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Abstract: A novel Federated learning classifier is proposed using the
Dempster-Shafer (DS) theory for the set-valued classification of industrial
IoT Distributed Denial of Service (DDoS) attack traffic. The proposed
classifier, referred to as the evidence-based federated learning classifier,
employs convolution and pooling layers to extract high-dimensional features
of Distributed Denial of Service (DDoS) traffic from the local data of private
industrial clients. The characteristics obtained from the various participants
are transformed into mass functions and amalgamated utilizing Dempster’s
rule within the DS layer, situated on the federated server. Lastly, the set
value classification task of attack mode is executed in the expected utility
layer. A learning strategy is proposed to update the network parameters in a
joint manner according to the weight of mass function value. Experiments
on DDoS traffic classification tasks in CIC-DDoS2019 datasets prove
that Federated learning, DS layer, and expected utility layer is effective in
enhancing the multi-class classification accuracy, especially for those DDoS
mixed attack traffic.

Keywords: Federated learning; dempster-shafer (DS) theory; industrial
internet of things; DDoS traffic

1 Introduction

With the rapid development of Industry 4.0, intelligent manufacturing, the Internet of Things,
and the popularity of smart terminal devices, the attack risk in the industrial Internet of Things
(IIoT) scenarios is becoming more and more prominent [1]. In IIoT, security vulnerabilities arise
from outdated firmware on multi-source and heterogeneous devices, as well as from customized
communication protocols that fail to meet evolving security requirements. Once hackers use it to
carry out malicious attacks, irreparable losses and impacts will be caused [2]. Machine learning as the
classification or regression method used for identifying and classifying network DDoS attacks could
learn experience from past data to determine the known or unknown attacks. However, it needs the
support of corresponding data or computing power [3]. The proposal of federated learning provides
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a new idea for solving the balance between privacy protection and machine learning model training
[4]. This new technology keeps the data locally and collaboratively trains the machine learning model
in a distributed manner, following the principle that the data does not move and the model moves.
In the Industrial Internet of Things (IIot) environment, multi-dimensional heterogeneity, such as the
diversity of intelligent terminal devices, the limitation of computing resources, and the differentiation
of communication protocols, brings challenges to the aggregation of federated learning [5]. Since
federated learning is based on the assumption of independent and identically distributed data to
co-train machine learning models, uneven data distribution is prone to form the effect of federated
training bias.

The proposed approach in this paper employs evidence-based theory and federated learning
for detecting and identifying DDoS attack methods in the industrial IoT. We design a lightweight
convolutional neural network model considering the limited computing resources of the devices used
for industrial IoT. In addition, we consider the problem of poor training and slow convergence of
the model due to the small number of samples and unbalanced categories. To get a trained model
with fast convergence, low false alarm rate, and high accuracy for identifying and classifying various
DDoS attacks in the network, we design the training strategy based on the weight of mass function
value during the federated learning combined with the D-S theory. D-S evidence theory, also known
as Dempster-Shafer theory or simply belief theory, is a mathematical framework for reasoning under
uncertainty. It was developed by Arthur Dempster and Glenn Shafer in the 1960s and 1970s. At its
core, D-S evidence theory is based on the idea of belief functions, which represent degrees of belief in
a proposition. Unlike probability theory, which assigns a single probability to each proposition, D-S
evidence theory allows for the representation of uncertain and conflicting evidence. The theory also
allows for the combination of multiple pieces of evidence, even if they come from different sources
or have different degrees of reliability. In D-S evidence theory, a basic belief assignment (BBA) is a
function that assigns a degree of belief to every possible combination of events in a given domain. BBAs
are used to represent the evidence available for a particular proposition. The combination of BBAs
through a process called Dempster’s rule of combination allows for the calculation of the degree of
belief in a proposition given the available evidence. D-S evidence theory has applications in a variety of
fields, including artificial intelligence, decision theory, and information fusion. It is particularly useful
in situations where there is incomplete or conflicting information, or where the sources of information
are uncertain or unreliable.

This paper is organized as follows: In Section 2, related work will be discussed. And our proposed
method is introduced elaborately in Section 3. Section 4 gives the experimental results of the proposed
scheme. Finally, a conclusion is given in Section 5.

2 Related Work

The attackers utilize many compromised end devices, assuming virtual IPs, proxy IPs, and
launching botnets of broilers to simultaneously send a large number of requests beyond the network’s
carrying capacity, resulting in a massive denial of service [6]. Due to the short initiation time, the large
scale of the launch, and the severe impact caused, it has become a more complex problem to solve
among many network threats [7]. Essentially, DDoS is an extension of DoS attacks, which can attack
both directly using distributed devices and broilers on the IoT to attack the target system [8].

DDoS attacks have become one of the most significant security threats to the Internet. Traditional
defense mechanisms, such as intrusion detection systems (IDS) and intrusion prevention systems
(IPS), rely on signature-based methods to identify and block attacks [9]. However, these methods are
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often ineffective against new or unknown attacks, which are constantly evolving and becoming more
sophisticated. Therefore, it is necessary to develop more advanced and adaptive detection mechanisms
to counter DDoS attacks. In recent years, machine learning and deep learning techniques have been
widely applied to DDoS attack detection and have shown promising results [10].

The machine learning techniques for regression and classification tasks are playing an increasingly
important role in intrusion detection for network security, especially in the classification of DDoS
attacks. Numerous approaches have been suggested to identify and avert intrusions in various types
of networks such as in IoT networks [11,12], sensor networks [13], and industrial control systems
[14,15]. The literature [11] offers a context-based system to automatically detect abnormal behavior
of IoT platforms. The literature [12] implements an intrusion detection system for protecting IoT
networks from known attacks, which applies existing intrusion detection techniques to IoT-specific
protocols such as 6LoWPAN. In [13], to detect anomalies in the data collected from wireless sensor
networks, a distributed algorithm is proposed. This algorithm utilizes hyperspherical clusters for data
clustering. The article [14] aims to overcome the risk of overloading legacy devices by employing
a two-pronged approach comprising passive network monitoring and targeted active monitoring,
which focuses on attack vectors that are specific to ICS environments. The article [15] proposes to
model the bit sequence of communication packets as a language using natural language processing
techniques to identify attack patterns. According to the literature [16], a signature-based technique
that employs network traffic density features is suggested for identifying well-known DDoS attacks.
This system only targets specific vulnerabilities present in Samsung’s IoT platform SmartThings.
The analysis of DDoS attacks through network traffic information has been studied for a long
time. Existing approaches typically detect intrusions or identify services under attack by analyzing
individual network packets [17] or clustering a large number of network packets [18]. The authors
of [19] train a finite state automaton using the bit sequences of communication packets. Long short-
term memory (LSTM) networks are commonly used in applications to identify anomalies in time
sequences [20] or system logs [21]. Another study [22] proposes using deep belief networks to analyze
DNS log data for identifying infections in enterprise networks. In [23], KNN and CNN models were
employed to identify particular types of DDoS attacks within a given network environment. This test
is very accurate but not universally applicable. The DCNN architecture was utilized to detect all types
of malicious traffic, such as port scans, DoS, and DDoS, even in the presence of multiple malicious
activities, but no specific classification of malicious traffic was made [24]. The literature [25] tested
various deep learning models, optimizing the number of nodes, layers, and some hyperparameters of
the network, and optimizing the input features by a sparsity penalty to obtain the AE-DNN model
with lower complexity. Although it is capable of detecting different types of malicious traffic, the AE-
DNN model lacks the ability to classify mixed attack traffic. The study presented in [26] employed
machine learning algorithms to classify DDoS attacks based on three different protocols. The authors
then proposed an effective mitigation scheme to demonstrate how DDoS classification can aid in the
development of subsequent defense strategies. These models relied on a centralized training approach,
which poses significant challenges in terms of data collection and privacy protection, making it difficult
to deploy in practice. Reference [27] proposed a cloud intrusion detection scheme based on blockchain
federated learning to protect users’ data privacy. However, an advanced network architecture was not
used to achieve a more fine-grained classification of DDoS attacks. Set-valued classification is a type
of machine learning technique used for the detection of DDoS attacks. In set-valued classification,
the objective is to classify an incoming network traffic data sample into one or more possible attack
categories. This is different from traditional binary classification methods, which only classify a sample
as either normal or attack. Set-valued classification for DDoS attack detection involves identifying
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the types of attacks that are present in a mixed attack traffic, where multiple types of attacks occur
simultaneously. This can be challenging, as the mixed traffic data may have high variability and the
attack patterns may be complex and dynamic. To address this challenge, set-valued classification
methods utilize advanced machine learning algorithms, such as deep learning and ensemble learning,
to identify patterns and correlations in the data. The approach typically involves training multiple
models on different subsets of the data, which are then combined to make a final decision.

3 Proposed Methods

The current deep learning for DDoS attack classification in IoT has high accuracy for binary
classification, while the multi-classification task for specific categories of DDoS attacks performs
poorly for some mixed attack methods due to the increasing complexity and diversity of DDoS attack
methods. A novel Federated learning classifier is proposed by leveraging the combination of D-S
theory and federated learning to classify packets captured from heterogeneous devices in industrial
IoT and perform set-value classification of DDoS attack methods. When the uncertainty is too high
for precise categorization into a certain category, it is categorized into a subset of the known set of the
full category. And its trust level is quantified using the D-S evidence theory approach.

We introduce D-S evidence theory in the process of federated learning to co-train convolutional
neural network models for classifying DDoS attack methods as shown in Fig. 1. The deep neural
network uses CNNs to extract more complex features from the raw data for importing into a distance-
based D-S evidence theory layer to construct a quality function. In the context of federated learning,
the quality function plays a crucial role in evaluating the expected utility. The evaluated utility is then
uploaded and downloaded among the participating devices to improve the overall model performance.
In addition, the strategy we put forward is to consider only specific subsets of categories rather than the
complete set of classes. Finally, the datasets of CIC-DDoS2019 are used to demonstrate and discuss
the classifier’s effectiveness and decision strategy. The primary contribution of this study is to propose
that adding a D-S layer to the federated learning process, CNNs can enhance set-valued classification
and detection of new hybrid attack methods while maintaining good performance.

Figure 1: Architecture diagram of DDoS attack classifier based on federated learning
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3.1 D-S Theory
Ω = {ω1, . . . ,ωM} refers to the framework for identification. The mass function denoted as m, maps

from 2Ω to a range of [0,1] such that m(Ø) = 0.
∑

A⊆�
m (A) = 1 (1)

Each subset A ⊆ Ω is assiciated with a unit trust mass function m(A), which assumes that there
are true values in the state A holds, and no further trust values are assigned based on any subset of the
available evidence A.

Dempster’s rule [28] allows for the combination of two independent mass functions, m1 and m2,
as follows:

(m1 ⊕ m1) (A) = (m1 ∩ m1) (A)

1 − (m1 ∩ m1) (φ)
(2a)

(m1 ∩ m1) (φ) =
∑

B∩C=φ
m1 (B) m2 (C) (2b)

For decisions with trust functions, define the upper and lower bounds of the expected effectiveness
function [29] for the selection of ωi as

Em

(
fωi

) =
∑

B⊆�
m (B) max

ωj∈B
uij (3a)

Em

(
fωi

) =
∑

B⊆�
m (B) min

ωj∈B
uij (3b)

When considering the state as ωj, the expected payoff of selecting ωi is represented uij. fωi stands
for the action of choosing ωi. To make a caution choice, one chooses to trust the greatest lower utility,
whereas a risky decision-making approach involves choosing the maximum upper bound of expected
utility.

The generalized Hurwricz decision criteria model [30] describes the decision maker’s attitude
towards ambiguity in terms of the negative attitude index ν and provide the calculation of the utility
of the following behavior fωi

Em,v

(
fωi

) = νE
(
fωi

) + (1 − ν) E
(
fωi

)
(4)

Clearly, where pessimism and optimism correspond to ν = 1 and ν = 0, respectively.

3.2 Evidence-Based Federated Learning
The system architecture of EFLDDoS is shown in Fig. 2. Evidence-based fuzzy categorization

modules are added to the original local model client and server side of federated learning. The
heterogeneous devices in the industrial IoT scenario collect traffic data under DDoS attacks, use
models downloaded from the cloud for local model training, and upload the resulting model structure
and parameters to the cloud for aggregation, where the cloud aggregates the models from the
participating parties and uses D-S theory to evaluate the trust value of the model parameters from the
participating nodes during aggregation, and the higher degree of uncertainty of the model parameters
are discarded or categorized as fuzzy set values for aiding decision making. A new round of federally
optimized model structures and parameters are obtained and distributed down to the heterogeneous
devices.
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Figure 2: The Framework of EFLDDoS

Based on DS evidence theory, the neural network layer utilizing distance metric is used to construct
the quality function. In a neural network classifier, the proximity of the input vector to the prototype
is considered evidence for the class. This evidence is transformed into a quality function and combined
using Dempter’s rule. Consider a training set X = {x1, x2, . . . , xN } ⊂ R, RP a set of N samples
represented by P-dimensional vectors, and a prototype {p1, p2, . . . , pn} consisting of an evidence neural
network classifier. Given a sample x, the ENN utilize a quality function to quantify the uncertainty
Ω= {ω1, . . . ,ωm} in selecting a class to classify. The three steps are defined as follows:

(1) Calculate the support between x and each reference pattern pi as follows:

si = αexp
(
− (

ηidi
)2

)
, i = 1, . . . , n, (5)

where di = ||x − pi|| denotes the distance between x and pi, α ∈ (0, 1), ηi∈ R represents parameters
linked to pi.

(2) Calculate the mass function as follows:

mi
({

ωj

}) = hi
js

i, j = 1, . . . , M (6a)

mi (�) = 1 − si (6b)

where hi
j is the affiliation of the prototype pi to the category wj,

∑M

j=1h
i
j = 1, and we regard the mass

function of the pi as mi = (mi({ω1}), . . . , mi({ωM}), mi(�))T .

(3) The n trust mass functions are aggregated according to Dempster’s rule. The combined quality
functions are calculated as follows: μ1 = m1 and μi = μi−1 ∩ mi for i = 2, . . . , n.

μi({ωj}) = μi−1({ωj})mi({ωj}) + μi−1({ωj})mi({�}) + μi−1(�)mi({ωj}) (7a)

for i = 2, . . . , n. j = 1, . . . , M. There are

μi (�) = μi−1 (�) mi (�) , i = 2, . . . , n. (7b)



JIOT, 2022, vol.4, no.3 189

The output vector mi = (m({ω1}), . . . , m({ωM}), m(�))T ultimately follows:

m
({

ωj

}) = ηn
({

ωj

})
∑M

j=1μ
n
({

ωj

}) + μn (�)
(8a)

m (�) = μn ({�})∑M

j=1μ
n
({

ωj

}) + μn (�)
(8b)

The evidence-based federated learning steps are as follows.

Assume that there are C participants available to participate in the federated learning process
to jointly train a convolutional neural network model for identifying DDoS attack methods, where
K nodes upload models to participate in a new round of model parameter updates. In this way, the
machine learning model used for federated learning can be represented as

min
ω∈Rd

f (ω) (9)

Here f (ω) is

f (ω) = 1
n

∑n

i=1
fi (ω) (10)

where fi = � (xi, yi; ω), (xi, yi) is the sample data and ω is the model parameter. If one assumes that
the trust in the model parameters learned from the k local end data is differentiated, then using mk to
denote the trust quality function for the model parameters at the kth local end, the above equation
can be rewritten as

f (ω) =
∑K

i=1

mk

m
Fk (ω) (11)

Of which,

Fk (ω) =
∑K

k=1
mkfk (ω) (12)

For federated learning, let C = 1 (which determines the batch size of each iteration in learning),
and with a suitable learning rate η, gk = �Fk(ωt) is computed for each participant node k, where ωt

is the parameter of the local model of the side participant. The task on the server side is to collect
information on these parameters and to update the model using the weighted average of the gradient
gk with the trust quality function.

ωt+1 ← ωt + η
∑K

K=1
mkgk (13)

It can also be expressed as
∑K

k=1
mkgk = �f (ω) (14)

Equivalents to this are ωk
t+1 ← ωt + ηgk, which are updated as follows

ωt+1 ←
∑K

k=1
mkω

k
t+1 (15)

This is where each edge server uses the local datasets to train the local model, and then the server
side collects the individual training results uniformly and calculates the gradient average based on
the weights, or it can do multiple rounds of learning locally before uploading to the server side for
calculation and updating.
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ωk ← ωk + η � Fk (ωk) (16)

Federated learning provides a privacy-preserving way to collaboratively train neural network
models in a distributed manner. All participants are parsed by locally captured packets and fed into a
CNN convolutional neural network to extract higher-order features of different kinds of DDoS attack
patterns. The D-S layer uses the distances of these higher-order features as the basis for the assignment
of the basic trust quality function and finally outputs a combination of possible DDoS attack method
classes.

3.3 Evidence-Based Reasoning Effectiveness Assessment and Decision Making
The model inference and evaluation module are added to the training parameters to enhance the

model’s ability to classify and evaluate the effectiveness of fuzzy sets of DDoS attacks that are not
easily distinguishable.

Ω= {ω1, . . . ,ωM } denote model parameters set categorized as i. For classification problems with
only exact predictions, a behavior refers to the act of assigning an example to a single class among M
available classes. F = {fω1, . . . , fωM}, where fωi refers the choice of belief ωi for the basis of classification.

To facilitate decision inference, we introduce UM∗M, where uij ∈ UM∗M represents the effect that
classifies a choice belief as i while it is j. For decisions based on evidence, the selection of fωi results in
utilities, including the upper and lower utilities, which are calculated as (3a) and (3b).

To handle imprecise predictions in classification problems, Ma et al. [30] proposed a method for
set-valued classification under uncertainty, which assigns uncertain samples to non-empty subsets. The
utility of classifying a sample as belonging to A is defined using the ordered weighted average (OWA)
aggregation of the utilities of each individual class in A [31]:

uA,j =
∑|A|

k=1
gk·uA

(k)j (17)

where uA
(k)j is the Kth largest member in A, which includes the utility values in UM ∗ M. The weights vector

g = (g1, . . . , g|A|) represents the degree of preference for choosing uA(k)j when the ENN needs an exact
decision. The values of g refer to the tolerance of the model to uncertainty. The O’hagan method [32]
was used to get the g in the OWA (ordered weighted average) algorithm. We define the uncertainty
tolerance as

TDI (g) =
∑|A|

k=1

|A| − k
|A| − 1

gk = γ (18)

Its maximum value is 1, its minimum value is 0, and its average value is 0.5. The exact assignments
are generally preferred over imprecise assignment when γ < 0.5. To calculate the weights of the OWA
for a given value of γ , we can use the princple of maximum entropy.

ENT (g) = −
∑|A|

k=1
gklog gk (19)

It has to satisfy TDI(g) = γ ,
∑|A|

k=1gk = 1, and gk ≥ 0.

4 Experimental Analysis
4.1 Datasets

The CICDDoS 2019 dataset is a collection of labeled network traffic data that is designed to
support research on DDoS attacks. It was created by the Canadian Institute for Cybersecurity (CIC)
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at the University of New Brunswick. The dataset includes both benign and malicious traffic, and
covers various types of DDoS attacks, including HTTP flood, TCP SYN flood, UDP flood, and
more. The data was collected using several different tools and techniques, including the Raspberry
Pi-based Traffic Monitoring Framework (TMF), the CICFlowMeter flow analysis tool, and the Bro
Network Security Monitor. The dataset also includes features extracted from the network traffic data,
such as packet size, duration, and protocol type. The CICDDoS 2019 dataset has been used in a
number of research studies on DDoS detection and mitigation, and is freely available for academic
use. We validate our evidence-based federated learning fuzzy set-value classification model using the
CICDDoS2019 datasets, which contain 13 different types of DDoS attack traffic and benign traffic.
We selected six attack flows and benign flows for fuzzy set-value categorization experiments of mixed
DDoS attack flows as shown in Table 1.

Table 1: The number of different flows in blocks

No. Flows type/number

Benign TFTP NetBIOS UDP NTP MSSQL LDAP

Block1 20488 19947 19861 19863 19912 19910 20309
Block2 20614 19939 20004 20109 19765 19945 19822
Block3 20619 19990 19823 20005 20075 20005 19822
Block5 20506 20146 20060 20016 20278 20002 19718
Block5 20673 20158 20053 20111 20042 20241 20214
Block6 20680 19857 20179 19911 19945 19931 20102

The mixed attack traffic containing the six attack methods mentioned above has 87 IP flow-based
feature data dimensions. However, we selected 75 dimensions for input into the neural network model.
On the one hand, the first eight dimensions include source and target IP addresses, source, and target
ports, flow IDs, protocols, and timestamps, which involve privacy information. On the other hand, we
considered the model’s generalization performance to avoid overfitting the model training.

4.2 Fuzzy Set Value Categorization Evaluation of DDoS Attack Methods
For the CIC-DDoS2019 datasets D, classification performance was assessed by the average

effectiveness matrix for performance.

AU (D) = 1
|D|

∑D

i=1
ûA(i),yi (20)

where yi is the true label of sample i in the training sample and A(i) is the possible combinations of
labels chosen for the behaviour f that maximizes the expected utility (4). ûA(i),yi

is the average utility
assigned to i to A while the real label is yi. When single-category classification is considered, the AU
criterion defined is equivalent to the classification accuracy of the single-category classification task.

4.3 Model Training and Testing Results
In this experiment, the convolutional neural network model co-trained by evidence-based feder-

ated learning had a structure as shown in Table 2. The dataset was randomly divided into different
chunks as shown in Table 1, covering both benign traffic and various attacks combined in different
blocks. These divided datasets were used to train the model, and Fig. 3 displays the accuracy of the
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process during training and testing. The results show that the trained model has a good performance
in the fuzzy set-valued classification task for the attack mode of the attack traffic. Moreover, the
proposed model, with a DS layer and an expected layer, outperforms probabilistic CNN classifiers for
set-valued classification.

Table 2: Model structure

Layer(type) Output shape

Conv1d(Conv1d) (None, 75,64)
Max_pooling1d(MaxPooling1D) (None, 37,64)
Conv1d_1(Conv1D) (None, 22,32)
Max_pooling1d_1(MaxPooling1d_1) (None, 11,32)
Conv1d_2(Conv1D) (None, 9,16)
Max_pooling1d_2(MaxPooling1d_2) (None, 4,16)
Dropout(Dropout) (None, 64)
Flatten(Flatten) (None, 64)
Dense(Dense) (None, 128,7)
d_s1(DS1) (None, 128,7)
d_s1_activate(DS1_activate) (None, 128,7)
d_s1_omega(DS_omega) (None, 7)
d_s1_dempster(DS3_Dempster) (None, 7)
d_s_normalize(DS_normalize) (None, 7)
dm_test(DM_test) (None, 128)

Figure 3: The accuracy of model training and test
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4.4 Set-Valued Classification
Table 3 presents the evaluation of performance across the evidence-based federated learning

scheme with and without incorporating evidence theory in multiple classifications. The experimental
results show that the proposed scheme outperforms the scheme without incorporating evidence theory
in terms of accuracy and efficiency for identifying multiple combinations of attacks under a mixed
attack approach. This is because the proposed scheme considers all combinations of possible categories
and makes set-valued assignments using an expected utility layer, which results in a more accurate and
efficient classification. Therefore, the proposed scheme is more suitable for real-world scenarios where
multiple types of attacks can occur simultaneously, and it can provide a more effective approach for
DDoS attack detection.

Table 3: Model training results with non-iid data

Evaluation index EFLDDoS FLDDoS [33] FL

DDoS classification
(Multi-class)

Accuracy
Precision
Recall
F1-score

0.9230
0.9325
0.9146
0.9234

0.8969
0.9060
0.8969
0.8967

0.7649
0.7800
0.7649
0.7639

5 Conclusion

This paper presents an Evidence-based Federated learning framework for DDoS hybrid attack
detection, EFLDDoS. EFLDDoS can coordinate the trusted Intelligent terminal equipment clusters
to use their local data to train CNN with the D-S layer without uploading data to jointly resist the
threat of DDoS hybrid attacks. It is trained through federated learning and a strategy for choosing
to believe partial evidence is used to reduce computational costs. The experiential results show that
EFLDDoS has higher precision, can better complete the DDoS hybrid attack detection task, protect
data privacy, and save the cost of communication. Our future work is to enhance the proposed
approach with a SDN environment and explore to using graph convolution network to extracts the
characteristics of data from both temporal and spatial perspectives to find the attack path.
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