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Abstract: Electrocardiogram (ECG) is widely used to detect arrhythmia.
Atrial fibrillation, atrioventricular block, premature beats, etc. can all be
diagnosed by ECG. When the distribution of training data and test data is
inconsistent, the accuracy of the model will be affected. This phenomenon
is called dataset shift. In the real-world heartbeat classification system, the
heartbeat of the training set and test set often comes from patients of different
ages and genders, so there are differences in the distribution of data sets. The
main challenge in applying machine learning algorithms to clinical AI systems
is dataset shift. Test-time adaptation (TTA) aims to adapt a pre-trained model
from the source domain (SD) to the target domain (TD) without using any
SD data or TD labels, thereby reducing model performance degradation due
to domain differences. We propose a method based on multimodal image
fusion and continual test-time adaptation (FCTA) for accurate and efficient
heartbeat classification. First, the original ECG data is converted into a three-
channel color image through a multimodal image fusion framework. The
impact of class imbalance on network performance is overcome using a batch
weight loss function, and then the pretrained source model is adapted to
the TD using a continual test-time adaptation (CTA) method. Although our
method is very simple, compared with other domain adaptation methods, it
can significantly improve model performance on the test set and reduce the
impact caused by the difference in domain distribution.
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1 Introduction

The World Health Organization (WHO) survey on cardiovascular disease [1] shows that car-
diovascular disease is still the world’s first killer. In severe cases, coronary heart disease and stroke
will cause arrhythmias, often sinus tachycardia or some occasional premature beats, and myocardial
infarction. These symptoms can be monitored with portable single-lead ECG equipment. With the
increase of various ECG-collecting devices and the collection of more and more ECG data, there is
a growing interest in research using deep learning techniques to classify heartbeats. On the basis of
the Association for the Advancement of Medical Instrumentation (AAMI) classification criteria, 14
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subclasses can be integrated into 5 major classes: normal beat (N), supraventricular ectopic beat (S),
ventricular ectopic beat (V), fusion beat (F), and unknown beat (Q).

Deep neural network models achieve outstanding performance in various deep learning appli-
cations when SD data and TD data have identical data distributions [2,3], but when there is a
distributional difference between the training and testing distributions, i.e., when there is a dataset shift
[4], model performance drops dramatically. Due to the dataset shift between SD data and TD data,
if the pre-trained model is directly used for test data, the performance will be poor, so it is necessary
to use the test time during inference to adapt from the unlabeled TD data learning to improve model
performance on the test set. Most work in this field focuses on how to train a robust model during
training [5–7], or retrain the model using source and TD data to adapt the model to changing TD data
[8]. However, in the medical field, these methods are not feasible because many of the datasets used in
training are private data of patients, which are usually unavailable during testing.

TENT [9] and TTT [8] are two very effective TTA methods. TENT updates model parameters
through entropy minimization to adapt the model to distribution changes between SD and TD. The
TTT uses auxiliary self-supervision tasks to train the source model and then fine-tune the model using
the test data. These TTA methods are effective when the distribution of TD data is unchanged, but
when the TD data comes from a changing domain, the model suffers from error accumulation in the
process of adapting to the changing TD [10] and catastrophic forgetting [11,12], resulting in unstable
model performance.

This paper aims to provide an efficient, stable, and practical ECG heartbeat classification method,
which can be well used in the existing portable ECG equipment for monitoring of arrhythmia. First,
the original ECG signal is directly converted into a 2D image through a multimodal fusion framework,
thus eliminating complex data preprocessing operations. Moreover, the 2D image maintains the time
dependence of the ECG signal without losing any information from the one-dimensional signal. Then,
input the processed training data set into the convolutional neural network (CNN) for pre-training.
Finally, during inference, use the CTA method to make the pre-trained model adapt to the test data
continuously and reduce the performance degradation caused by data offset. The overall framework
of our proposed FCTA method is shown in Fig. 1. We have made the following three contributions:

1. Apply the CTA method to the ECG dataset to reduce network model performance degradation
due to dataset shift, solving the problem of error accumulation and catastrophic forgetting in
the process of CTA.

2. The ECG signal can be used directly to achieve efficient, stable, and practical heartbeat classi-
fication without any data preprocessing, thus eliminating a lot of complex data preprocessing
operations and greatly reducing the cost of data preprocessing.

3. Effectively solves the problem of poor classification effect of the model for small samples due
to the imbalance of the ECG dataset.
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Figure 1: Method overview

2 Related Works
2.1 Continual Learning

Deep learning methods closely related to the problem of continual adaptation are continual
learning [13] and lifelong learning [14], both of which can effectively alleviate the catastrophic
forgetting of models. Continual learning methods are usually divided into regularization-based [15,16],
methods based on replay [17,18], and parameter separation [19–21]. The regularization-based method
adds some constraints when updating the parameters of the model, so that the model will not forget the
knowledge previously learned when adapting to new tasks. Continual learning is mainly used to solve
two problems. It can apply the experience of previous tasks so that the current task can be learned
faster and better. When learning the current task, the task that has been learned before will not be
forgotten, that is, to enhance the plasticity and stability of the model.

2.2 Test-Time Adaptation
General domain adaptation methods need to use SD data and TD data, while TTA does not need

to use SD data but only uses source models pre-trained from SD data and unlabeled TD data, so test
time adaptation is a very challenging task in the domain of domain adaptation. TENT uses the SD
pretrained model for the TD and uses entropy minimization to update the trainable parameters in the
Batchnorm layer [22] to fit the test data. The MEMO [23] is similar to TENT in that it updates the
model parameters by minimizing the marginal entropy and increases the robustness of the model by
using data enhancement, but updates the parameters of all layers of the model. SITA [24] only needs
one test sample at a time during the adaptation process, avoiding the dependence on batch size in the
TENT method. In SITA, only the mean and variance in the Batchnorm layer need to be modified
during the adaptation process, without the need for reverse propagation to update other parameters.
When the TD comes from the same distribution, these TTA methods can achieve considerable results.
However, when the TD is constantly changing, the performance of the model is not stable. For example,
in the automatic driving scene, the weather may change at any time. At this point, the model needs to
deal with the continuously changing target domain.

2.3 Fusion Based Approaches
Deep learning network models for ECG heartbeat classification include 1D and 2D CNNs

[25–27]. Existing work typically necessitates complex dataset preprocessing, such as data desiccation
and feature extraction, before feeding the dataset into the model for training. Multimodality-
based methods can fuse different modes and accurately classify tasks by integrating complementary
information from modalities [28]. Reference [29,30] proposed a Multi-scale Fusion CNN (MS-CNN)
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and a Deep Multi-scale Fusion CNN (DMSFNet) for arrhythmia detection, respectively, and in [31],
a multilevel feature fusion framework based on CNN and an attention module is proposed. It extracts
features from different layers of CNN to perform classification and improves the recognition ability
of the ECG classification model by combining CNN and the attention module.

3 Methodology
3.1 Problem Statement

Given a source model fθ pre-trained on the SD
(
X S, Y S

)
, the model has a poor classification effect

on data from different distributions in the SD. Our goal is to improve the performance of the source
model on the changing TD

(
X T , Y T

)
at inference time. During CTA, the source data of the SD is not

available. Only the pre-trained source model and unlabeled TD data X T are available.

In Table 1, we list the differences between the CTA and the existing domain adaptation methods.
Compared with the previous settings, the CTA focuses more on the continual adaptation of the
changing TD scenarios.

Table 1: Differences in settings between TTA and other adaptation methods

Setting Source data Target data Train loss Test loss

Fine-tuning × xt,yt (stationary) L (xt,yt) ×
Domain adaption xs,ys xt (stationary) L (xs,ys) + L (xs,xt) ×
TENT × xt (stationary) × L (xt)

FCTA (ours) × xt (changing) × L (xt)

3.2 Multimodal Image Fusion
Gramian Angular Field (GAF), recursive graph (RP), and Markov Transition Field (MTF)

images were created from the one-dimensional ECG data. Then, the three gray images are combined
into three-channel color images (GAF-RP-MTF), which are formed from the original ECG data by
different statistical methods and maintain the signal-dependent time without losing any information
of the one-dimensional signal. Therefore, the obtained three-channel color image contains more
information, and the three-channel image can be easily used with off-the-shelf CNNs such as AlexNet
[32] and ResNet.

3.3 Batch Weight Loss Function for Imbalanced ECG Data
Table 2 shows the category distribution of the PhysioNet MIT-BIH Arrhythmia Database (MIT-

BIH) [33]. It is obvious that there is a class imbalance problem. The five categories N, S, V, F, and
Q in the dataset account for 82.77%, 2.54%, 6.62%, 0.73%, and 7.34%, respectively. For the sake of
solving the class imbalance problem in the dataset, Z. Ahmad et al. [28] used the SMOTE algorithm
[34] to upsample the samples of four classes except class N, but there are some differences between
the samples sampled by the SMOTE algorithm and the original samples. In the training process, the
method we propose only uses the raw ECG data without adding additional data.
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Table 2: The number of heartbeats of different categories in the MIT-BIH database

Dataset Classes Number of beats Percentage (%)

MIT-BIH N 90587 82.77
S 2781 2.54
V 7245 6.62
F 802 0.73
Q 8038 7.34

To overcome the impact of dataset imbalance on model performance, during training, we use
a batch weight loss function [35]. Then, define the label set of N heartbeats in the ith batch as
Batch_labelsi = {

ys
i,1,y

s
i,2, . . . ,ys

i,N

}
, where ys

i,j ∈ {N,S,V ,F ,Q}, then, defined in the ith batch loss weight
of each category is Wi,classc , where classc ∈ {N,S,V ,F ,Q}.

Wi,classc = 1 −

N∑
j=1

Iyi,j=classc

N
(1)

where N is the batch size and I is the indicator function, When yi,j = classc, the value of the indicating
function is 1, otherwise it is 0. After determining the loss weight of each class, the weighted loss
function of the ith batch is shown in Eq. (2).

Ltrain
i = −

N∑
j=1

Wi,ys
i,j

ys
i,jlogps

i,j (2)

where ys
i,j is the label of the jth training sample in the ith batch, and ps

i,j is the prediction probability of
the model for the jth training sample in the ith batch.

3.4 Continual Test-Time Adaption
The CTA method [36] consists of three parts, namely, exponential moving average pseudo-

labels, data augmentation average pseudo-labels, and random recovery weight. The first two parts
are to alleviate the accumulation of errors in the model due to the use of pseudo-labels. Exponential
moving average pseudo-labels and data augmentation average pseudo-labels can improve the quality
of pseudo-labels, thereby improving model performance. Randomly restoring source model weights is
to recover any weights of the model as initial parameters in the process of continuously adapting to
new TD data so as to mitigate catastrophic forgetting of the model.

3.4.1 Exponential Moving Average Pseudo-Labels

Given TD data xt and a source model fθ , the goal of TTA is to minimize the entropy loss
between the model’s predictions y = fθ (xt) for the given target data and the pseudo-labels. In TENT,
the predictions of the model itself are directly used as pseudo-labels. Reference [37] proved that
pseudo-labels averaged by weights work better than directly using model predictions as pseudo-labels.
Therefore, We update the weights of the teacher model (TM) by using the weighted exponential moving
average of the student model (SM), and then use the predictions of the updated TM as pseudo labels.
In the method of continually testing time domain adaptation, there are pretrained source model fθ , TM
fθt and SM fθs . At time step t = 0, initialize TM and SM with source model parameters, at time step t,
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the predicted results of the TM are used as pseudo-labels. Then use Eq. (3) to find the cross-entropy
loss predicted by the TM and the SM. Back-propagate to update the parameters of the SM θs. After
updating the SM weights (θs → θs+1), use the exponential moving average of the SM parameters to
update the weights of the TM (θt → θt+1), the exponential moving average update rule is as Eq. (4).

Lθs

(
xt

) = −
M∑

C=1

ytclogysc (3)

where ytc and ysc represents the probability that a sample belongs to class c in the prediction of TM
and SM, respectively, and M is the number of classes in the dataset.

θ
′
t+1 = (1 − α) θ

′
t + αθt+1 (4)

where θt+1 and θ
′
t+1 represent the parameters of the SM and the TM when the time step is t + 1,

respectively, α is the hyperparameter smoothing factor of the exponential moving average, and the
class with the largest probability in the output probability ytc of the TM is the class predicted by the
model for the target data xt.

The weighted average pseudo-label updates the TM through the exponential moving average SM
and obtains more accurate pseudo-labels through the prediction of the TM better performance.

3.4.2 Data Augmentation Average Pseudo-Labels

Data augmentation is widely used to improve the generalization and robustness of the model
during training, and different data augmentation needs to be set for different datasets. In reference
[38,39], it was demonstrated that data augmentation at test time can also improve the robustness of
the model, but it is not possible to set a fixed data augmentation strategy for changing TD. In this
paper, we quantify domain differences by calculating model confidence and choose whether to use
data augmentation according to the size of domain differences. First, use the source model fθ to find
the entropy value for the current input xt as the model confidence. The confidence is calculated as
Eq. (5). When the model confidence confidence (fθ ) is greater than the confidence threshold βth, directly
use the prediction ytc of the TM is used as a pseudo-label without any data augmentation, and when
the confidence is less than the confidence threshold βth, an additional N random data augmentation
strategies are used. Attempts to approximate the domain difference by predicting confidence, with
the assumption that lower confidences represent larger domain differences and higher confidences
represent smaller domain differences. The data augmentation strategy used in this paper is weak
augmentation and strong augmentation, weak augmentation is a jitter and scale strategy, which adds
random changes to the signal and amplifies its amplitude. Strong augmentation is a permutation and
jitter strategy, which first divides the signal into a random number of segments and disrupts the order,
and then adds random jitter to the replacement signal [40].

confidence (fθ ) = −
M∑

C=1

fθ

(
xt

)
logfθ

(
xt

)
(5)

ytc = 1
N

N−1∑
i=0

fθt

(
augment

(
xt

))
(6)

y
′
tc =

{
ytc, confidence (fθ ) ≥ βth

ytc, otherwise
(7)
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Lθs

(
xt

) = −
M∑

C=1

y
′
tclogysc (8)

where ytc is the prediction of the TM after data augmentation, ytc is the prediction of the TM without
data augmentation. After using the augmented average pseudo-label, the cross-entropy loss is changed
from Eq. (3) update to Eq. (8).

3.4.3 Random Recovery Weight

In the process of continual adaptation, the model will continue to learn new TD knowledge and
gradually forget the knowledge from the SD. In practical application, we hope that the model can not
only adapt to new tasks quickly but also not forget the knowledge learned before. We use a simple and
efficient random recovery method to mitigate the catastrophic forgetting of the model. This method
preserves part of the knowledge from the source model by randomly recovering weights from it. The
weight recovery rules are shown in Eq. (9).

Wt+1 = (1 − N) ∗W0 + N∗Wt+1 (9)

N∼Bernoulli (p) (10)

where ∗ represents the element-by-element multiplication between the two matrices, p is the probability
of random recovery, N is the mask tensor conforming to the Bernoulli distribution, W0 is the
convolutional layer convolution kernel weight of the source model, Wt+1 is the convolutional layer
convolutional layer convolution kernel weight at time step t + 1. By randomly restoring a small number
of tensors in the trainable weights to the initial weights before adaptation, random recovery avoids that
the model completely forgets the knowledge learned before adapting to new tasks, thus mitigating the
catastrophic forgetting of the model.

4 Experiments
4.1 Database and Experimental Setup

In this experiment, the training set and test set are MIT-BIH and PhysioNet MIT-BIH ST Change
Database (MIT-BIH-ST), respectively. According to AAMI classification criteria, the database is
divided into five categories. Since there are no F and Q labels in the test set, we can finally only classify
N, S, and V into three categories. In this experiment, both training set and test set are resampled to
360 Hz. Our method can be used with any existing deep neural network without modifying the existing
network. In this experiment, we use the ResNet-18 and WideResNet-28 [41] network structures. In the
process of training a source model, the batch size is 128, the learning rate is 0.01, and the number of
iterations in the learning process is 30.

4.2 Experiment Results
The indicators used for classification in this experiment are accuracy (acc), precision (pre) and

recall (rec). The calculation methods for accuracy, precision and recall are as follows:

acc = TP + TN
TP + TN + FP + FN

(11)

pre = TP
TP + FP

(12)
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rec = TP
TP + FN

(13)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

4.2.1 Experiments on ResNet-18

The source model achieves 97.78% acc, 96.28% pre, and 96.82% rec on the training set. Although
the source model performs well on the training set, if the source model is directly used for the test set,
there is a dataset shift between the training set and the test set, and the model performance during
testing is very poor. After using FCTA, the performance improvement effect is significant. In order to
compare the FCTA method with TENT, BN [42], We follow the TTA settings in TENT. In the TTA
process, we chose SGD as the optimization algorithm. The learning rate is 0.001, the batch-size is 32,
the number of random data augmentations N is 32, the confidence threshold βth is 0.9, and the random
recovery probability p is 0.05. Table 3 shows a comparison of the performance of the FCTA method
with several other adaptation methods.

Table 3: Experimental results on MIT-BIH-ST database using ResNet-18

Method acc% pre% rec%

Source 59.39 58.56 60.26
BN [42] 71.23 68.21 69.31
TENT [9] 73.21 70.32 70.12
FCTA (ours) 80.14 79.02 78.27

To verify the unique advantages of the FCTA method in continual learning and mitigating
catastrophic forgetting, we reuse the test-time-adapted model on the test training set to verify that
the model can also retain the knowledge learned in the training set. Table 4 shows the performance
of ResNet-18 on the MIT-BIH database before and after the TTA. Obviously, after using TENT and
BN adaptation, the model suffers from catastrophic forgetting, while the FCTA method preserves the
source model most of the knowledge.

Table 4: Experimental results on MIT-BIH database using ResNet-18

Method acc before adaption acc after adaption

BN [42] 97.78 73.21
TENT [9] 97.78 62.48
FCTA (ours) 97.78 95.46

4.2.2 Experiments on WideResNet-28

The FCTA method can be applied to any existing model without the need to adjust the existing
model. For the sake of verifying the robustness of the duration adaptation method to the model, we
apply it to the WideResNet-28. The source model achieves 99.12% acc, 98.37% pre, and 97.45% rec
on the training set. In the FCTA setting, the parameters are the same as in the experiments using
ResNet-18. Table 5 shows the experimental results.
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Table 5: Experimental results on MIT-BIH-ST database using WideResNet-28

Method acc% pre% rec%

Source 68.34 67.21 67.56
BN [42] 73.51 73.56 72.31
TENT [9] 75.86 74.97 74.64
FCTA (ours) 82.34 81.53 80.91

Table 6 shows the performance of the WideResNet-28 model on the MIT-BIH database before
and after TTA, which verifies that our method can effectively solve the problem of error accumulation
and catastrophic forgetting in the process of FCTA.

Table 6: Experimental results on MIT-BIH database using WideResNet-28

Method acc before adaption acc after adaption

BN [42] 98.32 76.83
TENT [9] 98.32 67.97
FCTA (ours) 98.32 96.54

5 Conclusion

We presented FCTA, a method based on multimodal image fusion and continual test-time
adaptation for ECG classification tasks, focusing on how to address the model’s error accumulation
and catastrophic forgetting during CTA. First, the original ECG dataset is converted into a two-
dimensional image through a multimodal image fusion framework. For the sake of alleviating the
class imbalance of the ECG database, a batch weight average loss function is used when pretraining
the model. Second, the pseudo-label quality is improved by the exponential moving average and data
augmentation average, thereby reducing error accumulation. Finally, for the purpose of mitigating the
catastrophic forgetting of the model, after each adaptation, a part of the parameters of the model are
randomly restored to the parameters of the source model, and the knowledge learned by the source
model is retained. The FCTA approach can be applied to any ready-made pre-training model, and
compared to using the pre-trained model directly at test time, after using FCTA, the performance of
the model on the TD is significantly improved, proving the effectiveness of our proposed method.
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