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Abstract: Internet of Things (IoT) technologies used in health have the
potential to address systemic difficulties by offering tools for cost reduction
while improving diagnostic and treatment efficiency. Numerous works on
this subject focus on clarifying the constructs and interfaces between various
components of an IoT platform, such as knowledge generation via smart
sensors collecting biosignals from the human body and processing them
via data mining and, in recent times, deep neural networks offered to host
on cloud computing architecture. These approaches are intended to assist
healthcare professionals in their daily activities. In this comparative research,
we discuss the construction of an IoT network for real-time management and
monitoring of a network of biosensors and gateways and the utilization of
a cloud-based deep neural network architecture with such categorization of
ECG data into various cardiovascular diseases. The aim of this paper is to
provide a quicker transmission of data at a cheaper rate.

Keywords: ECG; internet of things; healthcare; AI; deep learning; neural
network; smart health; sensors

1 Introduction

Heart disease may be affected by many factors that are difficult to quantify and monitor. The
electrocardiogram (ECG) is the primary instrument used in cardiac monitoring since it displays
the heart status as a pattern of bio-electric potential. The growth of IoT technologies has the
potential to address a number of the difficulties now confronting healthcare systems globally. The
Internet of Things platforms, which refers to a complete system that connects intelligent devices
to cloud computing, have spawned a new paradigm for the administration of healthcare services.
These Internet-of-Things-based apps provide exciting alternatives to conventional health services,
increasing the reach of healthcare outside hospital environments [1,2]. They primarily focus on early
identification and prevention of patients’ health decline and enabling patients to live independently [3].
In the context of IoT, these systems may be customarily partitioned into three major tiers to enable
health monitoring applications [4]. Fig. 1 illustrates the three layers. Health data is collected using a
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wireless body area network (WBAN), including wearable biosensors. In application scenarios, such
data collecting is often conducted 24/7 through heterogeneous sensors, resulting in the generation of
a vast amount of information (i.e., big data) over time [5–7]. Second, a gateway device is facilitated by
continuous communication near the WBAN. Traditionally, the gateway device acts as a relay among
the WBAN and the servers. However, additional functions might be assigned to the edge. Thirdly, a
cloud server is in charge of continuous data analysis techniques, enabling real-time decision-making.

Figure 1: A three-tier of IoT-based health monitoring system [7]

In healthcare applications, various machine learning techniques [8–10] are used to make decisions
[11,12]. However, as the volume of data grows over time and enormous quantities of data are created
as big data, most conventional approaches, such as standard neural network models and k-nearest
neighbors, become inapplicable [13]. On the other hand, deep learning approaches [14–17] provide
potential options in this area since they use algorithms embedded in deep networks to build feature
representation [18,19]. These approaches can manage vast volumes of data, and their performance
improves as the number of training datasets increases. Convolutional neural networks (CNN) are one
kind of deep learning technology examined for IoT-based health monitoring in this study.

Deep learning algorithms are well positioned on cloud storage to use high-end computers in such
a cloud-based IoT ecosystem [20–22]. These computers provide an acceptable level of performance at
a significantly reduced execution time. However, the system’s reaction time is highly dependent on the
system’s quality and availability of Internet connection. These systems cannot satisfy latency-critical
applications (e.g., health monitoring) since a latency in establishing a connection significantly affects
patients in emergency scenarios. Recently, using intelligent gateways devices at the edge for health
monitoring has been suggested [23–25]. In this respect, the gateway device’s duties are expanded to
include data processing, which allows for local analysis of the gathered data [26] due to the restricted
computing resources available on gateway devices. However, deep learning algorithms cannot be
implemented entirely on edge devices due to their high computational cost.

With recent advancements in artificial intelligence and increased access to health data, deep neural
networks have shown to be vital for regulating the intelligent healthcare system [27]. Traditional cloud-
based medical analytics extensively explores ECG data analytics utilizing Machine Learning (ML) or
Artificial Intelligence (AI) approaches, as well as time series ECG analysis employing nonlinear Delay
Differential Equations (DDEs). However, the adoption of embedded smarts in ultra-edge devices has
received little attention in the literature. A more efficient and compact analytics approach on-sensor is
necessary to reduce communication time and bandwidth with the cloud and protect user data privacy
by analyzing health data locally.
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The contributions of this paper can be summarized below:

I) Proposing an efficient way in order to analysis the ECG data and provide faster and precise
result.

II) Introducing a fine-tuned CNN model that can be further utilized for analyzing ECG data.
III) Proposing a proper procedure in order to detect heart disease at an earlier stage. Data can be

sent through Cloud platforms. Doctors can analyze data and take necessary steps.

2 Study Overview and Methodology Analysis
2.1 Portable IoT Platform for ECG

An IoT platform for ECG analysis is depicted in Fig. 2, which includes an intelligent ECG sensor,
a smartphone-based Web gateway, and a cloud server for monitoring and managing devices, all of
which are connected to a deep neural network for signal classification. Using Bluetooth LE GATT
notifications and WebSockets for the gateway and cloud server link, real-time capabilities are being
implemented with a heavy focus on sensor nodes. This will allow us to transmit information in nearly
real-time, but it will establish a communication channel to build an infrastructure for managing and
controlling devices [28].

Figure 2: IoT platform for ECG [28]. A three-tier of IoT-based health monitoring system [7]

2.2 Wearable ECG Kits
Residents can use self-adapting and optimized wireless sensor equipment (Fig. 3). A piece of ECG

detection equipment is used. Users can choose from two innovative modes for -e wireless sensor
equipment, which can be tailored to their specific needs. Detection accuracies vary depending on
the user’s needs, and lead methods can be selected accordingly. Wearable ECG data is collected
from a real human body and verified using the doctor’s Lenovo-SEU-DB dataset. The accuracies
of different approaches in each functional module are evaluated. The three main steps in typical
ECG diagnostic algorithms are pre-processing of the signal data, feature extraction from the data,
and feature classification [29].
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Figure 3: Wireless sensor equipment. LA: Left arm, LL: Left leg, RA: Right arm, and RL: Right
leg [29]

2.3 Availability of Data
As soon as the data is collected, it is sent to the central fog layer, processed, and forecasted in

real-time. The ECG signal is captured and pre-processed in three layers. The ECG is captured in the
first stage. To raise the heart signal’s amplitude from milli-volts (mV) to approximately 3.3 volts, the
AD8232 differential amplifier is integrated into this step of the process. An analog-to-digital converter
(ADS) ADS1115 is used to digitally transform the analog signal from the AD8232 [30]. How the
hardware is deployed can be seen in Fig. 4.
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Figure 4: Hardware deployment of fog architecture [30]

2.4 Conventional ECG Heartbeat Classification
This technique may impair the security of ECG analysis for arrhythmia detection. To solve

this issue, build an efficient, automated, and lightweight system with distributed intelligence that
could be applied and coupled with logic-in-sensors for hyper IoT analytics. To create a portable
ECG/arrhythmia monitoring system, we imagined an AI-assisted approach for identifying heartbeats
using a bare single-lead ECG signal and comparing the suggested model to conventional machine
learning techniques using the architecture represented in Fig. 2.

Four distinct heartbeat categories were created from the annotation files in each dataset following
the Association for the Advancement of Medical Instrumentation (AAMI) EC57 standard. The
hyperparameter tuning and training phases were carried out using the DS1 (MIT-BIH Supraven-
tricular Arrhythmia Database). The model was evaluated using another three datasets during the
running/inference stage (DS2, DS3, and DS4). Multiple datasets were used to assess the proposed
model’s generalization ability. Although each dataset includes data for several ECG leads, the
experiment only used lead II since the model only required single-lead ECG tracing [31].

2.5 Normalized Classification of ECG
The research approach begins with the acquisition of the ECG signal through the produced

single-lead prototype and continues with the construction of the technique for automated ECG signal
processing. Additionally, it locates the peak of each signal for a single full cycled signal trimming; the
third step converts the cut signal to a single JPG picture and then classifies the signal category using a
deep convolutional neural network. As a result, clinicians, such as emergency medical technicians,
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may use this gadget in crises as well (EMTs). Doctors may monitor a patient’s state in real-time
during an emergency by using the remote ECG gadget. Additionally, when moving sick people to
the operating room, anesthesiologists may simultaneously monitor and review patient’s real-time
ECG data on mobile phones. This study employs an Arduino, a heart rate sensor, and a Raspberry
Pi to create a prototype ECG signal analyzer capable of providing immediate ECG waveforms.
Simultaneously, when paired with artificial intelligence technologies, the waveform type may be
determined automatically. The following diagram depicts in Fig. 6. However, with the execution of
the prototype idea, clinicians will be able to apply active methods in the treatment of patients that they
have never used before. Doctors may monitor and discuss patients’ vital signs remotely with colleagues
from various departments [32].

3 Results Overview and Analysis
3.1 Evaluating Portable IoT Platform for ECG Using CNN

The convolutional neural network learning module is able to classify incoming ECG signals and
train the neural network using the TensorFlow version 1.3 library running on a GPU-accelerated
machine. The TensorFlow engine has been implemented and connects to the RethinkDB database in
order to query the original raw ECG signal data. Web-based annotation tools allow a heart technician
to select waveform segments and label them according to different arrhythmia types as the network is
trained. The application of live charts of sensor data is shown in Fig. 5. The network is trained using
the selected signals. Once trained, the neural network takes the incoming live signal from the device and
automatically classifies the ECG patterns into possible arrhythmias. The neural network is designed
as successive convolutional, pooling, reshaping, fully connected, and dropout layers [28].

Figure 5: Classification of conventional ECG heartbeats in segments [31]
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Figure 6: Classification of conventional ECG heartbeats in segments [32]

All the parameters for this model are fine-tuned. The desired result is achieved after applying 30
epochs. Table 1 shows the necessary fine-tuned parameters performed by the authors.

Number of fully connected layers 3
Learning rate 0.001
Optimizer Adam stochastic gradient descent
Decay 0.0032
Loss function Categorical cross-entropy
Number of epochs 30
Kernel size 2
Trainable parameters 5,23,535
Activation function ReLU

3.2 Evaluating Wearable ECG Kits Using Fast-CNN
The fast-CNN algorithm used in this paper guarantees high accuracy and real-time detection of

the CNN for QRS wave detection. The algorithm adopts a 32-layer convolution network structure,
increasing detection sensitivity and accuracy for QRS detection and improving adaptability to worse
Signal Noise Ratio (SNR) levels. As a result, it is more robust and adaptable to noise signals than
the traditional ECG detection algorithm and has better detection accuracy. Tables 1 and 2 shows the
performance using fast-CNN [29].
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Table 1: Performance evaluation fast-CNN models [29]

Index Sensitivity PPV Accuracy

1 0.9953 0.9908 0.9863
2 0.9716 0.9941 0.966
3 0.9752 0.9857 0.9616
4 0.9953 0.9995 0.9948
5 0.986 0.9754 0.9621
6 0.9345 0.9328 0.9384
7 0.9919 0.986 0.9781
8 0.9881 0.9551 0.9536
9 0.9427 0.9596 0.9437
10 0.9692 0.9629 0.9526
AVG 0.98098 0.98519 0.96672

Table 2: Performance evaluation fast-CNN models [29]

Method Test
dataset

Accuracy Precision F1-score Preprocessing

KNN DS2 87.83% 0.8541 0.8646 3-phased noise filtering
DS3 82.76% 0.9281 0.9124
DS4 56.53% 0.7383 0.6991

RF DS2 89.31% 0.9010 0.8957 3-phased noise filtering
DS3 90.21% 0.8921 0.8844
DS4 86.77% 0.9126 0.8947

CNN DS2 91.07% 0.907 0.9175 Not required
DS3 92.04% 0.8991 0.9017
DS4 95.83% 0.9562 0.9572

3.3 Evaluation of fog Architecture Using MobileNet
It was decided to convert the ECG signals into images in order to achieve this classification process.

A series of image pre-processing steps were required to remove the axis from the image and crop it only
to include the relevant portions of the image (see Figs. 6 and 7) [30].

To train the MobileNet, all images must be the same size, so they were resized from 1500 × 600
to 224 × 224 pixels. Hyperparameters of the MobileNet design are as follows: Learning rate: 0.01 per
epoch; batch size: 512; 70 epochs. Due to the limited number of dataset samples, the test accuracy was
around 0.6 during the training process. A confusion matrix (see Fig. 8) constructed from 100 unused
images from the original dataset was used to validate the MobileNet.



JIOT, 2022, vol.4, no.3 135

Figure 7: Multichannel sensor data [28]

As shown in the confusion matrix, classification is generally accurate; however, it should be noted
that 18% of the images in class Or were incorrectly labeled as Af. Class Af has an accuracy rate of 87%.
Here Or refers to other rhythms, Nr refers to Normal sinus rhythm, No refers to Too noisy to classify,
and Af refers to Atrial fibrillation.

3.4 Evaluating Conventional ECG Heartbeat Classification Using DS1 as the Training Dataset
Researchers used DS1 as the train set and DS2, DS3, and DS4 as the test datasets to evaluate the

model’s performance. The suggested model outperformed established machine learning approaches in
precision, accuracy, and F1-score in all three test datasets. The suggested CNN attained the accuracy
of 94.07 percent, 92.04 percent, and 95.83 percent, respectively, using DS2, DS3, and DS4 as test
datasets. The proposed custom CNN model outperforms existing machine learning approaches due to
integrating convolution, sum- sampling, and normalization layers that automatically extract detailed
characteristics from the ECG data. Additionally, the proposed model is more efficient at identifying
important spots in the ECG due to the dynamic filter reduction in the deep convolution layers.
The suggested technique avoids overfitting during training due to the inclusion of the regularization
layer. However, even after considerable human pre-processing, existing approaches are incapable
of automatically retrieving meaningful data from the ECG. While the proposed model models
outperform conventional methods in terms of results, it is noteworthy that the proposed technique also
achieves high accuracy with raw ECG signals without the need for noise filtering or manual feature
extraction. The findings demonstrate that the proprietary CNN-based model is both resilient and
lightweight in terms of identifying heartbeats with high accuracy, owing to the usage of raw single-
lead ECG data [31].
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Figure 8: Extraction of the area of interest from ECG image [30]

3.5 ECG Classification by Deep Learning
For humans, the most intuitive type of information is visual. As a result, the scientific community

has seen a rapid increase in the need for picture interpretation. It is necessary to have a machine with the
intellectual ability to understand visual data. Image data has opened up several avenues and introduced
us to the discipline of deep learning. Deep learning is the artificial intelligence functionality that
simulates the human brain’s data processing and pattern generation processes [33,34]. Deep learning
is a subfield of machine learning (AI) that utilizes networks capable of unsupervised learning from
unstructured or unlabeled input. Additionally, it is referred to as deep neural networks or deep neural
learning. Convolutional neural networks are indeed a subtype of deep neural networks that have
garnered considerable interest in recent years due to their application to image recognition [35–40].
They are frequently used to extract characteristics and identify the immediate surroundings in order to
construct a dense network. Because convolutional neural networks include additional convolution and
pooling layers than typical neural networks, they can manage rotation, translation, and distortion and
collect input for computation. Additionally, it maintains the shape and spatial information necessary
for image processing. This has the benefit of being more convenient and quicker than conventional
neural networks. Additionally, it may help to mitigate the danger of overfitting and neural train
parameter overfitting [41]. Its capability for feature processing is critical in the disciplines of picture
categorization and computer recognition.
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The models used in this investigation were pre-trained AlexNet, ResNet, and SqueezeNet. Most
of them are widely used in CNNs for images categorization. The input picture dimension in ResNet
were 256 × 256. It comprises 53 convolution layers, one max-pooling layer, one fully linked layer, and
a softmax output layer. The input picture dimension in AlexNet was 256 × 256. It consists of five
convolutional layers, three max-pooling levels, seven ReLU layers, and two fully connected layers, all
of which are preceded by a softmax output layer. The input picture dimension in SqueezeNet was
256 × 256. This image has twenty-six convolution layers, 3 max-pooling layers, and 26 ReLU layers.
The findings indicated that the highest precision, accuracy, recall, F1-score, and kappa coefficient
while employing the ResNet model were 0.97, 0.97, 0.97, and 0.96, respectively. The testing results
between ResNet, AlexNet, and SqueezeNet demonstrated good accuracy and agreement when ResNet
was used to classify the ECG’s 2D signal [32]. Figs. 9 and 10 depicts the results for ResNet, AlexNet,
and SqueezeNet.

Figure 9: Confusion matrix [30]

Figure 10: Classification results from several DNN models [32]

The reason behind limited processing power is that, the model requires significant amount of fine-
tuning on other hyper-parameters along with number of trainable parameters should be reduced.

4 Conclusion

Health monitoring technologies powered by the Internet of Things allow at-risk sufferers to be
tracked outside traditional healthcare settings. Such systems are required to provide a high level of
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service since a failure to do so might have grave repercussions for the patients. Deep learning may
deliver adequate performance in terms of decision making since a large quantity of data can be
supplied to the classification algorithm. These strategies can be applied entirely in cloud-based IoT
systems. These technologies, however, are inadequate for time-sensitive health applications owing
to the service’s reliance on the strength of the Internet connection. Other solutions include fully
distributed edge-based systems, which are incapable of adopting deep learning algorithms due to their
limited processing capability.
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