AF, AF/PDA and
AF/PDA/GO

3.2 Mechanical Properties of EP and Its Composites

In order to explore the mechanical properties of the composite material, the surface hardness
of the composite material was measured by a hardness tester, and the results were shown in Fig. 4.
From the data of Fig. 4, the hardness of pure EP is about 56 SHD [23,47]. It can be seen that the
hardness of the composite material increases slightly after adding AF, and the introduction of PDA
and GO has no significant effect on the hardness of the composite material.

Figure 4: Hardness of EP, EP/AF, EP/AF/PDA and EP/AF/PDA/GO composite surfaces

In order to further explore, we conducted a tensile test on the composite material, and the
experimental results are shown in Fig. 5a,b. Fig. 5a is the tensile strength and tensile modulus of the
composite material. From the figure, it can be seen that after AF is added to the composite material,
it’s tensile strength and modulus are greatly improved [47,48]. The main reason is that AF has excellent
mechanical properties, which can effectively prevent the direct fracture of the composite material
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during the tensile process. After the introduction of PDA, GO, the tensile strength of the composites
decreased slightly, but it was still higher than that of pure EP, and the tensile modulus decreased to
some extent. Fig. 5b is the stress-strain curve of the composite material. The pure EP breaks directly
during the tensile process. After adding AF, the mechanical properties of the composite material are
greatly improved, which proves that AF plays a significant role in improving the mechanical properties
of the composite material. However, the tensile strength and modulus of the composites decreased after
the addition of PDA and GO, which needs further study.

(a) (b)

Figure 5: (a) Tensile strength and tensile modulus of different EP composites, (b) Stress-strain curve
of different EP composites

3.3 Tribological Properties of EP and Its Composites

Fig. 6a is the change curve of friction coefficient with time of pure EP and modified composite
under the condition of load 40 N and rotation speed 100 r/min. The friction coefficient of pure EP
tends to be stable after the friction time reaches 300 s, and the friction coefficient is about 0.75 when
it is stable [23,47]. After the introduction of woven AF as a support, the friction coefficient of EP/AF
is lower than that of pure EP, but AF is difficult to play a good lubrication effect, so its friction
coefficient is constantly fluctuating and growing, and it is difficult to achieve a stable friction stage.
After the introduction of dopamine molecules, the components of the composite are tightly bonded.
After 250 s of friction process, the friction coefficient reaches a stable state, about 0.50. Compared with
pure EP, the friction coefficient is reduced to a certain extent, and the friction coefficient of EP/AF is
basically the same. By introducing GO, the friction coefficient of the composite material has decreased
significantly, reaching a stable friction state after 250 s, and the friction coefficient is about 0.42. It
can be seen that GO, as a two-dimensional material, can play a certain role in reducing the friction
coefficient of the composite material and can effectively reduce the friction coefficient of the composite
material. Fig. 6b is specific wear rate and average friction coefficient of EP and its composites. It can be
seen from the diagram that the friction coefficient and wear rate of the composite material decreased
after the addition of AF. The friction coefficient and wear rate of the composite material after the
addition of AF modified by PDA did not change significantly compared with EP/AF. However, after
the introduction of GO, the friction coefficient and wear rate of the composite material were further
reduced to achieve the best effect of the system. Compared with pure EP, the average friction coefficient
is reduced by 48.36%, and the wear rate is reduced by 96.99%.
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(a) (b)

Figure 6: The tribological properties of EP and its composites: (a) coefficient of friction, (b) specific
wear rate and average friction coefficient (40 N, 0.21 m/s)

3.4 Morphology of Wear Surface of EP and Its Composites

In order to study the tribological mechanism of pure EP and EP/AF/PDA/GO composites in
detail, SEM images were taken at the wear scars of the corresponding composites. The results are
shown in Fig. 7. Fig. 7a is the SEM image of the wear surface of pure EP. It can be seen that there are
a large number of wear debris on the surface, as well as a large area of spalling due to friction [47].
After adding AF, it can be seen from Fig. 7b that the wear debris is reduced, and the wear surface
becomes more flat. It can be seen that AF fiber has wear-resistant characteristics [49], and the wear
debris on the wear surface is reduced. After the introduction of PDA, it can be seen from Fig. 7c that
the peeling phenomenon of the matrix on the wear surface of the composite material is reduced, the
fiber and the matrix are closely combined, and the amount of wear debris is further reduced compared
with EP/AF. Fig. 7d is the wear surface of EP/AF/PDA/GO composites. It can be seen that the wear
surface is smooth, and GO has a certain lubricating effect to fill the matrix wear caused by friction
and wear. Compared with pure EP, the rough state of the friction surface is effectively improved.

In order to further explore the wear surface morphology of the composite material, the three-
dimensional scanning of the wear surface was carried out [23]. The imaging results are as shown
in Fig. 8. Fig. 8a shows the three-dimensional morphology of the wear scar surface of pure EP. It
can be seen that the depth of the wear scar is deep, and there are a lot of wear debris generated
by friction on the surface. Fig. 8b is the three-dimensional morphology of the wear scar surface of
EP/AF, which is improved compared with pure EP, and the friction surface is relatively flat. After
adding AF as a support, the wear depth is reduced. It can be seen that the addition of AF can improve
the wear resistance of the composite material. Fig. 8c shows the wear scar surface of EP/AF/PDA. The
wear scar is relatively shallow, and the friction surface is improved compared with EP/AF. The gully
caused by surface friction is filled to a certain extent, it is proved that PDA can effectively improve the
interfacial bonding between EP and AF in the composites, thus improving the tribological properties
of the composites. Fig. 8d is the friction surface of EP/AF/PDA/GO composite material. The surface
has a certain roughness, which may be that the GO sheet material plays a certain role on the friction
surface.
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Figure 7: SEM of (a) EP, (b) EP/AF, (c) EP/AF/PDA, (d) EP/AF/PDA/GO worn-out surface

Figure 8: 3D profile of composite wear surface of (a) pure EP, (b) EP/AF, (c) EP/AF/PDA, (d)
EP/AF/PDA/GO



200 JPM, 2024, vol.41, no.3

Based on the above data, the tribological mechanism model diagram of EP and its composites is
drawn in Fig. 9. It is speculated that the addition of AF fiber can reduce the wear rate of the composite
material when the steel ring contacts with the composite material during the friction process. The GO
loaded on the AF surface moves to the friction contact surface during the friction process, which plays
a role in anti-friction and anti-wear. The GO synergistic with AF, filling the wear position of the friction
surface, and reducing the wear of the composite material [44,50], so as to achieve good tribological
properties. The results show that GO and AF play a great role in improving the tribological properties
of EP composites.

Figure 9: Schematic diagram of the friction reduction of EP composite

4 Conclusion

In this study, we weaved a single AF and then grafted a large number of active groups on the
surface of the AF by coating a polydopamine coating on the braided fiber. GO is fixed on the surface of
aramid fiber through the interaction with the active groups on the surface of aramid fiber, which plays a
certain role in the friction process. It was found that the tribological properties of the EP/AF/PDA/GO
composite have great improvement. Compared with pure EP, the friction coefficient is reduced by
48.36%, and the volume wear rate is reduced by 96.99%. The wear surface of the modified material
has shallow wear marks, low roughness, and is relatively smooth. Also, we found that the introduction
of AF greatly improves the mechanical properties of the composites. The addition of AF improved the
hardness, tensile strength, and tensile modulus of the composites. In summary, AF/PDA/GO can be
added into the matrix as a support to play a good anti-friction and wear-resistant effect.
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