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ABSTRACT

In the 6G Internet of Things (IoT) paradigm, unprecedented challenges will be raised to provide massive
connectivity, ultra-low latency, and energy efficiency for ultra-dense IoT devices. To address these challenges,
we explore the non-orthogonal multiple access (NOMA) based grant-free random access (GFRA) schemes in
the cellular uplink to support massive IoT devices with high spectrum efficiency and low access latency. In
particular, we focus on optimizing the backoff strategy of each device when transmitting time-sensitive data samples
to a multiple-input multiple-output (MIMO)-enabled base station subject to energy constraints. To cope with
the dynamic varied channel and the severe uplink interference due to the uncoordinated grant-free access, we
formulate the optimization problem as a multi-user non-cooperative dynamic stochastic game (MUN-DSG). To
avoid dimensional disaster as the device number grows large, the optimization problem is transformed into a
mean field game (MFG), and its Nash equilibrium can be achieved by solving the corresponding Hamilton-Jacobi-
Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations. Thus, a Mean Field-based Dynamic Backoff
(MFDB) scheme is proposed as the optimal GFRA solution for each device. Extensive simulation has been fulfilled
to compare the proposed MFDB with contemporary random access approaches like access class barring (ACB),
slotted-Additive Links On-line Hawaii Area (ALOHA), and minimum backoff (MB) under both static and dynamic
channels, and the results proved that MFDB can achieve the least access delay and cumulated cost during multiple
transmission frames.
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1 Introduction

In the 6G IoT paradigm, grant-free (GF) with non-orthogonal multiple access (NOMA)
techniques is considered a key enabler for massive ultra-reliable and low-latency communication
(mURLLC) services to facilitate smart transportation, smart factory, smart grid, and other mission-
critical applications [1–3]. GF random access allows wireless terminals to transmit their preamble and
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data to the base station (BS) in one shot and avoid the four-handshake process in grant-based random
access [4]. The combination of GF and NOMA simultaneously solves the problem of access delay,
signaling overhead, as well as the scarcity of orthogonal channel resources in conventional massive
access schemes [5–7]. Existing NOMA schemes for GF access include power-domain NOMA (PD-
NOMA), code-domain NOMA, or interleave-based NOMA [8]. While PD-NOMA has been studied
extensively in [5–7], it may introduce a long decoding delay for massive GF access devices due to
the successive interference cancellation (SIC) receiver employed to distinguish different PD-NOMA
signals sequentially. On the contrary, in code-domain NOMA, such as Sparse Code Multiple Access
(SCMA), it allows multiple users to occupy the same resource block at the same time, achieving
efficient use of spectrum resources, and SCMA uses the message passing algorithm (MPA) for
detection [9]. MPA has low complexity and good performance. When multiple users access at the
same time, it can effectively detect and decode users, which is crucial to support large-scale IoT
device access.

Meanwhile, massive multiple-input multiple-output (MIMO) antennas are expected to be
equipped on all 6G BSs. By using receiver beamforming (e.g., Zero-Forcing (ZF) [10]) at the BS,
GF-NOMA transmitters can be differentiated based on their spatial characteristics, which means the
access devices could be divided into multiple spatial beams (clusters) and each preamble may be reused
among multiple spatial clusters to accommodate even more access devices simultaneously [11–13].

In this work, we investigate the optimal backoff strategy for IoT devices in MIMO-based
GF-NOMA systems within the mURLLC paradigm, applicable to scenarios such as intelligent
transportation, autonomous driving, and smart factories. The proposed strategy not only effectively
meets the low latency requirements of URLLC but also reduces the probability of interference
between users. Additionally, it can improve the system resource allocation efficiency, thereby enhanc-
ing the overall spectrum resource utilization. With GF-NOMA, each IoT device needs to select
its access parameters in a distributed manner, which will cause severe system interference and network
access congestion when the number of active devices is large. Conventional ALOHA-like multiple
access schemes have the devices to select a backoff time based on a random factor [14,15], which might
be efficient for semi-static IoT services but far from optimal under the highly dynamic environment and
the stringent delay constraint of mURLLC. Theoretically, when a large number of devices compete for
limited communication resources with distributed decision-making subject to highly dynamic system
states, this problem can be formulated as a DSG, and the optimal solution can be derived by solving
multiple correlated stochastic differential equations (SDEs). When the amount of devices is large, it
becomes prohibitively difficult to solve these SDEs simultaneously. In this work, we propose to employ
mean field game (MFG) theory to solve the dynamic stochastic game (DSG) of massive IoT devices in
their GF SCMA processes to minimize their average backoff delay under a limited energy budget. To
the best of our knowledge, this is the first work that adopts MFG theory to dynamically optimize the
backoff strategy for multi-beam MIMO based on GF-NOMA. The contributions of this study can be
summarized as follows:

• A two-step GF random access scheme is proposed for MIMO BF-based cells, in which SCMA
is adopted for multiple IoT devices within the same antenna beam, and ZF is employed to
eliminate inter-beam interference in the uplink.

• We formulate a backoff delay minimization problem in GF-NOMA for mURLLC services
as a multiuser non-cooperative DSG, subject to the dynamic channels, energy states, and
interference among NOMA devices. In this DSG, the objective of each device is to seek the
optimal dynamic backoff strategy within energy constraints to minimize the long-term backoff
delay costs.
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• We adopt the MFG to simplify the complex interplay between device backoff strategies. In
order to obtain the optimal backoff scheme, we derive the Hamilton-Jacobi-Bellman (HJB)
and Fokker-Planck Kolmogorov (FPK) equations, which are relevant to achieve the mean-
field equilibrium (MFE). By solving these two coupled equation pairs iteratively with the finite
difference method (FDM), we obtain the optimal backoff strategy and the evolution of the
system states.

• We numerically evaluate the performance of the proposed Mean Field-based Dynamic Backoff
(MFDB) scheme in comparison with conventional GF schemes based on access class barring
(ACB) and slotted-Additive Links On-line Hawaii Area (ALOHA). Numerical results show
that the proposed scheme can minimize the backoff delay cost and maintain a nearly constant
backoff delay when the number of devices increases rapidly.

The rest of this paper is organized as follows. The related work and contributions are introduced
in Section 2. The system model is presented in Section 3, and the problem formulation is described in
Section 4. The MFG approach and the corresponding Dynamic Backoff Algorithm are proposed in
Section 5. Section 6 numerically evaluates the performance of our proposal and other contemporary
random access schemes. Finally, Section 7 concludes the paper.

2 Related Work

Combining GF-NOMA and beam-space MIMO can increase system capacity, improve spectral
efficiency and reduce access delay, making it a promising solution for wireless communication systems.
However, adopting NOMA can lead to severe co-channel interference, especially in ultra-dense IoT
scenarios, where interference analysis and resource allocation become challenges. To address the above
issues, the authors in [16] proposed a Random Access NOMA (RA-NOMA) transmission protocol
for IoT networks that employs a timer and power backoff strategy. However, this method significantly
increases energy consumption. This poses a substantial negative impact on devices that require long-
term operation and rely on battery power, thereby limiting the effectiveness and feasibility of this
method in practical applications. The authors in [17] proposed a detailed offloading protocol for the
GF-SCMA enhanced MEC scheme. However, relying solely on SCMA codebooks to differentiate
users in the event of resource access conflicts is insufficient, as it results in significant resource
consumption for codebooks, especially with a large number of devices. In [18], the authors proposed
an optimization method to maximize the service quality of SCMA grant-free access with multipacket
reception (MPR). In the event of a collision, the user skips the current frame with the probability of
collision, and the colliding and queuing users continue to wait for the next transmission in a random
time slot in another frame according to the random escape strategy. However, the random waiting
time for each user after a collision is not the optimal choice for the system, potentially causing the
user equipment to wait during unnecessary periods and increasing overall delay. The above MIMO-
NOMA studies only consider a limited number of devices within the cell, primarily because an increase
in the number of devices will lead to increased interference and the complexity of resource allocation.
Besides, no works have optimized the backoff delay of a Massive SCMA-based GF-NOMA system,
considering the dynamic change for system states under the limited device energy budget. To the best
of our knowledge, this is the first work to propose a dynamic backoff scheme for SCMA-based GF-
NOMA with practical MIMO settings.

For interference management and resource allocation in ultra-dense IoT systems, game theory
can be employed to analyze the cooperation and competition among rational devices while developing
strategies to maximize their payoff [19]. In the existing resource allocation schemes based on the game
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theory, the authors of [20] proposed a power allocation framework based on cognitive radio NOMA
which optimized the utility function of each device and proved the existence of Nash equilibrium. The
authors of [21] have proposed a Nash Bargaining Solution-based (NBS) game to achieve the optimal
power allocation scheme based on channel conditions in a MIMO-NOMA system while ensuring
both allocation fairness and maximum transmission rate. According to these papers, when multiple
devices compete for limited communication resources in a distributed game, the dynamic optimization
problem can be transformed into a DSG. However, as described by the authors in [22], the device’s
DSG process in the ultra-dense IoT scenario will generate many SDEs, resulting in the dimensional
explosion problem. To overcome the issues mentioned above, the authors of [23] proposed the MFG
to transform the one-to-one interaction between devices into a more tractable interaction between the
device and the mean field.

MFG is created to describe the collective behavior of a large number of interacting individuals in
a system [23]. It handles the interactions in complex systems by simplifying and approximating them,
and simplifies the influence of individuals on other individuals into an average effect, which helps to
understand and analyze the macroscopic behavior of the system. Therefore, MFG has been widely used
in optimizing the performance of large scale communication systems, which involves energy efficiency
[24], transmission rate [25], and transmission power [26]. The application of MFG to the NOMA
system can transform massive devices into a continuum and simulate their state distributions, thereby
simplifying the complex interference into the mean field interference, which is easier to analyze. In
related studies, the authors of [27] proposed a NOMA-based resource allocation scheme for ultra-
dense mobile edge computing (MEC) systems. To address this problem, the authors divided it into
two subproblems, device clustering and power allocation. They clustered the devices based on the
channel gain and proposed a resource allocation algorithm using the mean-field framework. The
authors of [28] addressed the power control problem in Massive Machine Type Communication
(mMTC) systems. When performing successive interference cancellation (SIC) at the receiving end, the
interference is estimated by converting the location-based interference into a more manageable mean-
field interference. However, SIC requires strict power ordering, and the complexity of interference
estimation is greatly increased when multiple system states are considered simultaneously. Different
from the previous mean-field-based power allocation schemes, in this paper, we investigate the massive
GF-NOMA problem in a dynamic radio environment for the 6G IoT scenario. Our approach focuses
on dynamic changes in device energy and channel state with a limited energy budget based on MFG
and SCMA to minimize the backoff delay.

3 System Model

As shown in Fig. 1, we consider a 6G single-cell system in which a BS equips with L antennas in the
cell center, and N (n ∈ N = {1, . . . , N}) single antenna IoT devices locate in this circular cell following
a two-dimensional spatial Poisson distribution with density ρ. Through the fixed grid of beams (GoB),
the whole cell coverage area is divided into M beams [29]. Devices with the same beam are selected to
form a cluster. Considering that each radio frequency (RF) chain supports at most one device in the
same time-frequency resources [30], we assume that the number of RF chains adopted at the BS is equal
to the number of beams. Each RF chain provides services for devices within the corresponding beam
respectively. Devices within the same cluster employ SCMA and the grant-free random access protocol
for data uploading. Based on the NB-IoT standard [31], all devices in the cell share the same subcarrier
and adopt time division duplexing (TDD) mode. Time t ∈ T = [0, T ] is divided into frames with equal
duration Δt and the frame index is denoted by i ∈ I = {1, . . . , Iindex} which satisfies T = IindexΔt. Each
frame is further divided into K (k ∈ K = {1, . . . , K}) time-slots (TSs) with duration Δτ per TS and
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satisfies Δt = KΔτ . Assuming that the device needs to upload the status update packet periodically
at each frame, whose transmission requires exactly one TS. The channel realization is described as a
block-fading channel model, which remains unchanged within a frame but may vary between frames.
During the packet upload process, we define the backoff delay as the time interval between the start of
each frame and the data transmission TS, which can be expressed as Dn (i) ∈ {Δτ , 2Δτ , . . . , KΔτ }. In
grant-free random access (GFRA), each device needs to independently decide its backoff delay Dn (i)
at the beginning of each frame similar to the slotted-ALOHA protocol [32] and the transmission power
pn (i, Dn (i)) is adjusted indirectly based on its backoff delay and quality-of-service (QoS) constraint.

Figure 1: System model

The GFRA procedure is illustrated in Fig. 2, which can be divided into two main stages:
broadcasting and data transmission.

Figure 2: Illustration of grant free random access procedure
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Stage I—Broadcasting: Broadcasting: Before the beginning of each uplink transmission session
within time [0, T ], the BS will broadcast the pre-derived optimal MFDB policy set [33] and the statistic
channel variation models all the IoT devices in this cell, as well as the available frequency resources,
the trained path loss model, preamble configuration information, and reference signals. The preamble
configuration information, in particular, details the format that devices must follow to generate SCMA
preambles. Upon receiving these broadcast messages, each device performs channel estimation, selects
an access beam based on the strength of the reference signals, and a SCMA preamble. Besides, it will
predict the channel variations in the next T time duration based on the statistic channel variation
models from the BS.

Stage II—Data transmission: The device can derive the channel state of each frame according to
the initial channel state and the predicted channel evolution model. Before data transmission, each
device selects its optimal backoff delay using our proposed MFDB scheme (the optimal policy set has
been derived by the BS), according to its predicted channel states and remaining energy level. Following
this backoff period, the device generates the preamble based on the configuration information received
during the broadcast stage and appends it to the header of the upload packet. The detailed workings
of the MFDB scheme are elaborated in Sections 1–4.

3.1 MIMO Channel Evolution

In this work, the uplink channel gain of each IoT devices is modeled with two components,
namely the path-loss and the fading component. Assuming that the devices move slowly relative to
the investigated transmission period, the path-loss ln will keep constant during [0, T ] (thus not relevant
to time index i) and can be expressed as:

ln = min
(

1,
1
ra

n

)
(1)

where a is the path loss coefficient, and rn is the distance between the device n and the base station.
The small fading component of device n in the beam cluster m is denoted as hnm (i) ∈ CL×1, modeled
as an Itô process [22,34], i.e.,

hnm (i + 1) = hnm (i) + αnm (i, hnm (i)) Δt + σnm (i) ΔW (i) (2)

where αnm (i, hnm (i)) is the deterministic fading coefficient which can be predicted as described in
Stage I— Broadcasting, and σnm (i) ΔW (i) denotes the Wiener process that follows N (0, σnm (i) Δt) for
modeling the channel prediction uncertainty due to the small-scale fading. The initial channel value
hnm (0) for all device n and beam m can be estimated from the downlink broadcast reference signal
according to the reciprocity between TDD uplink and downlink channels [35]. Based on the initial
channel value and Eq. (2), the channel states of the device n at each frame can be derived.

3.2 Energy Evolution

Considering the limited battery capacity of IoT devices, the energy budget of each device within
duration T is assumed as E0. The energy states evolution of device n can be expressed as:

En (i + 1) = En (i) − pn (i, Dn (i))Δτ , En (Iindex) ≥ 0

= En (i) − pn (t, Dn (i)) Δt
K

(3)

in which En (i) is the remaining energy at the end of the frame i, pn (i, Dn (i)) represents the transmission
power of the device n.
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3.3 Transmission Model

With beamforming, the signal received at the BS can be expressed as:

y (i, D) = wH
nm (i) hnm (i)

√
ln · pn (i, D)Sn (i, D)︸ ︷︷ ︸

desire signal

+
∑

n′∈Φm(i,D)/n

wH
n′m (i) hn′m (i)

√
ln′ · pn′ (i, D)Sn′ (i, D)

︸ ︷︷ ︸
intra-beam interference

+

∑
m′∈M/m

∑
n′∈Φm′ (i,D)

wH
n′m′ (i) hn′m′ (i)

√
ln′ · pn′ (i, D)Sn′ (i, D)

︸ ︷︷ ︸
inter-beam interference

+ wH
nm (i) n0

(4)

where Φm (i, D) is a subset of N which selecting backoff delay D and beam m at frame i. wnm ∈ CL×1 is
the beamforming vector of cluster m and (·)H denote the conjugate transpose. Sn (i, D) represents the
transmission signal of device n where E

(|Sn (i, D) |2
) = 1. Moreover, n0 is the power density of white

Gaussian noise. Assuming that the BS can estimate perfect uplink CSI, we employ ZF beamforming to
eliminate the inter-beam interference [10]. The BF matrix satisfies Ŵ H

m (i) = HH
m (i)

(
Hm (i) HH

m (t)
)−1

,
in which Hm (i) = [h1m (i), . . . , h|Φm(i)|m (i)] is the collective vector channel between the device in cluster

m and the BS, and then apply the BF vector wH
nm (i) = ŵH

nm (i)
|ŵH

nm (i) | , in which ŵH
nm (i) is the n-th column of

Ŵ H
m (i).

A MPA decoder is assumed to be employed at the BS for SCMA decoding, which allows parallel
decoding for different uplink signals from each device with different SCMA patterns in the same
resource block (RB) [9]. Therefore, for a specific device signal, the SCMA signals of other devices
in the same beam and RB can be treated as interference. When device n selecting backoff delay Dn (i),
its signal-to-interference-noise-plus-ratio (SINR) at the BS can be denoted as:

γn (i, Dn (i)) = |wH
nm (i) hnm (i) |2 · ln · pn (t, Dn (i))
In (i, Dn (i)) + |wH

nm (i) n0|2B
(5)

in which | · | is the Euclidean norm. And B is the channel bandwidth, respectively.

It should be noted that, a low received signal to interference plus noise ratio (SINR) will lead to
compromised decoding quality and diminished precoding effectiveness for the adopted ZF receiver,
which in turn results in interference among devices distributed across different beams. Therefore, each
device needs to ensure that SINR of its received signal at the BS is greater than the pre-defined SINR
threshold γn (i) when determining its backoff delay Dn (i), i.e.,

γn (i, Dn (i)) ≥ γ0, i ∈ I, n ∈ N (6)

For the convenience of writing, we assume that Ĥnm (i) = |wH
nm (i) hnm (i) |, which satisfies:

Ĥnm (i + 1) = Ĥnm (i) + δa
nm (i) |wH

nm (i) αnm (i, hnm (i)) |Δt + δb
nm (i) |wH

nm (i) σnm (i) |ΔW (i) (7)

in which, δa
nm (i) and δb

nm (i) are sign functions and satisfy δa
nm (i) = sgn (αnm (i, hnm (i))), δb

nm (i) =
sgn (σnm (i)).

The interference In (i, Dn (i)) received by device i is caused by other devices in the same cluster that
accidentally choose the same backoff delay, which can be represented as:

In (i, Dn (i))) =
∑

n′∈Φm(i,Dn(i)),n′ �=n

pn′ (i, Dn (i)) ln′ · Ĥ2
nm (i) (8)
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By inverting (5), the minimum required power preq
n (i, Dn (i)) is obtained as:

preq
n (i, Dn (i)) = γ0

Ĥ2
nm (i) · ln

[
In (t, Dn (i)) + |wH

nm (i) n0|2B
]

(9)

To minimize the energy consumption while maintaining a transmission quality constraint, we
select preq as the transmission power and assume that the maximum transmission power of the device
in each TS is pmax. When the channel condition is too poor, it may cause preq > pmax, then the data packet
is dropped in the current frame, and the data transmission is resumed in the next frame. Therefore, the
transmission power can be expressed as:

pn (i, Dn (i)) =
{

preq
n (i, Dn (i)), preq ≤ pmax

0, preq > pmax (10)

4 Problem Formulation

In the investigated scenario, each device n needs to select its optimal backoff delay D∗
n ={

D∗
n (1), . . . , D∗

n (i), . . . , D∗
n (Iindex)

}
for transmission frame i = {1, . . . , Iindex} from a bounded action set

D∗
n (i) ∈ {Δτ , 2Δτ , . . . , KΔτ }. The backoff delay should be minimized to ensure the effectiveness of its

task data, under the long-term energy budget constraint En (0), and based on the dynamic evolution of
its remaining energy state En (i) and channel states hnm (i). Thus, we adopt a cost function with distinct
convexity [36], such as:

Cn (i) = D2
n (i) (11)

To facilitate the optimization process, Dn (i) can be relaxed to a continuous space, and the obtained
optimal value can be converted back to discrete value by rounding. Therefore, the optimization
problem of backoff decisions for device n can be defined as:

D∗
n = arg min

Dn

E

[∫ T

0
Cn (t) dt

]
s.t.
C1: dĤnm (t) = δa

nm (i) |wH
nm (i) αnm (i, hnm (i)) |dt + δb

nm (i) |wH
nm (i) σnm (i) |dW (t),

C2: dEn (t) = −pn (t, Dn (t))
K

dt,

C3: En (0) = E0
n ,

C4: hnm (0) = h0
nm,

C5: En (T) ≥ 0.

(12)

in which C1 and C2 describe the evolution of the channel gain and the remaining energy state of device
n, respectively; C3 and C4 represent the initial energy and channel states, respectively. Each device n
attempts to solve its own version of the optimization problem (12) at the same time, leading to an n-
player non-cooperative dynamic stochastic game (DSG). Based on the dynamic programming theory
[37], the optimal solution of (12) within duration [0, T ] is to solve the Bellman running cost function
in a time-reversed order, which can be defined as:

vn (t, Xn (t)) = minDn E

[∫ T

t

Cn (u) du + F (En (T))

]
(13)
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where

Xn (t) =
[
En (t), Ĥnm (t)

]
(14)

is the state of device n at time t, composed of the remaining energy En (t) and the channel state Ĥnm (t).
F (En (T)) represents the penalty function that penalizes the case of exhausting all energy before time t.
If En (T) ≤ 0, F (En (T)) should be an appropriately large positive value; if En (T) ≥ 0, F (En (T)) = 0.

In this work, a parametric logistic penalty function is adopted as: F (En (T)) = φ

1 + eρEn(T)
− φ

2
.

Definition 1: The optimal backoff strategy D∗
(t) = {

D∗
1 (t), . . . , D∗

n (t), . . . , D∗
N (t)

}
is a Nash

Equilibrium (NE) for the n-player DSG described in (12), if and only if D∗
(t) is the optimal control

for the following problem:

D∗
n (t) = arg minD∗

n(t)E

[∫ T

t

Cn

(
u, Dn (u), D∗

−n

)
du + F (En (T))

]
(15)

where D∗
−n represents the backoff strategies of all the devices except device n. Under the NE definition,

none of the devices can achieve lower cost by deviating from its optimal backoff strategy unilaterally.

Based on [38] the sufficient condition for the existence of the NE is that the running cost
function vn (t, Xn (t)) for n devices has a solution to its HJB equation, which can be guaranteed by
the smoothness of the Hamiltonian Ham. In this optimization problem, the HJB equation and the
corresponding Hamiltonian for each device are shown in Eqs. (16) and (17), respectively

∂tv∗
n (t, Xn (t)) + min

Dn(t)

[
−

(
γ0

K · ln · Ĥ2
nm (t)

[
In (t, Dn (t)) + |wH

nm (t) n0|2B
])

∂En(t)v∗
n

+δa
nm (t) |wH

nm (t) α (t, hn (t)) |∂Ĥv∗
n + δb

nm (t) |wH
nm (t) σh,n|2

2
∂2

ĤĤv∗
n + D2

n (t)
]

= 0 (16)

Ham (Dn (t), Xn (t)) = min
Dn(t)

[
−

(
γ0

K · ln · Ĥ2
nm (t)

[
In (t, Dn (t)) + |wH

nm (t) n0|2B
])

∂En(t)v∗
n

+δa
nm (t) |wH

nm (t) α (t, hn (t)) |∂Ĥv∗
n + δb

nm (t) |wH
nm (t) σh,n|2

2
∂2

ĤĤv∗
n + D2

n (t)
]

(17)

Proof: See Appendix A.

To obtain the optimal control strategy Dn (t), given that this is a convex optimization problem, we
take the partial derivative of the function and set it to zero, resulting in Eq. (18):

D∗
n (t) = γ0

2K · ln · Ĥ2
nm (t)

∂I (t, Dn (t))
∂Dn (t)

∂v∗
n (t, Xn (t))
∂En (t)

(18)

Proof: See Appendix B.

According to the proof in Appendix B, the Hamiltonian is smooth, which implies the existence of
the Nash equilibrium [39]. However, it must be noted that in Eq. (18), the interference term I (t, Dn (t))
represents the cumulated result of D∗

−n for D∗
n (t) of device n, which means that n correlated partial

differential equations (PDEs) need to be solved simultaneously. As n becomes large, this task would
become prohibitively difficult. To address this scaling problem, we next transform the problem into a
MFG, which provides better tractability.
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5 Mean Field Game Approach

In this section, MFG [40] is introduced to convert the n-player non-cooperative game into the
interaction between only two bodies, namely the generic device and the mean field, such that the
problem can be solved no matter how large is n. Then the MFE is derived with both HJB and
FPK equations, and the corresponding Mean Field-based Dynamic Backoff (MFDB) algorithm
is proposed.

5.1 Problem Reformulation with Mean Field Theory

According to the mean field theory [23], a MFG model consists of a generic player who takes
rational actions and a mean field representing the collective actions of all other players. When the
game starts, the generic player devises a decision set for all possible states to optimize their cost, which
is shared among all players. Subsequently, the mean field, using its probability density function (PDF),
calculates the cumulative impact of all other players on the generic player based on this shared decision
set. In response, the generic player adjusts their decisions based on the mean field’s feedback. The mean
field then updates its impacts reflecting the new decision set. This iterative process continues until a
NE is achieved. It is obvious that in a MFG, which functions as a two-body game, the convergence
time does not increase with the number of players.

In a MFG framework [23], the model features a typical agent who follows rational decision-
making, and a mean field that aggregate the behavior of all other agents who are also rational. As
the game commences, this typical agent formulates a strategy for all conceivable states to minimize
its associated cost, which is uniformly adopted by all the agents in the game. Then the PDF of the
mean field can be employed to calculate the collective effect of all the typical agents, leveraging the
common strategic framework. In reaction to the impact of the mean field, the typical agent fine-tunes
its strategy accordingly. The mean field, in turn, updates its effects to reflect the revised strategy. This
dynamic interaction will continuous until a NE is reached. It is obvious that the convergence time of a
MFG, which essentially operates as a two-agent interaction, remains stable regardless of the number
of agents.

To formulate a MFG, four hypotheses need to be satisfied:

• H1—A continuum of a large number of players: Assuming a sufficiently large number of IoT
devices participating in the game, such that it can be approximated as infinite. Since the number
of clusters is limited and far smaller than the number of devices, the number of devices in
each cluster can also be considered infinite so that the devices can be regarded as the player
continuum.

• H2—The player’s rational behaviors: It is assumed that the devices involved in the game have
rational behavior. The devices will all implement the optimal backoff delay at any given time,
and it will depend exclusively on the current state Xn (t) they are in, which makes these strategies
predictable for other devices.

• H3—The interchangeability of the players: Since the optimal backoff strategy of each device
only depends on its state and the interference of other devices. Therefore, changing the order
of devices does not change their backoff decision. Devices in the same state will have the same
backoff delay. Based on this assumption, we can decide the backoff delay based on the state of
the device rather than n separate strategies.

• H4—The mean field can describe the interaction between players: For a single device n, instead of
considering the one-to-one interaction, we only consider the jointly affected by Φm (t, Dn (t))−1
other devices, namely the intra-beam interference, which consists of the weighted sum of the



JIOT, 2024, vol.6 27

transmission power of other devices in the same cluster under the same backoff delay. Due to
the above three characteristics, we can convert the interference into the mean field interference
based on the backoff delay strategy and the distribution of system states.

Given the investigated system satisfies H1–H4, the DSG problem (12) can be transformed to a
MFG as follows:

Definition 2: For the state space Xn (t) =
[
En (t), Ĥnm (t)

]
, the mean field is the probability

distribution of this state space at time t, where the PDF of users in any specific state is:

m (t, X) = lim
N→∞

M (t, X) = lim
N→∞

1
N

N∑
n=1

1Xn(t)=X (19)

in which M (t, X) represents the proportion of devices in state X at frame t. 1 denotes the indicator
function that returns 1 when the given condition is satisfied, otherwise it returns 0. The density function
M (t, X) will converge to the mean field density m (t, X) as the number of devices n tends to infinity
which satisfies:∫

H∈H

∫
E∈E

m (t, X) dhdE = 1 (20)

in which H and E are the set of channel gain and remaining energy of all devices, respectively. m (t, X)

is a continuous PDF. The optimal backoff delay can be determined by solving the HJB equation. We
denote the proportion of devices with the same backoff delay D at frame t and the corresponding
device state distribution by Λ (t, D) and G (t, D, X), respectively. As n tends to infinity, they can be
converted into λ (t, D)and g (t, D, X), which are continuous PDFs and can be deduced as:

λ (t, D) = lim
N→∞

Λ (t, D) = lim
N→∞

1
N

N∑
n=1

1Dn(t,X)=D (21)

g (t, D, X) = lim
N→∞

G (t, D, X) = m (t, X) · λ (t, D) (22)

They also satisfy the following conditions:∫
D∈D

λ (t, D) dD = 1 (23)∫
H∈Ĥ

∫
E∈E

∫
D∈D

g (t, D, X) dHdE = 1 (24)

in which D is the set of the backoff delay that the device can choose. Therefore, the number of the
devices that select the same TS to transmit in the same cluster |Φm (t, D) | can be expressed as:

|Φm (t, D) | = |Φm (t) | · λ (t, D) (25)

∂tv∗ (t, X) + min
D(t)

[
− γ0

K · Ĥ2
m (t)

(
I (t, D) + |wH

m (t) n0|2B
)
∂E(t)v∗ (t, X) + δa

m (t) |wH
m (t) α (t, hm (t)) |

∂Ĥv∗ (t, X) + δb
m (t) |wH

m (t) σh|2

2
· ∂2

ĤĤv∗ (t, X) + D2 (t, X)

]
= 0 (26)

Due to the fixed device density ρ, the interference term in (8) will converge to a constant value
that depends on the device density as the number of devices increases [41]. In order to describe the
interaction between devices with the mean field, we transform the interference into the mean field
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interference and guarantee its boundedness. That is Eq. (9) is rewritten as:

In (t) = β

|Φm (t) | − 1

∑
n′∈Φm(t,Dn(t)),n′ �=n

pn′ (t, Dn (t)) Ĥ2
n′m (t) (27)

where β denotes the normalized interference factor depending on the path loss index and the device
density.

The complete proof is presented in Appendix C.

Then, the interference term can be converted from (27) to:

In (t) = β · |Φm (t, Dn (t)) |
|Φm (t) | − 1

∑
H∈Ĥ

∑
E∈E

p (t, Dn (t), X) · m (t, X) Ĥ2
m (t) − pn (t, Dn (t)) Ĥ2

nm (t)

= β · |Φm (t) |λ (t, Dn (t))
|Φm (t) | − 1

∑
H∈Ĥ

∑
E∈E

p (t, Dn (t), X) · m (t, X) Ĥ2
m (t) − pn (t, Dn (t)) Ĥ2

nm (t) (28)

When |Φm (t) | approaches infinity, according to H1–H4, all the devices will rationally select
the optimal backoff Dn (t) = D∗

n (t) (from Eq.(18)), therefore (28) can be calculated based on the
continuous mean-field PDF in (21) and (22), such as:

In (t) = βλ
(
t, D∗

n

) ·
∫

H∈Ĥ

∫
E∈E

m (t, X) · p
(
t, D∗

n, X
)

Ĥ2 (t) dHdE (29)

From (28) and (29), it can be seen that devices transmitting with the same backoff delay will
approximately suffer the same cumulative interference as the number of devices tends to infinity.
Therefore, we can ignore the device index n and establish the relationship between backoff delay and
interference:

I (t, D) = βλ (t, D) ·
∫

H∈Ĥ

∫
E∈E

m (t, X) · p (t, D, X) Ĥ2 (t) dEdH (30)

5.2 Mean Field-Based Dynamic Backoff Scheme

To this end, the N-body problem in (12) can be converted to an equivalent MFG, viewed as a
two-body problem, as illustrated in Fig. 3. Then we explain how the optimal control D∗ to achieve the
MFE will be derived from the interaction between these two bodies:

• First body—Generic Device: According to the HJB equation, each device can decide its optimal
backoff delay based on its state. The general HJB equation is expressed as (26) at the bottom
of the page, and the index n in (18) can be removed, leading to the optimal backoff policy for a
generic device as follows:

D∗ (t) = γ0

2K · l · Ĥ2
m (t)

∂I (t, D (t))
∂D (t)

∂v (t, X (t))
∂E (t)

(31)

• Second body—Mean Field: The cumulated interference to a generic device is now sufficiently
described by (30), in which the evolution of the mean field PDF can be derived as [23]:

∂tm (t, X) + ∂H

(
δa

m (t) |wH
m (t) α (t) |m (t, X)

)−
p (t, D∗ (t), X) ∂Em (t, X) − 1

2
δb

m (t) |wH
mσ |2∂hhm (t, X) = 0

(32)
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Proof: See Appendix D.

As presented in Fig. 3, the HJB Eq. (26) is employed to derive the optimal backoff strategy (31)
to be used for any device in any states (channel state, remaining energy) under the initial mean field
interference (from any initial mean field PDF), while the FPK Eq. (32) allows to calculate the mean
field interference (30) given all devices in the system follow the optimal backoff strategies from HJB
since they are all rational. After that, the HJB will recalculate the optimal control solution according
to the updated mean field interference, then the FPK will derive the new mean field evolution based
on the updated backoff control. This interactive process will be repeated until the optimal control or
its corresponding value function converge, as shown in Algorithm 1.

Figure 3: Graphical explanation of applying two body MFG to N-body computational backup
decisions

Algorithm 1: The Proposed Mean Field-Based Dynamic Backoff algorithm (MFDB)
1: Initialize: v∗

(0)
, m∗

(0)
, I ∗

(0)
, D∗

(0)
, f = 0, fmax, ε

2: While f < fmax do
3: f = f + 1;
4: Calculate (26) to obtain the value of v∗

(f )
based on D∗

(f −1)
.

5: Calculate (31) to update the value of D∗
(f )

based on V ∗
(f )

and I ∗
(f −1)

.
6: if |D∗

(f )
− D∗

(f −1)
| < ε then

7: break;
8: end if
9: Update the value of p∗

(f )
based on D∗

(f )
and I ∗

(f −1)
.

10: Calculate (32) to obtain the value of m∗
(f )

based on p∗
(f )

.
11: Update the value of I∗

(f )
based on D∗

(f )
and m∗

(f )
.

12: end while

5.3 Optimality Analysis

In the MFG, when the individual strategies (their optimal policy in (31)) and the mean field
reach a stable state, where no device can increase its value by unilaterally changing their strategy,
the system reaches a Mean Field Equilibrium (MFE), which can be seen as the equivalent to the Nash
equilibrium for the n-player DSG in (16) before MFG is employed. At this point, each device’s strategy
is the best response to the strategies of all others. In our system, at any time t and state X , the value
function v (t, X) and the mean field m (t, X) interact with each other, where the optimal value v∗ (t, X)

is determined by solving the HJB equation, as described in (31), and m (t, X) is the solution to the
FPK equation in (32). The optimal value v∗ (t, X) determines the optimal strategy D∗ (t, X) in (31),
which influences the evolution of the mean field m (t, X) via (32). This, in turn, determines the mean
interference In (t) in (30), which affects v∗ (t, X) through (26). Therefore, the optimal strategy can be
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obtained by iteratively solving two coupled forward-backward PDEs. Since all the functions involved
are smooth, the iterative algorithm is guaranteed to converge to the optimal mean field strategy [42],
thereby bringing the system into the MFE state.

5.4 Complexity Analysis

The computational complexity of the n-player DSG in Section 4 and the proposed MFG-based
Algorithm 1 are compared as follows:

• N-player DSG: In the model, each device is required to account for both its own action and the
actions of all other devices, by solving (16)–(18) for N devices at the same time. This integration
leads to a significant increase in action space and computational complexity as the number of
devices N grows, e.g., if the action space of each device is A-dimensional, then the total action
space of the system becomes AN.

• MFG: The MFG simplifies the interactions between N devices by transforming the complex
multi-player game into a two-player game, where each individual interacts with the average
behavior of all the others. In other words, the mean field simplifies the complex interactions
of a large number of participants into interactions between individuals and the mean field.
This method introduces the mean field approximation, which transforms the high-dimensional
game problem of n devices into a game between an individual and the mean field of the overall
system. This approach substantially reduces the complexity by limiting the system action space
to A2, thus significantly reducing the computational complexity. Consequently, the MFG-based
Algorithm 1 will converge fast, since its HJB-FPK iterations only involve two players instead of
the n-players in the N-body DSG [43].

6 Numerical Results

In this section, we employ the FDM to solve the proposed MFDB scheme numerically, as
described in Algorithm 1. Since ZF precoding eliminates the inter-beam interference, all of the
following numerical results are for the device in one spatial beam, and the devices in other beams
follow the same strategy. To maintain generality and ensure consistency, the system states E can be
normalized to the interval [0, 1]. Table 1 presents the key simulation parameters employed in our work.

Table 1: Simulation parameters

Parameter Value

Number of frames Iindex 20
Frame duration t 10 ms
Number of TSs per frame K 20
TS duration τ 0.5 ms
Path loss exponent a 2.5
Noise power N0 −104 dBm
Channel bandwidth B 50 kHz
Device density ρ 5 per square meter
SINR threshold γ0 0.5
Number of devices N 1000
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6.1 Semi-Static Channels

We assume a semi-static channel with constant channel gain during the simulations in Figs. 4
and 5. Fig. 4 describes the optimal backoff decisions D∗

n (t, E) for each device with a constant channel
gain Hc = Ĥ2

0 · l = 3 × 10−3, which reveals that the backoff delay for a specific frame decreases as the
remaining energy increases. Moreover, when the remaining energy is fixed, the IoT devices can adopt
a lower backoff delay as the frame index gets closer to the final one. This is due to the fact that devices
with sufficient energy will reduce the worry of running out of energy budgets and incurring penalties
before the transmission deadline. Fig. 5 shows the evolution of the optimal mean field distribution
m∗

n (t, E) where the initial mean field m (0, E) is uniformly distributed in all energy states under the
constant channel gain Hc. The figure reveals that most devices just run out of energy or have energy
left by the end of the transmission duration. Only a few devices experience penalties due to insufficient
initial energy to complete the data transmission leading to an early exhaustion of energy.

Figure 4: The optimal backoff delay D under the constant channel

Figure 5: Mean field evolution under a constant channel gain
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6.2 Dynamic Channels

As in Eq. (7), the dynamic channel evolution is modeled as a stochastic differential equation with
the uncertainty coefficient σ . In Fig. 6, we evaluate the impact of channel uncertainty on the backoff
delay of MFDB by considering the following:

• h1: The certain channel with σ = 0.
• h2: The low unpredictable channel with σ = 0.1.
• h3: The medium unpredictable channel with σ = 1.
• h4: The high unpredictable channel with σ = 10.

Figure 6: The optimal backoff delay D under different stochastic channels for a generic device (a)
Predicted channel evolution; (b) Optimal backoff delay

All the above channel scenarios have the same deterministic part, i.e.,

Ĥd (t) = Hc + Asin (f0t + θ) (33)

where Hc = 3 × 10−3, A = 2 × 10−3, f0 = 0.4, θ = 2. It can be observed in Fig. 6a as
the channel uncertainty σgets larger, the uncertainty of the channel increases. This indicates that the
channel quality deviates more from the predicted channel evolution. In Fig. 6b, we depict the effect of
channel uncertainty on the backoff delay in the MFDB strategy. It can be seen that compared with the
fully predictable channel h1, the higher the uncertainty of the channel, the higher the backoff delay will
be selected by the MFDB strategy. This is because when the channel becomes highly unpredictable,
the device cannot judge whether the remaining energy can support the data transmission. In this case,
the device may not accurately estimate the energy required for data transmission at a certain moment,
which will increase the risk of transmission failure and waste precious energy resources. This strategy
helps to maintain the availability of the device in the long term and avoid the device stopping working
due to energy exhaustion.
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6.3 Comparison with Other Backoff Schemes

In this subsection, we compare the performance of the MFDB scheme with other backoff schemes,
which are:

• ACB: The BS generates an ACB factor b0 in each frame and broadcasts it to the device. Then, the
device generates a random number b ∈ [0, 1] before sending the data and compares it with the
ACB factor. If b > b0, the device transmits data with a fixed transmission power using SCMA.
The base station determines whether the decoding is successful according to the received SINR
of a specific device. Then the base station sends a feedback ACK or NACK signal (“ACK” for
success while “NACK” for failure) to inform the device. If receiving a NACK, the device will
randomly backoff for 1 to 3 TSs and resend the data packet.

• Slotted-ALOHA: The device randomly selects a backoff delay in each frame to transmit
data with a fixed transmission power using SCMA. The base station determines whether the
decoding is successful according to the received SINR and sends a feedback signal with ACK
or NACK. If the decoding fails, the device will randomly backoff for 1 to 3 TSs and retransmit
the data.

• Minimum backoff (MB): In this baseline scheme, the device will always transmit SCMA data
in each frame’s first TS. The interference is determined by all device power and channel state,
which is pre-counted by the BS and broadcast to all devices in each frame [28]. The device
decides the transmission power based on the interference level.

To evaluate the backoff delay of the above scheme, we consider the following channel scenarios:

• Constant channel (CC): The channel gain is consistently h0.
• Dynamic channel (DC): According to (7), the DC is modeled as two parts, where the determin-

istic part follows (36) with different parameter f0 = 20 and variance σ = 0.1.

The normalized energy budget E (0) = 0.7 in the following simulations, and the simulated device
number is 1000. As shown in Fig. 7, for ACB and slotted-ALOHA scheme, the backoff delay is the
average result of all the devices due to the random backoff. For the MFDB scheme, since all devices
follow the same backoff strategy, the figure depicts the expected result for a generic device. Fig. 7
reveals that whether it is under CC or DC, the MB scheme cannot complete the data transmission
in all frames. This is because when all the devices are transmitting with the minimum backoff, high
transmitting power will be required to overcome the severe interference among devices. Therefore, the
remaining energy in this scheme is used up before the end of the transmission, regardless of the channel
condition. For the MFDB scheme, the backoff delay remains relatively constant under CC, even if the
device’s energy decreases throughout the frame evolution. This is due to the fact that the device is able
to predict the continuous decrease of the other devices’ energy with the mean field. And the device is
able to dynamically adjust its backoff delay according to the changing channel under DC.

Moreover, it can be seen from the figure that the MFDB significantly outperforms the ACB
and the slotted-ALOHA scheme in terms of backoff delay. That is because the MFDB scheme can
dynamically adjust the backoff in each frame according to its current channel gain and remaining
energy. Thus, the MFDB scheme can avoid the case that a large number of devices access the same TS
resulting in high decoding failure probability at the BS and extra delay due to data re-transmissions.
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Figure 7: The backoff delay D under different backoff scheme for a generic device. (a) Under CC; (b)
Under DC

Fig. 8 depicts the cumulated delay cost (CDC) for the four evaluated strategies. According to (11),

CDC (t) is defined as CDC (t) =
t∑

i=1

D2
n (i). It can be observed that the CDC of the MFDB scheme

demonstrates a significantly slower increase compared to the ACB and slotted-ALOHA schemes,
regardless of the channel condition being CC or DC. However, because the MB scheme is transmitted
continuously on the first TS of each frame, the remaining energy is used up early. When the remaining
energy is exhausted, the device cannot transmit, and the corresponding CDC is denoted as INF.

Figure 8: The CDC under different backoff scheme for a generic device (a) Under CC; (b) Under DC

Fig. 9 illustrates the average backoff delay vs. the number of devices in the beam with different
backoff strategies under different channel conditions. It can be observed that no matter what channel
condition, the device with MFDB strategy always maintains the lowest backoff delay, which has little
growth trend and is almost independent of the number of devices. When the number of devices is less
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than 900, the backoff delay of ACB and slotted-ALOHA tends to be stable, and the backoff delay of
ACB is slightly higher than that of slotted-ALOHA. This is because the average number of transmitting
devices per slot in this case is less than the threshold for the number of devices that can be successfully
decoded. Moreover, the random factor judgment of the ACB strategy will increase the backoff delay.
When the number of devices is between 900 and 1300, the backoff delay of slotted-ALOHA rapidly
exceeds that of ACB. This is due to the increased probability of decoding failure in this case, and the
random factor judgment of ACB can adjust the number of access devices to reduce the probability of
decoding failure. When the number of devices exceeds 1300, in this case, the random factor of ACB
also fails to alleviate the decoding failure but increases the backoff delay.

Figure 9: The average backoff delay vs. device number under different channel condition. (a) Under
CC; (b) Under DC

7 Conclusion and Future Work

In this work, we investigate the optimal dynamic backoff mechanism for massive random access
within a 6G ultra-dense IoT system. Considering a 6G cell employing GF-NOMA and multi-beam
MIMO, we design a clustering scheme based on GoB and an access signaling process based on GFRA.
A MFDB scheme is proposed for each cluster to minimize the long-term cost of backoff delay of a
generic device. Numerical results validate that the proposed MFDB can proactively adjust the backoff
delay and transmission power according to the predicted channel gain and energy level evolution
subject to the specified energy constraints. Compared with three other GFRA schemes, namely ACB,
slotted-ALOHA, and MB, the proposed MFDB mechanism can significantly reduce the average access
delay and maintain a nearly constant backoff delay level even as the number of active devices achieves
2000 in a single subcarrier per cell.

In future work, we intend to setup real-world experiment environment to implement the proposed
MFDB scheme and to evaluate its validity. Meanwhile, we would also add other evaluation indicators
such as energy efficiency to evaluate the performance of our proposed method. After that, the
proposed MFG approach needs to be extended to multi-cell and multi-channel cellular systems with
combined backoff delay, frequency resource, and NOMA preamble selections.
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Appendix A

As vn (t, xn (t)) is the value function of cost Cn (t) at the state Xn (t), according to Bellman’s principle
of optimality, increasing time t to t + dt, leads to:

vn (t, Xn (t)) = minDn(t) E

[∫ t+dt

t

Cn (u) du + vn (t + dt, Xn (t + dt))
]

(34)

By performing Taylor’s expansion on vn (t, Xn (t)), we get:

vn (t + dt, Xn (t + dt)) = vn (t, Xn (t)) + ∂tvn (t, Xn (t)) + ∂tXn (t) · ∇vn (t, Xn (t)) dt + o (dt) (35)

Then, by substituting (35) into (34), subtracting vn (t, Xn (t)) from both sides of the equation, and
dividing both sides by dt. When dt approaches zero, o (dt) tends to zero and is negligible. Therefore
(34) can be written as:

minDn(t) [Cn (t) + ∂tXn (t) · ∇vn (t, Xn (t))] + ∂tvn (t, Xn (t)) = 0 (36)

Because of Xn (t) =
[
En (t), Ĥn (t)

]
and Cn (t) = D2

n (t), we obtain the HJB equation.

Appendix B

From (40), the optimal backoff delay D∗
n (t) can be derived as:

D∗
n (t) = arg min

Dn(t)

[
− γ0

K · ln · Ĥ2
nm (t)

[
In (t, Dn (t)) + |wH

nm (t) n0|2B
] · ∂v∗ (t, Xn (t))

∂En (t)

+δa
nm (t) |wH

nm (t) α (t, hnm (t)) |∂v∗ (t, Xn (t))

∂Ĥnm (t)

+δb
nm (t) |wH

nm (t) σh,i|2

2
∂2v∗ (t, Xn (t))

∂Ĥ2
nm (t)

+ D2
n (t)

]
(37)

For the first derivative of the Hamiltonian with respect to Dn (t):

∂Ham

∂Dn (t)
= − γ0

K · ln · Ĥ2
nm (t)

∂In (t, Dn (t))
∂Dn (t)

· ∂v∗ (t, Xn (t))
∂En (t)

+ 2Dn (t) (38)

Taking the derivative of the interference term, we can obtain:

∂In (t, Dn (t))
∂Dn (t)

= β

|Φm (t) | − 1
E

{
pn′ (t) Ĥn′m (t)

}
· ∂|Φm (t, Dn (t)) |

∂Dn (t)
(39)

In which |Φm (t, Dn (t)) | represents the number of devices whose backoff delay is Dn (t) in cluster
m. It has no explicit mathematical relationship with the backoff delay, but in the process of using the
MFG to solve, |Φm (t, Dn (t)) | can be converted from the mean field density, which is differentiable.
So the partial differential equation of the interference term with respect to Dn (t) exists. Therefore,
Hamiltonian is smooth. The minimum value of Dn (t) exists in which the first order partial derivative
of Hamiltonian with respect to it is equal to zero, i.e.,

− γ0

K · ln · Ĥ2
nm (t)

∂In (t, Dn (t))
∂Dn (t)

· ∂v∗ (t, Xn (t))
∂En (t)

+ 2Dn (t) = 0 (40)
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Therefore, the backoff delay can be derived as (18).

Appendix C

The interference in (8) can be transformed into:

In (t, Dn (t)) = E (ln′)
∑

n′∈Φm(t,Dn(t)),n′ �=n

pn′ (t, Dn (t)) Ĥ2
n′m (t) (41)

in which

E (ln′) =
∫ rm

0
ln′d

(
πr2

)
πr2

m

(42)

in which rm is the radius of cluster m. Since the number of other devices in each cluster can be estimated
by cell area and device density ρ which satisfy |Φm (t) |−1 = ρ ·πr2

m. The interference can be derived as:

In (t) = β

|Φm (t) | − 1

∑
n′∈Φm(t,Dn(t)),n′ �=n

pn′ (t, Dn (t)) Ĥ2
n′m (t) (43)

where β = ρπ

(
1 + 2

a − 2
− r2−a

m

)
.

Appendix D

Let’s suppose a smooth and compactly supported function y (X), it can be deduced that:∫
m (t, X) y (X) dX = 1

N

N∑
n=1

y (Xn (t)) (44)

By taking the partial derivative of t on both sides of the equation and applying the chain rule of
derivation, we can get:∫

∂tm (t, X) y (X) dX ≈ 1
N

N∑
n=1

[
∂tXn (t) ∇y (Xn) + ∂2

t Xn (t) Δy (Xn)
]

(45)

When n tends to infinity, (45) converts to:∫
∂tm (t, X) y (X) dX =

∫ [
∂tXn (t) ∇y (Xn) + ∂2

t Xn (t)Δy (Xn)
]

m (t, X) dX (46)

Applying integration by parts on (46), convert it to:∫ [
∂tm (t, X) + ∂tX (t) y (X) ∇m (t, X) − ∂2

t X (t)Δm (t, X)
]

y (X) dX = 0 (47)

When assuming y (X) = 1, (47) can be converted to:

∂tm (t, X) + ∂h (α (t) m (t, X)) − ∂E (p (t, D∗ (t), X) m (t, X)) − 1
2
σ 2∂hhm (t, X) = 0 (48)
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Since p (t, D∗ (t), X) = γ

l · Ĥ2 (t)
(I (t, D∗ (t)) + N0B), in which P (t, D∗ (t), X) is not affected by E

under the condition of given Dn (t), according to the chain rule of derivation:

∂p (t, Dn (t), X)

∂E

= ∂p (t, D∗ (t), X)

∂D

· ∂D∗ (t)
∂E

=
(

γ

2K · Ĥ2
m (t)

∂I (t, D∗ (t))
∂D

)2

· ∂2v∗ (t, Xn (t))
∂E2

(49)

Since
∂2v∗ (t, Xn (t))

∂E2
= 0,

∂p (t, Dn (t), X)

∂E

= 0, the final form of the FPK equation can be derived

as (32).
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