
 
 
Copyright © 2019 Tech Science Press               JIOT, vol.1, no.2, pp.41-53, 2019 

JIOT. doi:10.32604/jiot.2019.07231                                      www.techscience.com/jiot 

 
 

A New Method Based on Evolutionary Algorithm for Symbolic 
Network Weak Unbalance 

 
Yirong Jiang1, Weijin Jiang2, 3, 4 *, Jiahui Chen2, *, Yang Wang2, Yuhui Xu2, Lina 

Tan2 and Liang Guo5 

 

 
 
Abstract: The symbolic network adds the emotional information of the relationship, that 
is, the “+” and “-” information of the edge, which greatly enhances the modeling ability 
and has wide application in many fields. Weak unbalance is an important indicator to 
measure the network tension. This paper starts from the weak structural equilibrium 
theorem, and integrates the work of predecessors, and proposes the weak unbalanced 
algorithm EAWSB based on evolutionary algorithm. Experiments on the large symbolic 
networks Epinions, Slashdot and WikiElections show the effectiveness and efficiency of 
the proposed method. In EAWSB, this paper proposes a compression-based indirect 
representation method, which effectively reduces the size of the genotype space, thus 
making the algorithm search more complete and easier to get better solutions. 
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Network is a general model of many complex systems. It represents the things in the system 
with nodes and the relations between things with edges. Starting from the emotional 
attributes of the side, the network can be divided into symbolic networks [Easley and 
Kleinberg (2019)] and unsigned networks. It is widely used in politics [Ghosn, Palmer and 
Bremier (2004)], society [Wasserman and Faust (1994)], biology [Parisien, Anderson and 
Eliasmith (2008)], e-commerce [Zolfaghar and Aghaie (2010)], cyberspace [Burke and 
Kraut (2008)], etc. applications.  
Structural balance theory is the basic theory in symbolic networks. It was first proposed by 
Heider [Fritz (1946)] from the perspective of social psychology in the 1940s. Cartwright 
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et al. [Cartwright and Harary (1956)] then redefined and expanded the theory in graph 
theory in the 1950s.  
Arahona [Barahona (1999)] pointed out that solving the structural imbalance problem is an 
NP-hard problem. Terzi et al. [Terzi and Winkler (2011)] proposed a spectral method for 
solving the imbalance. Facchetti et al. [Facchetti, Iacono and Altafini (2011)] used the 
canonical transformation to give an efficient greedy algorithm for solving the imbalance. 
Chiang et al. [Chiang, Hsieh and Natarajan (2013)] used the Katz metric to find the number 
of negative loops and used this to measure the imbalance of the symbol network. Sun Yixiang 
et al. [Sun, Du and Gong (2014)] proposed a dense-mother algorithm for solving structural 
imbalances by using the characteristics of evolutionary algorithm global optimization. 
In the 1960s, Davis [Davis (1977)] improved the structural balance theory. He believed 
that “the enemy of the enemy is a friend” is not necessarily correct in many occasions. His 
theory is called weak structural balance theory. Leskovec et al. [Leskovec, Huttenlocher 
and Kleinberg (2010)] have shown through experiments that weak structural equilibrium 
is more common than structural equilibrium in a large number of actual symbolic networks. 
However, it is usually not feasible to simply extend the method of solving structural 
imbalances such as Sun et al. [Sun, Du and Gong (2014)] to solve the weak structural 
imbalance. Earlier research on this problem was Doreian and Mrvar [Doreian and Mrvar 
(1996)]. In view of the good performance of evolutionary algorithms [Jong (2016)] in 
solving many NP-hard problems, and also inspired by the literature [Sun, Du and Gong 
(2014)], this paper proposes an evolutionary algorithm EAWSB for solving the weak 
imbalance of symbol networks. Experiments on large symbolic networks Epinions, 
Slashdot and WikiElections show that this method is effective and efficient. 

1 Problem definition 
1.1 Structural balance and weak structural balance 
A symbolic network can be defined as a graph G(V, E, σ), where V and E are node sets 
and edge sets, respectively. The mapping σ: E→{+, −} defines the symbol properties of 
each edge. Fig. 1 is the four basic paradigms of the symbolic network. In the case of 
structural equilibrium, (a)(b) is balanced, (c)(d) is unbalanced. In the case of weak 
structural equilibrium, (a)(b)(d) is balanced and (c) is unbalanced. 

 
Figure 1: Four basic paradigms of signed networks 

However, for the general symbolic network, the statistical method is no longer valid. At 
this time, its balance and weak balance are given by the following Theorem 1 [Cartwright 
and Harary (1956)] and Theorem 2 [Davis (1977)]. Theorem 1: A symbolic network is 
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structurally balanced if and only if its node set can be divided into two classes and satisfy 
the following conditions: The edges in the same class are all positive, and the edges 
between different classes are all negative. Theorem 2: A symbolic network is weakly 
structurally balanced if and only if its node set can be divided into multiple classes and 
satisfy the following conditions: The edges in the same class are all positive, and the edges 
between different classes are all negative. 

1.2 Calculation of structural balance and weak structural balance 
By using Theorem 1 and Theorem 2, we can give another definition of (weak) unbalance. 
The nodes of a symbolic network are divided into several classes.  
At present, the methods of seeking (weak) imbalance are mainly spectral methods [Terzi 
and Winkler (2011)], canonical transformation [Facchetti, Iacono and Altafini (2011)], 
Katz metric [Chiang, Hsieh and Natarajan (2013)], evolutionary algorithm [Sun, Du and 
Gong (2014)] and block model [Doreian and Mrvar (1996)]. The literature [Sun, Du and 
Gong (2014)] is also based on evolutionary algorithms, but it is only solved and discussed 
in a relatively small scale symbolic network and structural equilibrium case. 

2 The Algorithm EAWSB 
Considering the complexity of large-scale symbolic networks and the global optimization 
of evolutionary algorithms, combined with Theorem 2, this paper proposes an EAWSB 
(Evolutionary Algorithms for Weak Structural Balance) algorithm for solving the weak 
imbalance of symbol networks. The details are as follows. 

2.1 Energy function and fitness function 
According to Theorem 2, the energy function reflecting the weak imbalance can be defined 
as follows. 
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where , )i js sδ( =1, if i js s= , otherwise take -1. E(S) is the sum of the number of all 
negative edges in the same class and the number of all positive edges between different 
classes. The minimum value is the weak imbalance of the symbol network G. 
The algorithm for defining the EAWSB is: 
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Since E(S)=(m-F(S))/2, minimizing E(S) is equivalent to maximizing F(S). In this case, if 
the maximum number of categories k is specified in advance, the optimization problem to 
be solved by the algorithm EAWSB is transformed into 
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2.2 The natural representation and compression representation of the individual 
The general individual representation is divided into direct representation and indirect 
representation [Jong (2016)].  
For large symbolic networks, the value of n is too large, often tens of thousands, which 
seriously affects the performance of genetic operations and the overall algorithm [Liu, 
Meng, Ding et al. (2019)]. 
Theorem 3: Given the symbolic network G (V, E, _), suppose that A is the optimal solution 
of the optimization problem represented by (3), then for any I {1,... N}, there are all 
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Note that h only appears in the first summation in the above formula, and does not appear 
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Theorem 3 tells us the state of a node, that is, the optimal class value to which it belongs can 
be found by the state of its neighbor node using Eq. (4). So how do you find the dominating 
set U? Algorithm 1 gives a solution. Algorithm 1 generates a compressed representation:                                                                                         
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1.Input: Adjacency matrix of symbol network G: ( )ij n nA a ×=  

2. Calculate node degree array deg[0..n-1] 
3. ori_deg[0..n-1]= deg[0.. n-1] 
4. The value of the initialization array selNode[0..n-1] is 0. 
5: for each i with ori_deg[i]=1 and deg[i]>0 do  
6:    j=the neighbor of i  
7:    selNode[j]=1, deg[j]=0  
8:    for each j’s neighbor p do  
9:       if(deg[p]>0)deg[p]= deg[p]-1  
10:   endfor  
11: endfor  
12: repeat 
13. select a node with degree > 0 in roulette mode Randomly 
14:    selNode[j]=1, deg[j]=0  
15:    for each j’s neighbor p do  
16:      if(deg[p]>0)deg[p]= deg[p]-1 
17:    endfor  
18: until deg[i]=0 for alli∈{0.. n-1}  
19: Output: All nodes i satisfying selNode[i]=1                             

Algorithm 1 consists of 3 parts. Part 1 (lines 2-4) defines three arrays, ori_deg and deg, which 
hold the degree information of nodes exactly the same at the beginning. Part 2 (lines 5-11) 
handles leaf nodes (i.e., nodes with degree 1). The leaf node has a unique neighbor node. Part 
3 (lines 12-18) uses a degree ratio selection strategy to select a node, i.e., the probability that 
a node is selected is the sum of the degrees of a node divided by the degrees of all nodes. 

 
Figure 2: Illustration of Algorithm 1 (The number in the upper right corner of vertex i 
indicatesdeg [i]) 

Fig. 2 is an example of algorithm 1 generating compression coding. E is a leaf node that is 
generally not selected, but its neighbor nodes must be elected to the dominating set. The last 
three nodes A, C, and D are selected to dominate the set U. The individual compression code 
is ind_c=sAsCsD, the natural code is ind=sAsBsCsDsEsF, and the compression ratio is 50%. 
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2.3 Population initialization 
The theory of homogeneity [Easley and Kleinberg (2019)] tells us that We will become 
more similar to our friends. The above selection-assignment process is repeated iniK times. 
Where iniK is a positive integer representing the initialization strength. The time 
complexity of population initialization is O(iniK*davg). 

2.3.1 Genetic operator 
1) cross 
This paper uses the one-way crossover operator proposed by Tasgin et al. [Tasgin, 
Herdagdelen and Bingol (2006)]. The main idea is as follows. Find all the nodes in ind1 
whose category value is s, change the category values of these nodes to s in ind2, and return 
the modified ind2.  
2) variation 
In this paper, a single point mutation is used to randomly select a node on the individual to 
be mutated and assign it a new category value. The time complexity of the mutation is O(1). 
3) Choice 
This paper adopts the league selection of league size 2 [Li, Kou and Lin (2002)], and adopts 
the elite retention strategy [Li, Kou and Lin (2002)]. The time complexity of the selection 
is O(1). 
4) Rotation 
The value of each gene of each individual is { }0,..., 1k − . In the evolutionary process, 
each individual rotates with a small probability (generally 0.05 in this paper), i.e., the class 

value is 0 2,..., 1 0k→,1→ − → .  

2.3.2 Local search 
Starting from Theorem 3, the local search can be designed as follows: For a given 
individual ind, a node vi on it is randomly selected, and the state of the node is modified. 
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i j i

i ij i j
s k v N v

s a s s
∈ − ∈

= δ∑
 

2.3.3 Incremental calculation of fitness values 
Eq. (2) can be used to directly calculate the individual’s fitness value, but for large 
networks, the amount of calculation is large because the length of the individual is the 
number of network nodes.  
Algorithm 2 Incremental calculation of fitness values after individual variation 

1: Input: Current individual: ind, mutation position: h, the value of the hth gene sh before 
mutation: clsOld, the value of sh after mutation: clsNew 

2: delta=0 //The fitness value increment is initialized to 0 
3: For each neighbor j of vertex at h  
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4: if(J is in the dominating set) 
5: clsNbr=class label at position j in ind  
6: if (clsNbr=clsOld) delta=delta-2*ahj  
7: else if(clsNbr=clsNew) delta=delta+2*ahj  
8:   }  
9:   else if (j in the degradation concentration){  
10:    maxEnergyNew=Before mutation maxEnergy(vj) 
11:    maxEnergyOld=After mutation maxEnergy(vj) 
12:    delta = maxEnergyNew-maxEnergyOld  
13:  }  
14: Endfor  
15: Output: Adaptation value of ind before mutation+delta 
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max ( ) max ( , )
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j h

h hj h js k v v
Energy v a s s
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2.3.4 EAWSB algorithm framework 
Algorithm 3 is the overall framework of the EAWSB algorithm.  

Algorithm 3 EAWSB algorithm framework 
1: Input: G(V, E) adjacency matrix: A=(aij)n×n, population size: popSize, initialization 

strength: iniK, local search strength: locK, maximum evolution algebra: maxGen, league size: 
tourSize, Crossover probability: pc, probability of variation: pm, rotation probability: pr 

2: Use natural representation or generate a compressed representation (A) 
3: P←population initialization (popSize, iniK) 
4: repeat  
5: Pparent←select (P, tourSize) 
6: Pchild←cross (Pparent,pc 
7: Pchild←variation (Pchild, pm) 
8: Pchild←rotation (Pchild, pr) 
9: P←local search (Pchild, locK) 
10: Until the evolution termination condition (maxGen) is met 
11: Output: the best individual in P 

3 Expeeriments analysis 
3.1 EAWSB algorithm composition 
To be exact, EAWSB is a cluster of algorithms, which consists of EAWSB_N, EAWSB_I, 
EAWSB_C and EAWSB_IC. They have the same function, but have different performance 
in different occasions. The difference between them is shown in Tab. 1. 
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Table 1: Four constituents of EAWSB 

 EAWSB_N EAWSB_I  EAWSB_C  EAWSB_IC  

Incremental 
calculation  

×  √  ×  √  

Compressed 
representation  

×  ×  √  √  

3.2 Experimental environment 
Tab. 2 is the experimental environment of Algorithm EAWSB in this paper. 

Table 2: Experimental environment of EAWSB 

Hardware 
environment 

Lenovo laptop savior e520, Quad-core processor, 
logical eight core, 16 G memory. 

Operating system Microsoft Windows [version 10.0.15063] 

Development 
environment 

java version “1.7.0_15” 
Java(TM) SE Runtime Environment (build 

1.7.0_15-b03) 

3.3 Data set 
This article was conducted on three large symbolic network datasets, Epinions, Slashdot, and 
WikiElections. Epinions (epinions.com) is a product review website [Guha, Kumar and 
Raghavan (2004)]. Slashdot (slashdot.com) is a technology news site [Jérôme, Lommatzsch 
and Bauckhage (2009)] that allows users to mark authors as “friends” or “enemies” for other 
users’articles, forming a network of friends/enemies. WikiElections [Leskovec, Huttenlocher 
and Kleinberg (2010)] is a dataset for Wikipedia users voting for elections. It is a support or 
objection network. Tab. 3 is the original case of the three data sets. The experiment is mainly 
carried out on the large undirected symbolic network shown in Tab. 4. 

Table 3: Original datasets 

Raw data set Number of nodes Number of sides Description 

soc-sign-epini ons 131,828 841,372 Epinions Symbolic network 

soc-sign-Slash 
dot090221 

82,144 549,202 Slashdot Zoo Symbolic 
network February 21, 2009，

Snapshot 

wiki-Elec 8,297 103,591 Wikipedia Administrator 
election symbol network 
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Table 4: Preprocessed datasets 

Experimental data set Number of nodes Number of sides 

Epinions 131,513 708,507 

Slashdot 82,062 498,532 

WikiElections 7,114 99892 

3.4 Operation results and running time 
3.4.1 Parameter setting 
For all algorithms, all data sets, EAWSB parameter settings. The results are as follows: 
population size popSize=500, initialization strength iniK=500, local search strength 
locK=500, maxGen=500, tourSize=2, crossover probability PC=0.8, mutation probability 
PM=0.1, rotation probability PR=0.05.  

3.4.2 Operation results 
Figs. 3-5 show the results of the four algorithms EAWSB_N, EAWSB_I, EAWSB_C, and 
EAWSB_IC on Epinions, Slashdot, and WikiElections. The operation is performed in five 
cases according to the number of categories k=2, 3, 4, 5, and 6, where k=2 is a structural 
equilibrium situation, which can be regarded as a special case of weak structural balance.  
 

 
Figure 3: Results of the four algorithms on Epinions 
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Figure 4: Results of the four algorithms on Slashdot 

 

 
Figure 5: Results of the four algorithms on WikiElections 
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3.5 Performance comparison with similar algorithms 
Meme-sb [Sun, Du and Gong (2014)] is a structural unbalanced algorithm based on the 
timid algorithm. Tab. 5 and Tab. 6 show the experimental results and running time of 
EAWSB_I and meme-sb u shows nder three large-scale symbolic network datasets in the 
number of categories k=2~6. Experiments show that EAWSB_I is significantly better than 
meme-sb on the two large datasets of Epinions and Slashdot. In addition, meme-sb is 
slightly better than EAWSB_I on WikiElections. Because meme-sb has a large “tearing” 
negative impact, the one-way crossover used by EAWSB_I is easier to maintain the 
integrity of the building block than the 2-point crossover used by meme-sb.  

Table 5: Comparisons between experimental results of EAWSB_I and meme-sb 

 Epinions Slashdot WikiElections 

k EAWSB_I meme-sb EAWSB_I meme-sb EAWSB_I meme-sb 

2 51867 56544.5 74634.4 76334.33 14220.6 14204.67 

3 49288.8 60851 70661.6 75021.67 13870.8 13858 

4 48637.8 58854.33 69699.2 75299.67 13824.6 13809 

5 48625 58628 69382.4 75465.67 13814.2 13793 

6 48535.6 56799 69260.2 77196.67 13815 13805.33 

Table 6: Comparisons between running time of EAWSB_I and meme_sb (s) 

 Epinions Slashdot WikiElections 

k EAWSB_I meme-sb EAWSB_I meme-sb EAWSB_I meme-sb 

2 1282.295 4191.39 754.2902 2549.973 131.527 306.6153 

3 996.9442 4211.654 598.2798 2574.373 108.358 302.8893 

4 811.7326 3807.2 487.3583 2580.679 97.3256 305.7383 

5 706.6864 3814.085 433.6314 22537.29 93.458 344.1983 

6 681.7204 3839.202 491.775 763.142 101.6392 342.976 

4 Conclusion 
Weak unbalance is an important indicator to measure the tension of the network [Hou, Wei, 
Wang et al. (2018)]. This paper starts from the weak structural equilibrium theorem, and 
integrates the work of predecessors, and proposes the weak unbalanced algorithm EAWSB 
based on evolutionary algorithm. Experiments on large symbolic networks Epinions, 
Slashdot, and Wiki Elections demonstrate the effectiveness and efficiency of this approach. 
In EAWSB, this paper proposes a compression-based individual indirect representation 
method, which effectively reduces the size of the genotype space, thus making the algorithm 
search more complete and easier to get a better solution. In this paper, an incremental fitness 
calculation method is proposed, which reduces the time complexity of fitness calculation 
from O (n) to O (davg), and greatly improves the efficiency of the algorithm. 
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