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An Influence Maximization Algorithm Based on the Influence
Propagation Range of Nodes
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Abstract: The problem of influence maximization in the social network G is to find k
seed nodes with the maximum influence. The seed set S has a wider range of influence in
the social network G than other same-size node sets. The influence of a node is usually
established by using the IC model (Independent Cascade model) with a considerable
amount of Monte Carlo simulations used to approximate the influence of the node. In
addition, an approximate effect (1 − 1/e) is obtained, when the number of Monte Carlo
simulations is 10000 and the probability of propagation is very small. In this paper, we
analyze that the propagative range of influence of node set is limited in the IC model, and
we find that the influence of node only spread to the t′-th neighbor. Therefore, we propose
a greedy algorithm based on the improved IC model that we only consider the influence in
the t′-th neighbor of node. Finally, we perform experiments on 10 real social network and
achieve favorable results.
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1 Introduction
The problem of influence maximization in the social networkG is to find a seed set S, where
the size of seed set S is k, k = |S|. With the development of social networks, the problem
of influence maximization has attracted many researchers to study this problem and has
been applied in many fields. The most classic application of influence maximization is viral
marketing. Viral marketing is the process of marketing products to acquaintances by using
the "word of mouth" effect [Guille, Hacid, Favre et al. (2013); Goldenberg, Libai and Muller
(2001)] in social network. Customers are more inclined to accept products recommended
by acquaintances than strangers [Hill, Provost and Volinsky (2006); Sadovykh, Sundaram
and Piramuthu (2015); Schmitt, Skiera and Van den Bulte (2011); Verbraken, Goethals,
Verbeke et al. (2014); Iyengar, Van den Bulte and Valente (2011)].

In recent years, social software has existed on almost everyone’s mobile phones and
computers, such as facebook, twitter, and weibo. Therefore, the social network is usually
used by various commercial companies to promote products. Commercial companies will
choose some initial users, that is, the seed set S, which obtain the maximum commercial
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value by marketing products. The problem of influence maximization was firstly proposed
by Kleinberg et al. [Kempe, Kleinberg and Tardos (2003)], they proved that the selection
of k seeds with the maximum influence is NP-hard, and a simple greedy algorithm was
proposed to approximate the optimal solution. The probability of propagation is assumed
to be very small, when the simple greedy algorithm uses the IC model to simulate the
influence of nodes. Therefore, we conclude that the range of influence of node is limited.
The IC model is used to simulate the influence of almost all nodes in each iteration by using
the simple greedy algorithm to find the seed set S, therefore, the time complexity of the
simple greedy algorithm is very high.

In order to reduce the time complexity of the simple greedy algorithm, Leskovec et al.
[Leskovec, Krause, Guestrin et al. (2007)] proposed the CELF algorithm for selecting
the most influential seed set. The CELF algorithm uses the "lazy-forward" optimization
strategy to select the most influential seed set, that is, the marginal benefit of a node in
the current iterative is not more than itself in the previous iteration. Therefore, CELF
algorithm reduce the calculation times of influence of nodes, and CELF algorithm is 700
times faster than the simple greedy algorithm. Chen et al. [Chen, Wang and Yang (2009)]
proposed DegreeDiscountIC algorithm to select the most influential seed set, whose time
complexity is much lower than the simple greedy algorithm. Chen et al. [Chen, Wang
and Wang (2010)] proposed the PMIA algorithm, which established local arborescence
structures for each node and used the local arborescence structures to calculate the influence
of the node. The PMIA algorithm has the advantages of high accuracy and low time
complexity. The PMIA algorithm needs to establish local arborescence structures for each
node, therefore, the PMIA algorithm has high spatial complexity. Jung et al. [Jung, Heo and
Chen (2012)] proposed the IRIE algorithm, where IR is the influence ranking algorithm and
IE is the influence simulation algorithm. IRIE is an effective algorithm to find the maximum
influence seed set. Xia et al. [Xia, Song, Jing et al. (2018)] proposed that the scale of disease
spreading can be reduced by increasing the rate of spreading by constructing double-layer
network and using markov chains theory. Wang et al. [Wang, Ju, Gao et al. (2018)] present a
novel coverage control algorithm based on particle swarm optimization to improve coverage
rate and reduce consumption. Li et al. [Li, Li, Chen et al. (2018)] construct an interest graph
built by Gaussian graphical modeling to select seed. Li et al. [Li, Li, Chen et al. (2018)]
construct an interest graph built by Gaussian graphical modeling to select seed.

In the previous studies, the researchers tried to solve the time complexity problem of
searching for the most influential seed set. IC model is used to simulate the influence
propagation in the problem of influence maximization, and the simple greedy algorithm
is used to obtain the seed set with the maximum influence. In generally, the influence
propagation simulated by the IC model in the simple greedy algorithm is high time
complexity. In other words, the influence of each node needs to calculate in almost each
iteration with using the IC model. The probability of propagation p usually is very small,
so we conclude that the range of spreading influence of the node in each iteration is limited.

In this paper, we present a simple greedy algorithm based on improved IC model, and we
found that the spreading influence of node by using IC model alaways stop in the t′-th
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neighbor of node. Therefore, we limit the range of influence of node simulated by the IC
model. In the other word, we limit the influence of the node in the t′-th neighbor to reduce
the time complexity of the IC model, and our algorithm is adaptive [Zhang, Zheng and
Xia (2018)]. We perform experiments on 10 real social networks, and the algorithm we
proposed obtained good results.

2 Description of the problem
2.1 Influence maximization problem

We define the social network asG = (V,E), V represents the set of user nodes in the social
network G, and E represents the relationships of user nodes, n = |V |, m = |E|. We define
the probability of propagation of the social network G is p, that is, the weight of each edge
belonging to E is p. The problem of influence maximization is to find the most influential
seed set S in the social network G, where k = |S|, so that the seed set has the maximum
influence.

2.2 Independent cascade model

We use the independent cascade model to simulate the influence of node [Chen, Fan, Li et al.
(2015); Liu, Cong, Xu et al. (2012); Goldenberg, Libai and Muller (2001)] for measuring
the ability of node to propagate influence. The principle of the independent cascade model
is as follows. In the networkG, all nodes have two states: one is active state and the other is
inactive state. Ai is the set of nodes that are activated at time i. In the initial phase, that is,
at time t = 0, A0 = S represents that the nodes in the seed set S are active in the beginning
of independent cascade model. In other word, the node in A0 is active and the remaining
nodes are inactive. At time t = i, for any edge (u, v)∈E, u attempts to activate the node
v with the probability of propagation p, when node u∈Ai−1 and node v is inactive. If v is
activated successfully, v is active from time i+ 1. If v fails to be activated successfully by
u, v can not be activated by u starting at present moment. If node v has multiple neighbors
activated, v will be activated with 1− (1−p)l, where l is the number of activated neighbors
of v. When Ai is empty, that is, at time t = i, no node is activated, then the propagation
process ends and the number of activated nodes in the whole process is the influence of the
seed set S [Kimura, Saito, Nakano et al. (2010); Page, Brin, Motwani et al. (1999)].

2.3 Simple greedy algorithm

We define the influence function σ(v) as the influence of the node v. In this paper, this
function value is the number of nodes activated by the node v. We define a function
IC(·) that simulates the influence of node set by using IC model, whose value is the
number of nodes activated by the node set. The key of the simple greedy algorithm is the
submodule property [Cornnejols, Fisher and Nemhauser (1977); Williams (1990)]: assume
that the f(·) is a function that maps node set to a non-negative integer. If there is any v,
f(S∪{v}) − f(S)≥f(T∪{v}) − f(T ), S⊆T , the function f(·) satisfies the submodule
property. According to the submodule property, we choose the node with the largest
marginal benefit in the current iteration to join in the seed set, When selecting the node
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with the maximum influence. The steps of the simple greedy algorithm are shown in Tab.
1.

Table 1: Simple Greedy Algorithm

Alogrithm 1: Simple Greedy Algorithm
Input: social network G = (V,E), number of iterations R and the number of seed nodes k
Output: seed set S

(1) Initializing seed set S = ∅
(2) for i = 1 : k
(3) for each node v∈V \S
(4) sv = 0
(5) for j = 1 : R
(6) sv+ = |IC(S∪{v})|
(7) end for
(8) σ(v) = sv\R
(9) end for
(10) S = S∪{v|v = argmax(σ(v))}
(11) end for
(12) Output seed set S

The input of Algorithm 1 is the social network G = (V,E), the number of Monte Carlo
simulations R, and the size of seed set k. The output of the simple greedy algorithm is the
seed set S with the maximum influence. In Step (1), the seed set S is initialized to be an
empty set, that is, S = ∅; from Steps (2) to (11) are the loops for finding k seed nodes,
where Step (2) is the first layer loop for finding the k seed nodes; in Step (3), this step
traverses each node beside the node in the seed set S; in Step (4), sv is used to store the
accumulated value of influence of the set S∪{v} and its initial value is 0; from Steps (5) to
(7), Monte Carlo simulation is used to simulate the influence of the node, and the number
of iterations is R; in Step (6), IC(S ∪ {v}) is the influence of the set S ∪ {v} by using the
IC model, and its value is the number of nodes activated by the set S∪{v}. In addition, its
value is added to sv. sv accumulates the influence of the set S∪{v} with the R iterations;
in Step (8), the influence of the set sv is approximated by averaging S∪{v}; in Step (10),
this step find the node v in each iteration that maximizes σ(v) and add it to the seed set; in
Step (12), this algorithm outputs k seed nodes, that is, the seed set S.

3 Detailed process of the algorithm
We find that the simple greedy algorithm need to calculate the influence of all nodes except
the seed node in the every iteration, when we study the IC model and the simple greedy
algorithm, so the time complexity of the simple greedy algorithm is very high. Generally
speaking, the problem of influence maximization sets the probability of propagation
between nodes to a small value. Therefore, we conclude that the range of influence of
node in the social network is extremely limited and we improve the traditional IC model.
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In this paper, we limit the range of influence of node in the IC model. In the IC model, we
limit the influence of node in the t′-th neighbor, which greatly reduces the time complexity
of the IC model. On account of the limitation of scope of influence, we set the number of
Monte Carlo simulations R as 100 to reduce unnecessary iterations. The detailed steps of
the improved IC model algorithm show in Tab. 2.

Table 2: Improved IC Model

Alogrithm 2: Improved IC Model
Input: social network G = (V,E), nodeset needs to be simulated NS, propagation
probability p, the range of propagation t′

Output: Activate node set A

(1) Initializing A = NS,Anow = NS,t = 1
(2) while(t≤t′||Anow 6=∅)
(3) Anow uses the principle of the IC model to active its neighbors and the set

of activated neighbors is temp
(4) Anow = temp
(5) A = A∪temp
(6) t = t+ 1
(7) end
(8) Output active nodeset A

The input of Algorithm 2 is the social network G, nodeset NS needs to be simulated, the
probability of propagation p, the range of propagation t′. The output of Algorithm 2 is the
nodeset A activated by the set of NS. In Step (1), A represents the nodeset that have been
activated. The initial value of A is NS, A = NS. Anow is the set of nodes activated in
the current iteration. The initial value of Anow is NS, Anow = NS. t is the number of
iterations and initial value of t is 1; Steps (2) to (7) are the iterative framework where the
NS actives the remaining nodes. If t > t′ or Anow == ∅, the iteration will be terminated.
NS affects successively its neighbors from 1-th to t′-th and NS at most affects its t′-th
neighbor. if NS has not actived its t′-th neighbors and the activated nodeset of current
iteration is empty, Anow == ∅, the iteration is terminated; in Step (3), Anow uses the
principle of IC model to active its neighbors, and the activated neighbors are added to the
temp set. In the first iteration, Anow is equal to NS; in Step (4), temp is assigned to Anow,
and Anow is in the next iteration a set of nodes activated; in Step (5), the node activated in
the current iteration is added to the set of activated nodes A, A = A∪temp; in Step (6),
the number of iterations is incremented by one; the Step (8) is ended by Algorithm 2 and
outputs the active nodeset A.

Based on the simple greedy algorithm, we propose a simple greedy algorithm based on
improved IC model. The number of Monte Carlo simulations is 100, R = 100, and the
probability of propagation p is 1

degreeu
, that is, the node v wants to activate the node u, then

the activation probability must be between (0, 1
degreeu

]. The simple greedy algorithm based
on the improved IC model shows in Tab. 3.
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Table 3: Simple Greedy Based On Improved IC Model

Alogrithm 3: Simple Greedy Based On Improved IC Model
Input: social network G = (V,E), number of iterations R, propagation
probability p, the range of propagation t? and the number of seed nodes k
Output: seed set S

(1) Initializing seed set S = ∅
(2) for i = 1 : k
(3) for each node v∈V \S
(4) sv = 0
(5) for j = 1 : R
(6) sv+ = |Improve_IC(G,S∪{v}, p, t′)|
(7) end for
(8) σ(v) = sv\R
(9) end for
(10) S = S∪{v|v = argmax(σ(v))}
(11) end for
(12) Output seed set S

The input of Algorithm 3 is the social network G = (V,E), the number of Monte Carlo
simulations R, and the number of seed nodes k. The output of Algorithm 3 is the seed set
S with the maximum influence. In Step (1), the seed set S is initialized to be an empty
set, S = ∅; Steps (2) to (11) are loops for finding k seed nodes; Step (2) is the first layer
loop to find the k seed nodes; Step (3) traverses all nodes except the node in the seed set S;
in step (4), sv is used to store the cumulative value of influence of the set S∪{v}, whose
initial value is 0; Steps (5) to (7), Monte Carlo simulation is used to simulate the influence
of the node, and the number of iterations is R; in Step (6), Improve_IC(G,S∪{v}, p, t′)
is the simulation of the influence of the set S∪{v} using the Improve_IC model, whose
value is the number of nodes activated by the set S∪{v}, and the value is added to sv. sv
accumulates the influence of the set S∪{v} with R iterations; in Step (8), the influence of
the sv is approximated by averaging S∪{v}; in Step (10), it is found in each iteration that
the node v maximizing σ(v) is added to the seed set; in Step (12), the output of Algorithm
3 is seed set S.

4 Experimental results and analysis
4.1 Experimental data set

The experiment was performed on 5 undirected social network datasets and 5 directed social
network datasets. The five undirected social network datasets are: wiki-Vote [Leskovec,
Huttenlocher and Kleinberg (2010)], facebook-combined [Mcauley and Leskovec (2012)],
CA-GrQc [Leskovec, Kleinberg and Faloutsos (2007)], CA-HepTh [Gehrke, Ginsparg
and Kleinberg (2003)], and CA-HepPh [Gehrke, Ginsparg and Kleinberg (2003)]. The
wiki-Vote is the voting history data of the Wikipedia community administrator election.
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Table 4: Topological properties of 8 different datasets
Network n m dmax d̄ r C D
wiki-Vote 7115 100762 1065 28 -0.0083 0.1409 0.0040

facebook-combined 4039 88234 1045 43 0.0636 0.6055 0.0108
CA-GrQc 5241 14484 81 5 0.6593 0.5297 0.0011

CA-HepTh 9875 25973 65 5 0.2678 0.4715 0.0005
CA-HepPh 12006 118489 491 19 0.6323 0.6116 0.0016

email-Eu-core 986 11967 333 25 0.0117 0.2944 0.0267
Political blogs 1222 13655 256 15 0.0884 0.2071 0.0072

soc-hamsterster 2426 16631 258 6 0.1352 0.1738 0.0057
rt-bahrain 4676 4090 256 2 -0.0643 0.0007 0.0003

soc-advogato 5167 26508 790 9 0.0434 0.1585 0.0016

The edge between the nodes indicates the vote of the user or the administrator to an
administrator; the facebook-combined contains the anonymous data of the facebook,
and the edge between the nodes represents the affiliation between users; CA-GrQ,
CA-HepTh, and CA-HepPh are collaborative network datasets, whose data are the scientific
collaboration between papers. If author i and author j published a paper together, the graph
contains an undirected edge from i to j. The five directed social network datasets are:
email-Eu-core [Yin, Benson, Leskovec et al. (2017)], Political blogs [Adamic and Glance
(2005)], soc-hamsterster [Dünker and Kunegis (2015)], rt-bahrain [Rossi and Ahmed
(2015)], and soc-advogato [Massa, Salvetti and Tomasoni (2009)]. Email-Eu-core is a
dataset generated by the email data of a large european research institution, whose data
is anonymous. If i sends at least one email to j, there is an edge (i, j) in the social
network; Political blogs is a front page hyperlink between blogs in the context of the
US election. A node represents a blog and an edge represents a hyperlink between two
blogs; soc-hamsterster is a social relationship and family relationship between users of the
hamsterster.com website; rt-bahrain is derived from twitter’s social and political portal data,
whose edge indicates that the user sends a tweet; the soc-advogato is the Advogato trust
network. The node is the Advoto user in the soc-advogato, and the directed edge indicates
the trust relationship. The topological attributes of all datasets are shown in Tab. 4, where n
is the total number of nodes, m is the total number of edges, dmax is the maximum degree,
d̄ is the average degree, r is the same coefficient, C is the clustering coefficient, and D is
the network density.

4.2 The range of node influence and algorithm analysis

We believe that the propagation range of influence of node is limited with using IC model
to simulate the influence propagation of nodesets, because the probability of propagation
between nodes is always a small value. Therefore, we make t′ from 1 to 10 and use
Algorithm 3 to obtain the seed set, and the size of seed set is 50. In addition, we use
the IC model to simulate the influence of seed set and observe the influence of seed set
selected by Algorithm 3. We experimented on 5 directed graphs and 5 undirected graphs
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respectively. Fig. 1(a) is the result graph of the email-Eu-core, and the horizontal axis is
the value of t′ brought into Algorithm 3 and vertical axis is the influence of seed set. t = 1
means that we bring t′ = 1 into Algorithm 3 to find 50 seed nodes by using IC model to
simulate the influence. We find that the influence of the seed set tends to be stable, when
t = 3. Although there are some fluctuations after t = 6, but the fluctuations are not large.
Therefore, we conclude that the email-Eu-core dataset only needs to let t′ = 3 with using
Algorithm 3, which can get good results; Figs. 1(b) and 1(c) are the result graphs of the
Political blogs and soc-hamsterster datasets. When t = 4, the seed set has the maximum
influence. There is no difference between the influence of t = 3 and t = 4; Fig. 1(d) is
the result of the rt-bahrain. When t = 3, the influence of current seed set has the maximum
influence. Fig. 1(e) is the result graph of the soc-advogato. When t = 5, the current seed
set has the maximum influence. However, there is no difference between the influence of
t = 3 and t = 4. Fig. 1(f) is the result graph of the wiki-Vote. The current seed node set
has the maximum influence, when t = 9; Figs. 1(g) and 1(h) are the result graphs of the
facebook-combined and CA-GrQc. The current seed set has the maximum influence with
t = 7, but it is not too different from the value of t = 3; Fig. 1(i) is the result graph of the
rt-bahrain. When t = 3, the current seed set has the maximum influence; Fig. 1(j) is the
result graph of the CA-HepPh, the current seed set has the maximum influence when t = 8,
There is not too difference between the influence of t = 3 and t = 8. Experiments show
that most datasets can achieve good results by using Algorithm 3 at t′ = 3. Therefore,
when we use Algorithm 3, we let t′ = 3. We present the Algorithm 3 in the following
and compare Algorithm 3 with the Closeness [29], PageRank [30], Degree and Random
algorithm. The comparison results are shown in Fig. 2. Figs. 2(a) and 2(e) are the result
graphs of the email-Eu-core and soc-advogato, whose horizontal axis is the number of seed
nodes and vertical axis is the influence of seed set. The influence of Algorithm 3 is better
than other algorithms. The influences of other algorithms are similar. Figs. 2(b) and 2(c)
are the result graphs of the Political blogs and soc-hamsterster. The influence of Algorithm
3 is good. For other algorithms, the Pagerank is less better than other algorithms; Fig. 2(d)
is the result graph of the rt-bahrain, Algorithm 3 is slightly better than the Closeness and
Degree methods; Figs. 2(f), 2(i) and 2(j) are the result graphs of the wiki-Vote, CA-HepTh
and CA-HepPh, Algorithm 3 works better than other algorithms, and other algorithms have
similar influence; Figs. 2(g) and 2(h) are facebook-combined and CA-GrQc data. The
fluctuation of the influence of each algorithm except Algorithm 3 is larger, but the influence
of Algorithm 3 is better than other algorithms.
In this paper, we present that the range of influence of node is limited by using the traditional
IC model with small transmission probability. It is found through experiments that the
influence range of the seed set is no more than the 3-th neighbor. Therefore, when we use
the IC model to simulate the influence of node, we limit the influence in the 3-th neighbor,
which can reduce the time complexity. The seed set selected by Algorithm 3 showed good
results.
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Figure 1: The influence of t-th neighbor of seed set
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Figure 2: The performance of each algorithm on 10 datasets
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5 Conclusion
This paper mainly analyzes the influence range of nodes. In this paper, we study the 
traditional IC model and find that the traditional IC model simulate the influence in the 
whole social network, but the propagation probability is assumed to be a small value. 
Therefore, we conclude that the range of influence of node is limited. Therefore, we 
improve the traditional IC model and limit the range affected by the node set in the IC 
model. In detail, we limit the influence of the node set in its t′-th neighbor at most. From 
t′ =1 to 10, we use the simple greedy algorithm based on improved IC to find the seed set 
and use the IC model to simulate the influence of the seed set. It is found that the influence 
of the seed set obtained by Algorithm 3 is stable when t′ = 3 and Algorithm 3 achieves 
good results.
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