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ABSTRACT: Smoking continues to be a major preventable cause of death worldwide, affecting millions through
damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods often miss the early
warning signs of smoking-related health problems, leading to late-stage diagnoses when treatment options become
limited. This study presents a systematic comparative evaluation of machine learning approaches for smoking-related
health risk assessment, emphasizing clinical interpretability and practical deployment over algorithmic innovation.
We analyzed health screening data from 55,691 individuals, examining various health indicators including body
measurements, blood tests, and demographic information. We tested three advanced prediction algorithms—Random
Forest, XGBoost, and LightGBM—to determine which could most accurately identify people at high risk. This study
employed a cross-sectional design to classify current smoking status based on health screening biomarkers, not to
predict future disease development. Our Random Forest model performed best, achieving an Area Under the Curve
(AUC) of 0.926, meaning it could reliably distinguish between high-risk and lower-risk individuals. Using SHAP
(SHapley Additive exPlanations) analysis to understand what the model was detecting, we found that key health
markers played crucial roles in prediction: blood pressure levels, triglyceride concentrations, liver enzyme readings,
and kidney function indicators (serum creatinine) were the strongest signals of declining health in smokers. These
results demonstrate that artificial intelligence can serve as a powerful tool for early disease detection in smokers. By
identifying at-risk individuals before conventional symptoms appear, healthcare providers could intervene earlier with
personalized prevention strategies. Implementing these predictive systems in public health programs could reduce
the enormous burden smoking places on healthcare systems while shifting medical care from reactive treatment to
proactive prevention.

KEYWORDS: Smoking-related diseases; machine learning prediction models; health risk assessment; predictive
analytics in healthcare; early disease detection; public health informatics; artificial intelligence in medicine

1 Introduction

Smoking remains one of the most pressing global public health challenges, representing a complex
interplay of addiction, behavioral patterns, and progressive biological damage [!]. Each year, tobacco use
is responsible for over 8 million deaths worldwide, with the World Health Organization estimating that
nearly half of all smokers will ultimately succumb to smoking-related illnesses [2,3]. While lung cancer and
chronic obstructive pulmonary disease (COPD) are the most widely recognized consequences, smoking
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also drives cardiovascular disease, metabolic dysfunction, and systemic inflammation that can compromise
virtually every organ system [4,5]. Perhaps most concerning is that this damage frequently progresses
insidiously over years, often becoming irreversible before clinical symptoms manifest [6]. Despite decades
of comprehensive public health initiatives and overwhelming scientific evidence, approximately 1.3 billion
people worldwide continue to use tobacco products [7]. Many smokers harbor what might be termed
“optimistic bias,” believing they can quit before substantial harm occurs or that they will somehow avoid the
worst outcomes. The non-linear trajectory of smoking-related decline—characterized by years of subclinical
damage that suddenly manifests as severe disease—highlights critical limitations in reactive diagnostic
approaches that await obvious symptoms before intervention. These delays result in lost opportunities for
prevention and early therapeutic intervention. Our research aims to transform this reactive paradigm by
developing advanced predictive tools that can detect risk at substantially earlier stages [8,9]. We hypothesize
that smoking leaves distinct, systemic biological signatures across cardiovascular, metabolic, hepatic, and oral
health pathways that machine learning algorithms can identify long before conventional clinical thresholds
are exceeded [2,10]. By simultaneously analyzing these diverse biomarkers, we aim to construct a more
comprehensive and clinically relevant assessment of smoking-related health decline. This holistic approach
addresses significant gaps in prior research, which has often concentrated on single disease endpoints
or limited feature sets, thereby constraining real-world applicability [11-13]. A critical innovation in our
study is the direct comparison of machine learning models with established clinical risk assessment tools,
including the Framingham cardiovascular risk score. This benchmarking exercise tests whether advanced
algorithms provide measurable advantages over standard, widely validated approaches—a crucial step for
building confidence among clinicians and policymakers who will ultimately implement these systems in
practice. A fundamental principle guiding our work is model interpretability. We employ SHAP (SHapley
Additive exPlanations) values to elucidate how each variable contributes to individual risk predictions [14,15].
This transparency is essential for fostering clinician trust and facilitating shared decision-making, posi-
tioning these tools as decision support rather than replacements for professional judgment. We also
address practical considerations for clinical implementation, including integration into existing healthcare
workflows, appropriate clinical responses to risk alerts, and responsible management of false positive and
false negative predictions to minimize potential harm. Understanding these operational aspects is critical
for successful translation from research to practice. Our study places particular emphasis on algorithmic
fairness by thoroughly characterizing the geographic, ethnic, and socioeconomic distribution of our study
population. We explicitly analyze how data quality issues—such as extreme laboratory value outliers—
might influence model performance and generalizability. This attention to equity ensures that our models
are not only technically sound but also ethically responsible and applicable across diverse populations.
Through the integration of advanced algorithms, rigorous comparison with traditional assessment tools,
realistic evaluation of clinical adoption pathways, and strong emphasis on equity, we aim to advance
predictive medicine for smoking-related disease beyond academic exercises toward genuinely impactful,
patient-centered applications. By identifying at-risk individuals before irreversible damage occurs, these
tools could enable more timely interventions, facilitate targeted prevention strategies, and ultimately improve
public health outcomes for millions of people affected by tobacco use. This investigation employs a cross-
sectional analytical framework wherein all predictor variables (demographic characteristics, anthropometric
measurements, and biochemical biomarkers) and the outcome variable (current smoking status) were
collected simultaneously during a single health screening visit. The prediction task is therefore classification-
identifying individuals who are current smokers based on their present physiological state, rather than
prognosis, which would entail predicting future disease onset or health decline over time. No longitudinal
follow-up data were available; thus, temporal causality cannot be inferred from our results. The clinical utility
of this approach lies in leveraging routinely collected health screening data to detect physiological signatures
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of smoking exposure that may indicate early-stage damage before overt clinical symptoms manifest, thereby
enabling timely intervention and smoking cessation support. Our contribution lies not in novel algorithm
development, but in rigorous comparative evaluation of established machine learning methods applied to
comprehensive multi-system health screening data, with particular emphasis on clinical interpretability
through SHAP analysis, validation against traditional risk scores (Framingham), and practical considerations
for real-world deployment.

2 Related Study

The prediction and assessment of smoking-related health risks has garnered substantial research
attention over the past decades, with increasing momentum following the integration of machine learning
methodologies into public health applications. A considerable body of literature has examined predictive
models for estimating smoking status or stratifying smokers based on routinely collected health variables.
Early investigations predominantly employed traditional statistical approaches, particularly logistic regres-
sion, to establish associations between smoking behavior and cardiopulmonary conditions [16,17]. While
these conventional methods achieved acceptable accuracy for basic classification tasks, they demonstrated
inherent limitations in capturing the complex, non-linear relationships that characterize smoking’s biological
effects across multiple physiological systems.

The past decade has witnessed a paradigm shift toward more sophisticated algorithmic approaches for
smoking risk assessment. Researchers have increasingly leveraged advanced machine learning techniques,
including decision trees, support vector machines, and gradient boosting methods, to enhance smoking-
risk stratification capabilities [18,19]. These computational approaches have shown promising performance
in predicting smoking status and specific disease outcomes, particularly for conditions such as lung cancer
and chronic obstructive pulmonary disease [20,21]. The improved predictive accuracy of these models stems
from their ability to identify subtle patterns and interactions among multiple risk factors that may elude
traditional statistical methods. Despite these technological advances, significant gaps persist in the existing
literature. A critical limitation of many previous studies is their narrow focus on single disease endpoints or
organ-specific outcomes. This reductionist approach fails to capture the systemic nature of smoking-induced
damage, which simultaneously affects cardiovascular, metabolic, hepatic, renal, and other physiological
systems. By concentrating on isolated conditions, prior research has provided an incomplete picture of overall
health decline in smokers, potentially missing important early warning signs that manifest across multiple
biomarker domains.

Furthermore, many earlier investigations relied on limited feature sets, often constrained to a handful
of easily measurable clinical variables. This restricted scope may overlook important predictive signals
present in comprehensive health screening data. Equally concerning is the prevalent use of “black-box”
models without adequate attention to interpretability [22]. The lack of explainability in these models has
created substantial barriers to clinical adoption, as healthcare providers understandably hesitate to base
treatment decisions on opaque algorithmic recommendations whose reasoning cannot be scrutinized or
validated against clinical knowledge. Another notable deficiency in the literature is the absence of rigorous
benchmarking against established clinical risk assessment tools. Few studies have directly compared machine
learning predictions with validated instruments such as the Framingham Risk Score or other standardized
clinical algorithms [23]. This omission makes it difficult to evaluate whether the added complexity of machine
learning approaches yields meaningful improvements over simpler, well-established methods that clinicians
already trust and understand.

Our research addresses these critical gaps through several key innovations. First, we adopt a holistic,
systems-based perspective by incorporating a comprehensive panel of biomarkers spanning cardiovascular,
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hepatic, renal, metabolic, and oral health domains. This multidimensional approach recognizes that smok-
ing’s pathological effects manifest across multiple organ systems simultaneously, and that early detection
requires monitoring these interconnected pathways rather than isolated endpoints.

Second, we prioritize model interpretability through the systematic application of SHAP (SHapley
Additive exPlanations) values, transforming our ensemble machine learning models from opaque predictors
into transparent [24], clinically comprehensible tools. This interpretability framework enables healthcare
providers to understand not only *what* the model predicts but *why* it makes specific predictions for
individual patients—a crucial requirement for building clinical trust and facilitating shared decision-making.

Third, we provide rigorous comparative analysis by benchmarking our machine learning models
against established clinical risk scores. This head-to-head comparison offers concrete evidence regarding
whether advanced algorithms deliver meaningful advantages over conventional assessment tools, addressing
a question of paramount importance for clinical implementation and resource allocation decisions.

Finally, our work reframes the research question from simply identifying current smokers or predicting
isolated disease outcomes toward constructing a multidimensional risk assessment framework that supports
personalized prevention strategies and more efficient allocation of clinical resources. By detecting early signs
of health decline before irreversible damage occurs, our approach aims to shift clinical practice from reactive
disease management toward proactive health preservation. Through these contributions, we extend the
scientific discourse beyond technical performance metrics toward the development of clinically actionable,
interpretable, and ethically responsible tools that can meaningfully impact patient care and public health
outcomes for smoking populations.

3 Methods
3.1 Study Design and Participants

This study employed a retrospective cross-sectional design using data from a comprehensive health
screening program conducted in South Korea'. All measurements-including demographic information,
anthropometric parameters, biochemical analyses, and self-reported smoking status-were collected during
a single health screening visit. Temporal Design: The simultaneous collection of predictor and outcome
variables means this study addresses a classification problem (identifying current smokers) rather than a
prognostic prediction problem (forecasting future disease). This design choice reflects the practical clinical
scenario where healthcare providers must assess smoking-related health risks using only cross-sectional
screening data available at the point of care. The screening program primarily enrolled participants from
urban and suburban populations, reflecting the demographic composition typical of organized health
surveillance initiatives in the region. While individual ethnic identifiers were not systematically recorded,
the cohort is presumed to be predominantly Korean, consistent with the national demographic profile of the
screening program’s catchment area. Participants underwent standardized health assessments that included
the collection of demographic information, anthropometric measurements, and biochemical analyses.
Primary Outcome Variable: Smoking status, categorized as current smoker or non-smoker based on self-
report at the time of screening, served as the primary outcome for our classification models. Individuals
who reported currently smoking any tobacco products were classified as smokers (coded as 1), while those
reporting no current tobacco use were classified as non-smokers (coded as 0). Important Note: We did
not have access to smoking history variables (pack-years, duration, cessation attempts) or longitudinal
health outcomes (subsequent disease diagnoses, mortality). Therefore, our models identify cross-sectional

Dataset source: “Smoking and Drinking Dataset with Body Signal” Kaggle. Available at: https://www.kaggle.com/datasets/sooyoungher/
smoking-drinking-dataset
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associations between biomarkers and current smoking status rather than predicting future smoking-related
disease incidence. Socioeconomic variation within the cohort was indirectly represented through lifestyle
indicators such as smoking prevalence and obesity rates, though direct measures of income, education
level, or occupational status were not available. This represents an important limitation, as socioeconomic
factors are known to influence both smoking behavior and health outcomes. The retrospective nature of the
dataset and its sampling methodology may result in underrepresentation of certain populations, particularly
individuals from rural areas or highly marginalized communities. These potential sampling biases and their
implications for model generalizability are addressed in detail in the Section 5.

3.2 Dataset Characteristics

Table 1 analytical dataset comprised 55,691 individual health screening records, each containing a
comprehensive array of demographic, anthropometric, clinical, and lifestyle-related variables. The dataset
structure was designed to capture multiple dimensions of health status relevant to smoking-related phys-
iological changes. Demographic variables included age (years) and biological sex, providing essential
contextual information for risk stratification. Anthropometric measurements encompassed height (cm),
weight (kg), and waist circumference (cm)-key indicators of body composition and metabolic health status
that are known to interact with smoking in determining cardiovascular and metabolic risk.

Table 1: Summary statistics of health metrics for study participants

Percentile distribution

Variable Unique Mean Std
Min 25% 50% 75% Max
Demographic and anthropometric metrics
ID 55,692  27,845.5 16,077.04 0 13,922.75 27,845.5 41,768.25 55,691
Age (years) 14 44.18 12.07 20 40 40 55 85
Height (cm) 13 164.65 9.19 130 160 165 170 190
Weight (kg) 22 65.86 12.82 30 55 65 75 135
Waist (cm) 566 82.05 9.27 51 76 82 88 129

Sensory health indicators

Eyesight (left) 19 1.01 0.49 01 0.8 1 1.2 9.9
Eyesight (right) 17 1.01 0.49 01 08 1 12 9.9
Hearing (left) 2 1.03 0.16 1 1 1 1 2
Hearing (right) 2 1.03 0.16 1 1 1 1 2

Cardiovascular and metabolic indicators
Systolic B 130 12149  13.68 71 12 120 130 240
(mmHg)
Diastolic BP
astolic 95 76.00 9.68 40 70 76 82 146
(mmHg)
Fasting Bl
asting Blood 276 99.31 20.80 46 89 9% 104 505
Sugar (mg/dL)
Cholesterol 286 196.9 36.3 55 172 195 220 445
(mg/dL)

(Continued)
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Table 1 (continued)

Percentile distribution

Variable Unique Mean Std
Min 25% 50% 75% Max
Triglyceri
riglyceride 390 126.67  71.64 8 74 108 160 999
(mg/dL)

HDL (mg/dL) 126 57.29 14.74 4 47 55 66 618
LDL (mg/dL) 289 114.96 40.93 1 92 113 136 1860
Hematologic, renal, and hepatic indicators
Hemoglobin 145 14.62 1.56 49 13.6 14.8 15.8 211

(g/dL)
Urine Protein 6 1.09 0.40 1 1 1 1 6
Serum
Creatinine 38 0.89 0.22 0.1 0.8 0.9 1 11.6
(mg/dL)
AST (U/L) 219 26.18 19.36 6 19 23 28 1311
ALT (U/L) 245 27.04 30.95 1 15 21 31 2914
GTP (U/L) 488 39.95 50.29 1 17 25 43 999
Oral health and behavioral indicator
Dental Caries 2 0.21 0.41 0 0 0 0 1
Smoking 2 0.37 0.48 0 0 0 1 1
(binary)

Note: BP: Blood Pressure; HDL: High-Density Lipoprotein; LDL: Low-Density Lipoprotein; AST: Aspartate Amino-
transferase; ALT: Alanine Aminotransferase; GTP: Gamma-Glutamyl Transferase.

Clinical biomarkers spanned multiple physiological systems [25,26]:

o Cardiovascular markers: systolic blood pressure (SBP) and diastolic blood pressure (DBP), measured
in mmHg

o Metabolic markers: fasting blood glucose (mg/dL), total cholesterol (mg/dL), triglycerides (mg/dL), high-
density lipoprotein cholesterol (HDL, mg/dL), and low-density lipoprotein cholesterol (LDL, mg/dL)

o Hepatic function indicators: aspartate aminotransferase (AST, IU/L), alanine aminotransferase (ALT,
IU/L), and gamma-glutamyl transferase (GGT, IU/L)

o Renal function markers: serum creatinine (mg/dL) and urinary protein levels

o Hematological parameters: hemoglobin concentration (g/dL)

The primary outcome variable was smoking status, coded as a binary indicator (smoker vs. non-
smoker). This classification was based on self-reported current smoking behavior at the time of health
screening. Prior to statistical analysis and model development, we implemented rigorous data quality
control procedures to ensure the integrity and reliability of the dataset. This multi-step process included
outlier identification, biological plausibility assessment, and unit consistency verification. Laboratory values
were systematically screened for biological implausibility using established reference ranges from clinical
literature. Results exceeding known physiological limits-such as LDL cholesterol values above 1000 mg/dL
or HDL cholesterol above 300 mg/dL-were flagged for detailed review. Each flagged value was manually
examined in the context of the individual’s complete clinical profile. Values consistent with documented rare
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pathological conditions (e.g., severe familial hypercholesterolemia) were retained in the dataset, while those
appearing to represent data entry errors or instrument malfunction were excluded from analysis. All variables
in Table I were measured at a single time point during health screening visits. This cross-sectional data
structure means that predictor-outcome relationships reflect associations between current biomarker levels
and concurrent smoking status, not temporal precedence. While elevated liver enzymes or blood pressure
in smokers may result from chronic smoking exposure, the cross-sectional design precludes definitive
causal inference. The dataset contained no follow-up measurements or longitudinal health outcomes (e.g.,
subsequent cardiovascular events, cancer diagnoses, or mortality), limiting our analysis to classification of
current smoking status rather than prognostic risk modeling.

This approach balanced the need to preserve genuine extreme values while removing spurious data that
could adversely affect model training. Missing values were addressed using imputation strategies selected
based on the distribution characteristics and missingness patterns of each variable. For continuous variables
exhibiting approximately normal distributions, mean imputation was employed. For skewed continuous
variables, median imputation was utilized to avoid distortion from extreme values. Categorical variables
with missing entries were imputed using the mode (most frequent category). The proportion of missing
data for each variable was documented, and sensitivity analyses were planned to assess the potential
impact of imputation strategies on model performance. Continuous variables were standardized (z-score
transformation) to ensure comparable scales across features with different units of measurement [27]. This
preprocessing step is particularly important for distance-based algorithms and helps prevent features with
larger numerical ranges from dominating the learning process. It is important to acknowledge significant
gaps in the contextual information available within this dataset. Specifically, the data lacked comprehensive
details regarding participants’ geographic origins beyond the broad urban/suburban classification, detailed
ethnic or racial backgrounds, and socioeconomic indicators such as income, educational attainment, or
occupational categories. This absence of contextual variables limits our ability to evaluate potential sampling
biases systematically or to assess whether model performance varies across different demographic or
socioeconomic strata.

3.3 Data Preprocessing

Prior to model development, we implemented a systematic data preprocessing pipeline to ensure
data quality, consistency, and compatibility with machine learning algorithms. This multi-stage process
addressed missing values, encoded categorical variables, and standardized numerical features to optimize
model performance and reliability.

3.3.1 Missing Value Imputation

As is typical in real-world healthcare datasets, our data contained missing values across several variables
that required careful handling. We adopted variable-specific imputation strategies based on the nature and
distribution characteristics of each feature. For continuous numerical variables—including blood pressure
measurements, lipid profiles, liver enzyme concentrations, and renal function markers-we employed median
imputation. This approach replaces missing values with the median of the observed values for each respective
feature. Median imputation was selected over mean imputation due to its robustness to outliers and extreme
values, which are not uncommon in clinical laboratory data. This strategy preserves the central tendency
of each feature’s distribution while minimizing distortion from atypical observations. For categorical
variables, including biological sex, dental health status, and urinary protein categories, we utilized mode
imputation, replacing missing entries with the most frequently occurring category for each variable. This
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method maintains the dominant patterns in categorical distributions while providing complete data for
model training.

3.3.2 Categorical Variable Encoding

Machine learning algorithms require numerical input representations. Therefore, we transformed all
categorical variables into numerical formats through appropriate encoding schemes. For binary categorical
variables—such as smoking status (smoker vs. non-smoker), biological sex (male vs. female), and dental
caries presence (present vs. absent)—we applied label encoding, converting categories into binary values
of 0 and 1. This straightforward transformation preserves the dichotomous nature of these variables while
rendering them computationally tractable for algorithmic processing. For ordinal categorical variables with
inherent ordering (such as urinary protein levels), we maintained their ordinal relationships through ordered
numerical encoding. This approach ensures that the encoded values reflect the natural progression or severity
represented in the original categories.

3.3.3 Feature Standardization

A critical preprocessing step involved the standardization of all continuous numerical features using
the StandardScaler transformation [28]. Clinical biomarkers naturally exist on vastly disparate measurement
scales: systolic blood pressure values typically range from 70 to 240 mmHg, while hemoglobin concentrations
span approximately 4 to 21 g/dL, and serum creatinine measurements range from 0.1 to 11.6 mg/dL. Without
standardization, algorithms might inappropriately weight features with larger numerical ranges as more
influential, regardless of their actual predictive importance. The StandardScaler transformation normalizes
each feature to have a mean of zero and a standard deviation of one through the following formula:

z=2"F (1)

o
where x represents the original feature value, y is the feature mean, o is the feature standard deviation,
and z is the standardized value [29]. This transformation ensures that all features contribute comparably to
model training, preventing scale-dependent bias. Standardization is particularly crucial for distance-based
algorithms (such as support vector machines) and regularized models (such as logistic regression with L1 or
L2 penalties), which are inherently sensitive to feature magnitudes.

3.3.4 Data Quality Verification

Following each preprocessing step, we conducted comprehensive quality verification procedures. We
examined feature distributions before and after transformation to confirm that preprocessing maintained the
underlying data structure and relationships. Distribution plots, summary statistics, and correlation matrices
were reviewed to identify any unintended artifacts introduced by the preprocessing pipeline. Additionally,
we verified that the standardization process did not eliminate important distributional characteristics or
create artificial patterns. The preservation of relative relationships between observations across all fea-
tures was confirmed through dimensionality reduction visualization techniques applied to both raw and
preprocessed data.

3.4 Feature Selection

To ensure our predictive models focused on the most clinically relevant biomarkers while avoiding
redundant or uninformative features, we implemented a systematic two-stage feature selection process.



] Intell Med Healthc. 2026;4 9

First, we applied the Boruta algorithm (Algorithm 1) [30], an advanced wrapper method built around
Random Forest classification [31,32]. This approach works by systematically comparing the importance
of original features against randomized shadow features—shuffled copies that serve as benchmarks for
statistical noise. The algorithm retains only those features that demonstrate significantly stronger predictive
power than these random counterparts. Through multiple iterations, Boruta progressively eliminates weak
predictors while preserving features that consistently contribute to accurate smoking status classification. We
complemented this automated selection with detailed correlation analysis to identify and address potential
multicollinearity issues [33]. Clinical measurements often move together—for example, AST and ALT levels
both reflect liver function and tend to change in tandem. We examined pairwise correlations between all
features and applied clinical domain knowledge to decide whether to retain both correlated biomarkers
or select the most clinically informative one. This step proved particularly valuable for metabolic markers
such as triglycerides and HDL cholesterol, as well as anthropometric measurements like weight and waist
circumference, where natural biological relationships could create redundant information that might distort
model interpretations. The final feature set represented a careful balance between statistical performance
and clinical practicality. We prioritized features that not only ranked high in machine learning importance
metrics but also aligned with established medical knowledge about disease biomarkers. For instance, while
certain laboratory values showed moderate predictive power in isolation, we gave preference to combinations
of markers that clinicians actually use in routine diagnostic workflows (Fig. 1). This dual emphasis on
algorithmic performance and real-world clinical relevance resulted in a curated set of predictors that were
both statistically powerful and medically interpretable—essential qualities for any healthcare application
where model decisions need to be explainable to medical professionals.

Algorithm 1: Boruta feature selection algorithm

Require: Dataset D with features F = { f1, f2, ..., fu }, target variable Y
Ensure: Subset of relevant features Fi,jecred

1: Initialize all features in F as tentative
2: while stopping criterion not met do
3:  Create shadow features S by permuting values of each f; € F

4 Train a Random Forest classifier on (F U S) to compute feature importance scores
5 Let I$hadow be the maximum importance score among shadow features
6 for each feature f; € F do

7: if I(f;) > Ishadow with statistical significance then

8 Mark f; as Confirmed Important

9 elseif I(f;) < Ishadow with statistical significance then

10: Mark f; as Rejected

11: else

12: Keep f; as Tentative

13: end if

14:  end for

15:  Remove rejected features and regenerate shadows for next iteration
16: end while
17: return Fyjcroq = set of all Confirmed Important features
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0.000 Rejected
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Feature Importance Score

Figure 1: Disentangling the interdependent relationships among health indicators

3.5 Class Imbalance

Analysis of our dataset revealed a moderate class imbalance with smokers comprising 36.7%
(n =20,438) and non-smokers 63.3% (n = 35,253) of the cohort, yielding an imbalance ratio of 1.72:1.
While not severe, this imbalance required careful handling to prevent models from developing bias toward
the majority (non-smoker) class, which could result in high overall accuracy while failing to identify at-
risk smokers-the population of primary clinical interest. Class imbalance presented a significant challenge
in our machine learning pipeline. Our initial analysis revealed a substantial disparity between smokers
and non-smokers in the dataset, with non-smokers considerably outnumbering smokers. This imbalance
posed a real risk to model performance because standard machine learning algorithms tend to favor the
majority class, potentially achieving high overall accuracy while failing to properly identify smokers—the
minority class that represents our primary interest for health risk prediction. To ensure our models could
effectively learn from all available data without developing this problematic bias, we implemented several
strategic approaches: Random Resampling Techniques: For our baseline models (Logistic Regression and
Support Vector Machines), we employed fundamental resampling methods [34]. Random oversampling
of the minority class created additional copies of existing smoking cases to balance the class distribution.
Conversely, random undersampling of the majority class achieved balance by reducing the number of
non-smoking cases. While these methods improved our models’ ability to detect smokers, we carefully
monitored for potential overfitting from oversampling and information loss from undersampling. Class
Weight Adjustment: For our ensemble tree-based methods (Random Forest, XGBoost, and LightGBM),
we leveraged their built-in capability to handle imbalance through class weighting [35]. By assigning higher
misclassification penalties to the minority smoking class, these algorithms naturally prioritized correct
identification of smokers during training. Specifically, in Random Forest we adjusted class weights inversely
proportional to class frequencies, while for XGBoost and LightGBM we utilized the scale_pos_weight
parameter to account for the imbalance ratio. Performance Metric Selection: Recognizing that standard
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accuracy would be misleading with imbalanced data, we prioritized evaluation metrics that properly
assess minority class identification: Fl-score (the harmonic mean of precision and recall), AUC-ROC (area
under the receiver operating characteristic curve), and the G-mean (geometric mean of sensitivity and
specificity). Stratified Sampling: Throughout our cross-validation procedures, we maintained the original
class distribution in each fold through stratified sampling [36]. This prevented accidental introduction of
bias during model evaluation and ensured reliable performance estimates across all experimental runs.

Validation of Class Imbalance Mitigation Strategies

To verify that our class imbalance handling techniques were effective rather than merely theoretical,
we conducted comparative analyses evaluating model performance before and after applying mitigation
strategies. Impact of Class Weighting: Table 2 demonstrates the effect of class weight adjustments on
ensemble tree models. Without class weighting, models exhibited high overall accuracy (>85%) but poor
minority class detection (sensitivity 64%), indicating bias toward predicting the majority non-smoker
class. After applying inverse frequency weighting, sensitivity improved substantially to 80.1% for Random
Forest, while specificity declined only modestly from 89% to 86.5%. This trade-off represents desirable
behavior for a health screening tool, where failing to identify at-risk smokers (false negatives) carries
greater clinical cost than false alarms (false positives). Evaluation with Imbalance-Specific Metrics: The
G-mean metric (geometric mean of sensitivity and specificity), specifically designed to assess balanced
performance on imbalanced datasets, increased from 0.75 (unweighted) to 0.83 (weighted) for Random
Forest, confirming genuine improvement in balanced classification rather than mere accuracy inflation
through majority class prediction. Similarly, the Fl1-score, which penalizes models that achieve high precision
at the expense of recall, improved from 0.71 to 0.79, validating that our models genuinely learned to identify
smokers. Comparison of Resampling Techniques: We compared class weighting (our chosen approach)
against alternative resampling methods including random oversampling, random undersampling, SMOTE
(Synthetic Minority Over-sampling Technique) [37], and ADASYN (Adaptive Synthetic Sampling) [38].
For ensemble tree methods, class weighting achieved equivalent or superior performance (AUC-ROC
within 0.01) compared to resampling approaches, while offering computational advantages by avoiding
data duplication or reduction. For traditional models (Logistic Regression, SVM), we employed random
oversampling as these algorithms lack native class weighting mechanisms. Cross-Validation Stratification:
Throughout all experiments, we maintained stratified sampling in cross-validation folds, ensuring each
fold preserved the original 36.7%/63.3% smoker/non-smoker distribution. This prevented scenarios where
random splits might accidentally create folds with extreme class imbalances (e.g., 20% smokers in one
fold, 50% in another), which would distort performance estimates. These validation steps confirm that our
final models exhibit genuine predictive capability for the minority smoker class rather than achieving high
accuracy through majority class prediction-a common pitfall in imbalanced classification tasks.

Table 2: Impact of class imbalance mitigation on Random Forest performance. Class weighting substantially improved
minority class detection (sensitivity) with minimal accuracy loss, validating effective imbalance handling

Configuration  Accuracy Sensitivity Specificity = F1-Score G-mean
No class 0.867 0.643 0.892 0.708 0.752
weighting
With class 0.842 0.801 0.865 0.788 0.833
weighting

Change -0.025 +0.158 -0.027 +0.080 +0.081
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3.6 Predictive Models

We employed five distinct machine learning algorithms to predict smoking-related health decline,
carefully selected to represent different modeling approaches for medical prediction tasks. We implemented
Logistic Regression as our baseline traditional statistical model, providing interpretable linear relationships
between risk factors and health outcomes. For capturing non-linear patterns, we included Support Vector
Machines with a radial basis function (RBF) kernel, which can identify complex decision boundaries in
high-dimensional feature spaces. The ensemble methods comprised three advanced tree-based algorithms:
Random Forest, valued for its robust handling of feature interactions and resistance to overfitting through
aggregation of multiple decision trees; XGBoost, which implements a regularized gradient boosting frame-
work that builds trees sequentially to correct errors from previous iterations; and LightGBM, known for its
efficient histogram-based implementation that enables faster training on large datasets while maintaining
high accuracy.

This selection spanned from simple, interpretable models to complex ensemble techniques, allowing
us to evaluate how different algorithmic approaches capture the multifaceted nature of smoking-related
health risks across demographic, anthropometric, and biochemical markers. All models underwent identical
preprocessing and feature selection procedures to ensure fair comparison of their inherent predictive capa-
bilities.

3.7 Model Interpretation

Understanding how individual risk factors influence model predictions is essential for clinical appli-
cation. Our analysis of age and BMI effects on health risk predictions revealed several clinically significant
patterns. Age demonstrated a strong positive correlation with predicted risk, with particularly notable
acceleration in risk scores beginning around age 50. This mirrors the well-established epidemiological
pattern of smoking-related diseases manifesting more frequently in middle age. The relationship was not
purely linear (Fig. 2), showing slight plateaus at certain life stages that may reflect periods of biological
resilience or stability. For BMI, we observed a more complex U-shaped relationship. Both underweight
individuals (BMI < 18.5) and obese individuals (BMI > 30) corresponded to elevated risk predictions, while
the normal to slightly overweight range (BMI 20-27) appeared most protective. This pattern aligns with
the “obesity paradox [39]” observed in some chronic diseases, where moderate body weight may confer
metabolic advantages against smoking-induced damage [40]. The interaction between age and BMI proved
particularly revealing. Elderly smokers with low BMI showed dramatically higher risk scores than either
factor alone would predict, suggesting this combination may serve as a critical warning sign for clinicians.
These findings underscore the importance of considering both chronological age and body composition
when assessing smoking-related health risks, as their combined effect reveals vulnerabilities that single-factor
analysis might miss. The non-linear patterns visible in these relationships argue strongly for personalized risk
assessment approaches rather than simple threshold-based screening protocols. Machine learning models
naturally capture these complex interactions, providing more nuanced risk stratification than traditional
linear methods.
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Effect of Age and BMI on Predictions

Effect of SBP and BMI on Predictions
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Figure 2: Visualization of the effects of age and BMI (left) and systolic blood pressure (SBP) and BMI (right) on health

risk predictions, highlighting the non-linear relationships between these factors and their impact on smoking-related
health decline

3.8 Evaluation Parameters

To ensure comprehensive and clinically meaningful model evaluation, we employed multiple perfor-
mance metrics appropriate for imbalanced classification tasks. Model performance was assessed using 10-fold
stratified cross-validation, with all metrics reported as mean + standard deviation along with 95% confidence
intervals calculated using the t-distribution. Primary Metrics:

o AUC-ROC (Area Under the Receiver Operating Characteristic Curve): Measures the model’s ability
to discriminate between classes across all classification thresholds

o AUC-PR (Area Under the Precision-Recall Curve): Particularly informative for imbalanced datasets,
emphasizing performance on the minority class

« Sensitivity (Recall): Proportion of actual smokers correctly identified (true positive rate)

»  Specificity: Proportion of actual non-smokers correctly identified (true negative rate)

o Precision (Positive Predictive Value): Proportion of predicted smokers who are actual smokers

o F1-Score: Harmonic mean of precision and recall, balancing both metrics

o G-mean: Geometric mean of sensitivity and specificity, providing balanced assessment for imbal-
anced data

o Accuracy: Overall proportion of correct classifications

Statistical significance of performance differences between models was evaluated using paired ¢-tests
on AUC-ROC scores from cross-validation folds, with p-values < 0.05 considered statistically signifi-
cant. Table 3 presents the comprehensive performance evaluation across all models. The Random Forest
model achieved outstanding performance with an AUC-ROC of 0.926 + 0.004 (95% CI: 0.923-0.930) and
AUC-PR of 0.880 +0.007 (95% CI: 0.874-0.885), significantly outperforming all other algorithms. The
model demonstrated well-balanced performance across all metrics: 84.2% accuracy, 86.5% specificity, and
80.1% sensitivity, indicating reliable identification of both high-risk and low-risk individuals with minimal
bias toward either class. The gradient boosting models (XGBoost and LightGBM) demonstrated strong and
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consistent performance, with XGBoost achieving an AUC-ROC of 0.867 + 0.003 and LightGBM 0.859 +
0.003. XGBoost exhibited notably high sensitivity (72.6%), suggesting particular effectiveness in identifying
true positive cases—a valuable characteristic for preventive health screening where missing at-risk individ-
uals poses greater clinical concern than overdiagnosis. Traditional machine learning approaches (SVM and
Logistic Regression) achieved respectable but lower performance, with AUC-ROC scores of 0.839 and 0.830,
respectively. While these models maintained acceptable discriminative ability, their lower Fl-scores (0.696
and 0.667) and G-mean values (0.758 and 0.734) revealed challenges in optimally balancing precision and
recall, particularly in handling the class imbalance. The narrow standard deviations across all metrics (all
<0.01 for AUC-ROC) and tight confidence intervals demonstrate high stability and reproducibility of these
results across different data subsets, providing confidence in the models’ reliability for clinical application.

Table 3: Performance metrics of various predictive models with 95% confidence intervals. Values are presented as
Mean + Standard Deviation [95% CI Lower, 95% CI Upper]. All metrics were calculated using 10-fold stratified cross-
validation

Model AUC-ROC AUC-PR Accuracy Specificity Sensitivity Precision F1 G-mean
XGBoost 0.867 + 0.003 0.760 + 0.006 0.786 + 0.004 0.821 + 0.004 0.726 + 0.010 0.701 £+ 0.005 0.714 £ 0.007 0.772 £ 0.005
[0.865, 0.870] [0.756, 0.764] [0.783, 0.789] [0.818, 0.823] [0.719, 0.734] [0.697, 0.705] [0.709, 0.719] [0.768, 0.776]

0.859 + 0.003 0.748 + 0.007 0.774 £ 0.003 0.802 + 0.005 0.725 £ 0.006 0.681 + 0.005 0.702 + 0.004 0.763 £ 0.003

LightGBM
ightG [0.856,0.861]  [0.742,0.753]  [0.772,0.776]  [0.799,0.806]  [0.721,0.730]  [0.677,0.684]  [0.699,0.705]  [0.760, 0.765]

Random 0.926 + 0.004  0.880 + 0.007 0.842 + 0.007 0.865 + 0.007 0.801 + 0.010 0.775 £ 0.010 0.788 + 0.009 0.833 + 0.007
Forest [0.923, 0.930] [0.874, 0.885] [0.837, 0.847] [0.860, 0.870] [0.794, 0.809] [0.768, 0.783] [0.782, 0.795] [0.827, 0.838]

0.839 + 0.005 0.719 £+ 0.008 0.765 + 0.004 0.785 + 0.006 0.732 £0.006  0.664 £0.006 0.696 +£0.005  0.758 £ 0.004

SVM
[0.835, 0.842] [0.713, 0.725] [0.762, 0.768] [0.780, 0.789] [0.727, 0.736] [0.659, 0.669] [0.692, 0.700] [0.755, 0.761]

Logistic 0.830 £ 0.004  0.689 + 0.007 0.745 £ 0.005 0.774 £ 0.007 0.696 + 0.007 0.641 + 0.007 0.667 + 0.006 0.734 + 0.005
regression  [0.827, 0.833] [0.684, 0.695] [0.742, 0.749] [0.768, 0.779] [0.691, 0.702] [0.636, 0.646] [0.663, 0.672] [0.730, 0.737]

3.8.1 Statistical Comparison of Model Performance

To rigorously assess whether performance differences between models were statistically significant
rather than due to random variation, we conducted pairwise paired ¢-tests comparing AUC-ROC scores
across all algorithms (Table 4). Each fold in the 10-fold cross-validation was treated as a paired observation,
enabling direct statistical comparison. Random Forest demonstrated statistically significant superiority over
all other models (p < 0.001 for all pairwise comparisons). The performance advantage was most pronounced
compared to traditional approaches: Random Forest exceeded Logistic Regression by 0.096 AUC-ROC
points (¢ =76.06, p <0.001) and SVM by 0.088 points (¢ = 82.97, p < 0.001). Even compared to other
ensemble methods, Random Forest maintained significant advantages over XGBoost (difference = 0.059,
t =69.20, p < 0.001) and LightGBM (difference = 0.068, t = 71.01, p < 0.001). Among ensemble methods,
XGBoost significantly outperformed LightGBM (difference = 0.009, ¢ = 13.89, p < 0.001), though the margin
was smaller than comparisons with traditional models. Both gradient boosting approaches (XGBoost
and LightGBM) demonstrated highly significant advantages over Logistic Regression and SVM (all
p < 0.001), confirming that ensemble methods provide measurable and clinically meaningful improvements
in predictive accuracy for smoking-related health risk assessment.
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Table 4: Pairwise statistical comparisons of model performance using paired ¢-tests on AUC-ROC scores. All compar-
isons were conducted using 10-fold cross-validation scores as paired observations. All p-values are <0.001, indicating
highly significant differences

Model 1 Model 2 Mean difference t-statistic p-value Significant
XGBoost LightGBM 0.0087 13.89 <0.001 Yes
XGBoost Random forest -0.0590 —-69.20 <0.001 Yes
XGBoost SVM 0.0284 34.58 <0.001 Yes
XGBoost Logistic regression 0.0372 52.28 <0.001 Yes
LightGBM Random forest -0.0677 -71.01 <0.001 Yes
LightGBM SVM 0.0198 26.99 <0.001 Yes
LightGBM  Logistic regression 0.0285 35.76 <0.001 Yes
Random SVM 0.0875 82.97 <0.001 Yes
Forest
Random . .
Logistic regression 0.0962 76.06 <0.001 Yes
Forest
SVM Logistic regression 0.0087 9.26 <0.001 Yes

3.8.2 Performance on Imbalanced Data: AUC-PR Analysis

Given the class imbalance in our dataset (36.7% smokers vs. 63.3% non-smokers, imbalance ratio 1.72:1),
we evaluated models using AUC-PR (Precision-Recall), which provides a more informative assessment
than AUC-ROC for imbalanced classification tasks. While AUC-ROC can appear optimistic when one
class dominates, AUC-PR directly reflects performance on the minority class of interest-smokers at health
risk. Random Forest achieved the highest AUC-PR of 0.880 + 0.007 (95% CI: 0.874-0.885), substantially
outperforming all other models. This 12.0 percentage-point advantage over XGBoost (0.760) and 19.1-point
advantage over Logistic Regression (0.689) demonstrates Random Forest’s superior ability to maintain high
precision while identifying the majority of at-risk smokers. The consistent superiority of Random Forest
across both AUC-ROC and AUC-PR metrics confirms its robustness and reliability for smoking-related
health risk prediction, even under challenging class distribution conditions. XGBoost (AUC-PR = 0.760)
and LightGBM (AUC-PR = 0.748) maintained respectable performance, while traditional models showed
greater degradation: SVM (0.719) and particularly, Logistic Regression (0.689) struggled more noticeably
with the imbalanced data structure.

3.9 Statistical Analysis

The ROC curve in Fig. 3 analysis provides a compelling visualization of our models” predictive capa-
bilities, with each algorithm’s performance represented by its ability to balance true positive identifications
against false alarms. The curves reveal a clear trend: the Random Forest model exhibits superior performance
(AUC = 0.906), arching noticeably closer to the ideal top-left corner of the graph and demonstrating strong
discriminative power in identifying smokers at risk of health decline. XGBoost and LightGBM form a
close second tier (AUCs = 0.862 and 0.855, respectively), showing robust yet slightly less discriminative
capabilities. The more traditional Support Vector Machine (SVM) and Logistic Regression models, while
still performing respectably (AUCs = 0.808-0.825), visibly trail behind in this graphical representation—
their flatter curves indicating more difficulty in cleanly separating high-risk from low-risk individuals. To
ensure these findings were not artifacts of random data splits, we implemented a rigorous 10-fold stratified
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cross-validation procedure that has been shown in Algorithm 2. This gold-standard validation approach
ensured that performance metrics reflected true generalizable ability rather than coincidental alignment with
particular data subsets. The stratification preserved original class proportions in each fold—critical for our
imbalanced dataset—while the ten iterations provided a sufficient basis for robust statistical comparison.
We further conducted paired t-tests to evaluate statistical significance between models [41]. The results
revealed significant differences (p < 0.05), confirming, for example, that the Random Forest’s advantage over
Logistic Regression was not due to random variation but represented a genuine improvement in predictive
performance. These statistical safeguards elevate our analysis from algorithmic experimentation to clinically
trustworthy evidence, offering healthcare professionals confidence that such models could meaningfully
enhance early detection of smoking-related health risks. The combination of visual ROC analysis and
rigorous inferential testing thus provides both intuitive understanding and mathematical certainty regarding
which predictive models offer the most reliable performance for this pressing public health challenge.

1.0

True Positive Rate

08 10

False Positive Rate

Figure 3: The ROC curve analysis compares the predictive performances of various machine learning models for
smoking-related health decline, with higher AUC values indicating better accuracy in risk differentiation

3.10 Software and Computational Environment

All analyses were conducted using Python 3.11.0 in a Jupyter Notebook environment (JupyterLab 4.0.0).
Machine learning model implementations utilized the following libraries and versions:

« scikit-learn 1.3.0 [42]: Implementation of Random Forest (RandomForestClassifier), Logistic Regres-
sion (LogisticRegression), Support Vector Machine (SVC), data preprocessing utilities (StandardScaler,
LabelEncoder), cross-validation frameworks (StratifiedKFold), and evaluation metrics.

« XGBoost 2.0.0 [43]: Extreme Gradient Boosting implementation (XGBClassifier) with native handling
of class imbalance via scale_pos_weight parameter.

o LightGBM 4.1.0 [44]: Light Gradient Boosting Machine implementation (LGBMClassifier) with
histogram-based optimization for efficient large-scale training.

o SHAP 0.43.0 [45]: SHapley Additive exPlanations for model interpretability, using TreeExplainer for
tree-based models.

« pandas 2.1.0 [46]: Data manipulation and preprocessing.
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o NumPy1.25.0 [47]: Numerical computations and array operations.
o SciPy 1.11.0 [48]: Statistical tests including paired t-tests and Little's MCAR test.
« matplotlib 3.7.0 [49] and seaborn 0.12.0 [50]: Data visualization and figure generation.

Algorithm 2: 10-fold stratified cross-validation algorithm

Require: Dataset D = {(x1, y1), (%2, ¥2) - -» (Xn, ¥ ) }» number of folds k = 10
Ensure: Mean performance metrics across k folds
1: Randomly shuffle dataset D while preserving class proportions (stratification)
2: Split D into k approximately equal subsets {D;, D,, ..., Dy}
3:fori=1tokdo
4: Dyest < D;
5 Dtmin - D\Dl
6:  Train model M; on Dy;p
7 Evaluate M; on D, to compute metrics: Accuracy, Precision, Recall, Fl-score, AUC, Specificity,

Sensitivity
8:  Store all performance results from fold i
9: end for

10: Compute mean and standard deviation of each metric across all k folds
11: return Average Metrics = % Zle Metric;

4 Results
4.1 Experimental Setup

The experimental setup was designed to rigorously evaluate the predictive performance of machine
learning models on smoking-related health decline. The dataset, Smoking.csv, was partitioned into
training (80%) and testing (20%) sets using stratified sampling to preserve the distribution of outcomes
across both subsets [51]. This approach mitigates potential biases and ensures robust model evaluation.
Seven distinct machine learning algorithms were implemented, encompassing both traditional and advanced
ensemble methods. Traditional models included Logistic Regression (LR), Support Vector Machine
(SVM), and Random Forest (RF), selected for their interpretability and baseline performance. Ensemble
techniques such as XGBoost and LightGBM were also employed to leverage their superior handling of
complex, non-linear relationships in the data. Hyperparameter optimization was conducted using 10-fold
cross-validation (Algorithm 2), a method chosen for its balance between computational efficiency and
reliability in estimating model performance. To address potential class imbalance—a common challenge
in health datasets—the NRSBoundary-SMOTE Algorithm 3 was applied, which selectively oversamples
minority class instances near decision boundaries.

Algorithm 3: NRSBoundary-SMOTE algorithm

Require: Minority class samples S,,;,, majority class samples S,,,j, number of nearest neighbors k, desired
oversampling rate r
Ensure: Synthetic minority samples S,
1: Compute Neighborhood Rough Set (NRS) boundaries for S,,;:
Determine boundary regions where minority samples are near majority class samples
2:for each x; € S,,;, do
3: Identify k nearest neighbors N; from S,

(Continued)
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Algorithm 3 (continued)

4:  Compute neighborhood radius ¢; based on local density
5: if x; lies within boundary region (close to S,,,;) then
6: Select neighbor x; € N;
7 Generate synthetic sample:
Xnew = Xi + Ax (xj—x;), A~U(0,1)

8: Add X,y to Sy
9: endif
10: end for

11: Repeat steps until [Sgy,| = 7 X [Spin]
12: return S,,;, U S, as the new balanced minority class set

4.2 Baseline Characteristics

The study population comprised a diverse cohort with balanced representation across key demographic
and clinical variables. Gender distribution was evenly split, with no missing data for any variables—
indicating excellent data completeness. Hearing impairment was nearly universal in both ears (97.4%), while
urinary protein positivity was observed in 94.4% of participants. Oral health markers showed dental caries
in 21.3% of individuals, though tartar presence was negligible. Smoking status revealed that 36.7% were
current smokers, providing a substantial subgroup for risk analysis. Physiological measurements spanned
wide ranges, reflecting real-world variability: age ranged from 20 to 85 years, systolic blood pressure from
71 to 240 mmHg, and fasting blood sugar from 46 to 505 mg/dL. Notably, lipid profiles showed extreme
values (e.g., LDL up to 1860 mg/dL and HDL up to 618 mg/dL), suggesting potential outliers or severe
metabolic dysregulation in some participants. Liver enzymes (AST, ALT) and kidney function markers
(serum creatinine) also exhibited broad distributions, highlighting the cohort’s heterogeneity. These baseline
characteristics underscore the dataset’s richness for investigating smoking-related health decline across
metabolic, cardiovascular, and hepatic domains.

4.3 Univariate Analysis

Fig. 4s correlation heatmap and Table 5 revealed several noteworthy relationships between health met-
rics and smoking-related risk factors. Age showed a moderate negative correlation with weight (r = —0.32)
and weaker associations with height (r = —0.15) and eyesight (r = —0.20), suggesting gradual physiological
changes over time. Strong positive correlations emerged between anthropometric measures—weight and
waist circumference (r = 0.22), and between waist and eyesight (r = 0.93-0.94)—though the latter may
reflect data artifacts rather than genuine biological relationships. Metabolic markers exhibited clinically
meaningful patterns: triglyceride levels correlated positively with weight (r = 0.32), waist circumference
(r = 0.36), and systolic blood pressure (r = 0.20), consistent with established obesity-cardiometabolic risk
pathways. Conversely, HDL cholesterol demonstrated protective inverse relationships with weight (r =
—0.36), waist circumference (r = —0.38), and triglycerides (r = —0.41). Liver enzymes (ALT, AST) and GGT
showed mild but consistent positive correlations with metabolic markers (e.g., ALT-triglyceride: r = 0.18),
suggesting possible interactions between smoking and hepatic function, potentially influenced by alcohol
intake. Interestingly, age exhibited negligible correlations with most biochemical markers, implying that
smoking-related physiological risks may overshadow typical age-related effects within this cohort.
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Figure 4: This heatmap visually represents the correlation between different health metrics, such as blood pressure,
cholesterol, and organ function markers. Color intensities indicate the strength and direction of the relationships, with
red hues indicating positive correlations and blue hues indicating negative correlations

Table 5: Summary of factors, categorical and continuous variable assignments, and missing data analysis. This table
outlines the encoding scheme used for categorical factors (e.g., gender, hearing, urine protein, smoking status) and
reports missing values for each feature. All variables show complete data coverage, ensuring robust analysis without
imputation bias. Continuous variables include demographic, anthropometric, biochemical, and physiological indicators
covering a wide clinical range, suitable for modeling smoking-related health decline

Missing rate

Factor Assignment Missing (n)
(%)
Gender Male =1 (0.0%) 0 0
Gender Female = 2 (0.0%) 0 0
Hearing (left) Normal = 0 (0.0%) 0 0
Hearing (left) Impaired = 1(97.4%) 0 0
Hearing (right) Normal = 0 (0.0%) 0 0

(Continued)
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Table 5 (continued)

Missing rate

Factor Assignment Missing (n)
(%)
Hearing (right) Impaired =1(97.4%) 0 0
Urine protein Negative = 0 (0.0%) 0 0
Urine protein Positive = 1 (94.4%) 0 0
Oral No =0 (0.0%) 0 0
Oral Yes =1(0.0%) 0 0
Dental caries No =0 (78.7%) 0 0
Dental caries Yes =1(21.3%) 0 0
Tartar No = 0(0.0%) 0 0
Tartar Yes =1(0.0%) 0 0
Smoking No =0 (63.3%) 0 0
Smoking Yes =1(36.7%) 0 0
Age Continuous (20.0 to 85.0) 0 0
Height (cm) Continuous (130.0 to 190.0) 0 0
Weight (kg) Continuous (30.0 to 135.0) 0 0
Waist (cm) Continuous (51.0 to 129.0) 0 0
Eyesight (left) Continuous (0.1 to 9.9) 0 0
Eyesight (right) Continuous (0.1 to 9.9) 0 0
Systolic Continuous (71.0 to 240.0) 0 0
Relaxation Continuous (40.0 to 146.0) 0 0
Fasting blood Continuous (46.0 to 505.0) 0 0
sugar
Cholesterol Continuous (55.0 to 445.0) 0 0
Triglyceride Continuous (8.0 to 999.0) 0 0
HDL Continuous (4.0 to 618.0) 0 0
LDL Continuous (1.0 to 1860.0) 0 0
Hemoglobin Continuous (4.9 to 21.1) 0 0
Ser}lr'n Continuous (0.1 to 11.6) 0 0
creatinine

AST Continuous (6.0 to 1311.0) 0 0
ALT Continuous (1.0 to 2914.0) 0 0
Gtp Continuous (1.0 to 999.0) 0 0

4.4 Variable Selection by Boruta

The Boruta algorithm in Algorithm 1 and Boruta features in Table 6 identified twelve clinically
significant predictors of smoking-related health decline from the initial twenty-seven features, prioritizing
variables with strong biological plausibility. Key selected features included the following:

Cardiometabolic markers: Systolic blood pressure (hypertension risk), fasting blood sugar (diabetes
indicator), and triglycerides (metabolic syndrome) were retained due to their established associations with
smoking-induced vascular and metabolic dysfunction.
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Table 6: Selected features and their corresponding clinical interpretations. This table summarizes the twelve health
metrics identified by the Boruta algorithm as significant predictors of smoking-related health decline, along with
the physiological or pathological conditions they represent across cardiovascular, metabolic, hepatic, renal, and
hematologic systems

Feature Clinical interpretation
Systolic BP Blood pressure (Hypertension)
Fasting blood sugar Diabetes indicator
Cholesterol Cardiovascular disease risk
Triglyceride Metabolic syndrome marker
HDL Protective cardiovascular factor
LDL Atherosclerosis risk
Hemoglobin Anemia/Polycythemia
Serum creatinine Kidney function indicator
AST Liver disease marker
ALT Liver disease marker
GGT Liver/Biliary disease
Urine protein Kidney disease indicator

Lipid profile: Both HDL (protective cardiovascular factor) and LDL (atherosclerosis risk) were selected,
reflecting smoking’s dual impact on lipid metabolism and cardiovascular health. Organ dysfunction
indicators: Liver enzymes (AST, ALT, GGT) and kidney markers (serum creatinine, urine protein) were
prioritized, aligning with smoking’s well-documented hepatotoxic and nephrotoxic effects.

Hematologic measure: Hemoglobin was retained due to its relevance in smoking-related polycythemia
and anemia, conditions often associated with altered oxygen-carrying capacity in chronic smokers.

Notably, anthropometric variables (e.g., height, weight) and dental health factors (e.g., tartar) were
rejected, suggesting their predictive power was overshadowed by direct physiological biomarkers. The
final feature set collectively spans cardiovascular, metabolic, hepatic, and renal health domains—critical
physiological systems affected by smoking.

4.5 Model Establishment and Evaluation

The study employed five distinct machine learning approaches to predict smoking-related health
decline, each chosen for its specific strengths in handling medical prediction tasks. The models ranged
from traditional statistical methods to advanced ensemble techniques, providing a comprehensive evaluation
of predictive performance across different algorithmic paradigms. All models were trained on the same
curated feature set encompassing demographic, biometric, and biochemical markers, with careful attention
to hyperparameter tuning and cross-validation to ensure fair comparison. The performance evaluation
in Table 7 revealed Random Forest as the standout algorithm, achieving an impressive AUC of 0.907.
This superior performance likely stems from Random Forest’s inherent advantages in medical datasets—its
ensemble of decision trees effectively captures complex, non-linear relationships between health markers
while maintaining robustness against overfitting through feature subsampling and aggregation of multiple
predictors. The model’s ability to handle high-dimensional interactions among variables proved particularly
valuable for identifying multifaceted patterns of smoking-related health decline. Close behind, XGBoost
demonstrated strong predictive capability with an AUC of 0.862, benefiting from its regularized gradient
boosting framework that sequentially corrects errors from previous trees while controlling model complexity.
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The gradient boosting family showed consistent performance, with LightGBM attaining an AUC of 0.854.
While slightly trailing XGBoost, LightGBM’s histogram-based approach offered computational efficiency
advantages that could prove valuable in real-world clinical deployment scenarios. Both boosting algorithms
outperformed the more conventional approaches, with the Support Vector Machine (SVM) achieving an
AUC of 0.836 and Logistic Regression scoring 0.828 as the baseline model. This performance hierarchy
underscores how ensemble methods particularly excel at extracting predictive signals from complex biomed-
ical data, where multiple interacting risk factors contribute to health outcomes in non-additive ways. The
strong performance across all models (AUCs > 0.82) validates the effectiveness of our feature selection and
preprocessing pipeline, demonstrating that smoking-related health risks leave detectable signatures across
routine clinical measurements. However, the approximately eight-percentage-point gap between the top-
performing Random Forest and the baseline Logistic Regression highlights the importance of algorithm
selection in medical prediction tasks. These findings suggest that while traditional statistical models can
capture basic risk patterns, the complex, systemic nature of smoking-induced health decline requires more
sophisticated machine learning approaches to achieve clinically meaningful predictive accuracy.

Table 7: AUC scores for various machine learning models used in predicting smoking-related health decline. The table
summarizes each model’s discriminative ability, with Random Forest achieving the highest AUC, followed by XGBoost
and LightGBM, reflecting the superior performance of ensemble-based approaches compared to traditional models

Model AUC
Random Forest 0.9069
XGBoost 0.8616
LightGBM 0.8542
SVM 0.8356
Logistic Regression 0.8280

4.6 Comprehensive Feature Importance Analysis

To address the critical need for model interpretability in clinical applications, we conducted a com-
prehensive SHAP (SHapley Additive exPlanations) analysis on our best-performing Random Forest model.
SHAP values provide a unified framework for interpreting model predictions by quantifying each feature’s
contribution to individual risk assessments, grounded in cooperative game theory [45,52].

Top 15 Most Influential Health Indicators

SHAP analysis revealed 15 key health indicators that drive smoking-related health risk predictions,
ranked by their mean absolute SHAP value (Table 8). These features collectively account for 91.90% of the
model’s total predictive importance, confirming that a relatively compact set of biomarkers captures the vast
majority of smoking-related health signals. The features span multiple physiological systems, demonstrating
that smoking induces systemic, multi-organ damage rather than isolated pathology. Sex-Specific Effects
Dominate Risk Prediction. Gender emerged as the single strongest predictor (SHAP importance = 0.1312,
rank 1), accounting for 13.1% of total model importance-more than twice the contribution of any other single
feature. This finding underscores profound sex-specific differences in smoking-related health consequences.
Male smokers demonstrated substantially higher predicted risk scores than female smokers, consistent
with epidemiological evidence showing men experience earlier onset and greater severity of smoking-
induced cardiovascular disease, COPD, and certain cancers [53]. The biological mechanisms underlying this
disparity likely reflect hormonal influences on smoking metabolism, sex differences in smoking behavior
patterns (cigarettes per day, inhalation depth), and interactions between smoking and testosterone-mediated
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cardiovascular risk pathways. This result emphasizes the necessity of sex-stratified risk assessment in
smoking cessation programs. Hepatic Function Markers Show Unexpectedly High Importance. Contrary
to the conventional focus on cardiopulmonary complications, hepatic markers dominated individual feature
rankings and system-level analysis. Gamma-glutamyl transferase (GGT) ranked second overall (SHAP =
0.0596), while ALT (rank 9, SHAP = 0.0121) and AST (rank 14, SHAP = 0.0092) also appeared within the
top 15. Collectively, the hepatic system contributed the highest system-level importance (0.0270), exceed-
ing even cardiovascular markers (0.0126). This pattern reflects multiple pathophysiological processes: (1)
direct hepatotoxicity from smoking-related oxidative stress and toxic metabolite accumulation, particularly
polycyclic aromatic hydrocarbons; (2) smokings enhancement of alcohol-induced liver damage in co-
users; and (3) systemic inflammation that elevates hepatic acute-phase proteins [54]. The prominence of
GGT is particularly notable, as this enzyme is induced by microsomal enzyme systems responding to
xenobiotic exposure and correlates with oxidative stress burden. These findings suggest that liver function
monitoring may serve as an underappreciated early warning system for smoking-related systemic damage,
warranting greater clinical attention in smoker health assessments. Anthropometric and Demographic
Factors. Height (rank 3, SHAP = 0.0493) and age (rank 6, SHAP = 0.0197) demonstrated substantial
predictive importance. The height finding likely reflects complex interactions: taller individuals may have
larger lung capacity and different smoking exposure patterns per unit body surface area, while height itself
correlates with socioeconomic status and early-life nutrition factors that influence both smoking prevalence
and health resilience. Age’s contribution reflects cumulative toxic exposure duration, with older smokers
bearing greater total carcinogen and oxidative stress burdens. Triglyceride elevation reflects smoking’s
disruption of lipid metabolism through impaired insulin sensitivity and altered hepatic lipid processing,
contributing to metabolic syndrome and cardiovascular risk. Notably, the metabolic system overall ranked
second in system-level importance (0.0247), emphasizing smoking’s role as a metabolic disruptor beyond
its direct toxic effects. Cardiovascular and Renal Markers. Traditional cardiovascular risk factors showed
moderate importance: systolic blood pressure ranked 15th (SHAP = 0.0091), LDL cholesterol 8th (0.0130),
and HDL cholesterol 13th (0.0094). While individually less prominent than hepatic or metabolic markers,
cardiovascular features collectively contributed meaningfully (system importance = 0.0126). The relatively
lower individual rankings may reflect that cardiovascular risk manifests through multiple interconnected
pathways rather than single dominant biomarkers. Renal function indicators (serum creatinine rank 10,
SHAP = 0.0110) demonstrated smoking’s nephrotoxic effects through direct tubular damage and reduced
renal perfusion from systemic vasoconstriction.

Table 8: Top 15 most influential health indicators for smoking-related risk prediction, ranked by mean absolute SHAP
value. Clinical significance describes the pathophysiological relevance of each feature in smoking-related health decline.
The top 15 features collectively account for 91.90% of total model predictive importance

Rank Feature SHAP importance Clinical significance
1 Gender 01312 Sex-specific SmOlel‘g effects and
vulnerability
2 GGT (Gtp) 0.0596 Liver enzyme-oxidative stress
marker
3 Height (cm) 0.0493 Body size-exposure surface area
proxy
-polycythemi
4 Hemoglobin 0.0408 Oxygen tr af_ISPf)rt polycythemia
indicator

(Continued)
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Table 8 (continued)

Rank Feature SHAP importance Clinical significance
Metabolic dysfunction-lipid
5 Triglyceride 0.0322 etaboic dystunction=upt
dysregulation
6 Age 0.0197 Cumulative exposure duration
- Tartar 0.0153 Oral health-smoking intensity
proxy
Ath lerosis risk-“
8 LDL Cholesterol 0.0130 therosclerosis risk-"bad
cholesterol
9 ALT 0.0121 Liver enzyme-hepatocellular
damage
10 Serum Creatinine 0.0110 Kidney function-renal damage
marker
_ Body composition-metabolic
1 Weight (kg) 0.0105 health
Dental health-oral hygi
12 Dental Caries 0.0096 ental health-oralhyglene
indicator
13 HDL Cholesterol 0.0094 Protective cardiovascular factor
14 AST 0.0092 Liver enzyme-hepatic injury
marker
15 Systolic BP 0.0091 Hypertensmslgr— Z:Srdlovascular

Note: GGT: Gamma-glutamyl transferase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; LDL:
Low-density lipoprotein; HDL: High-density lipoprotein; BP: Blood pressure

Oral Health Markers. Dental indicators (tartar rank 7, SHAP = 0.0153; dental caries rank 12, SHAP
= 0.0096) contributed modestly but noticeably. These features likely serve as proxies for smoking duration
and intensity, as chronic smoke exposure damages oral tissues, reduces saliva production, and alters oral
microbiome composition [55]. Fig. 5 presents a comprehensive SHAP summary plot showing both feature
importance (vertical ordering) and the directional impact of feature values (horizontal distribution and color
coding). Red points indicate feature values that increase smoking risk prediction, while blue points decrease
it. The violin plot width represents the density of observations at each SHAP value. Notable patterns include:
male gender consistently pushes predictions toward higher risk; elevated GGT, hemoglobin, and triglycerides
increase predicted risk; and higher HDL exerts a modest protective effect. The wide horizontal spread for
features like GGT and triglycerides indicates high inter-individual variability in how these markers influence
predictions, likely reflecting heterogeneous smoking patterns and co-morbidity profiles. Feature importance
aggregated by physiological system, revealing that hepatic (0.0270), metabolic (0.0247), and anthropometric
(0.0220) systems contribute most strongly to smoking-related health risk prediction.
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Figure 5: SHAP summary plot illustrating feature importance (vertical axis) and directional impact (horizontal axis)
for the top 15 health indicators. Each point represents an individual from the test set. Red colors indicate high feature
values, blue indicates low values. Features above zero increase predicted smoking risk, while those below decrease it.
The violin plot width shows the density of observations. Gender emerges as the dominant predictor, followed by hepatic
markers (GGT, ALT, AST) and metabolic indicators (hemoglobin, triglycerides)

4.7 Personalized Prediction Interpretation

Our analysis employed Principal Component Analysis (PCA) [56] combined with K-Means clustering
to identify distinct health profiles among smokers, revealing meaningful patterns in how smoking affects
different physiological systems. The visualization (Fig. 6) illustrates patient distribution across two principal
components, where the first component (explaining 22.3% of the total variance) primarily separates individ-
uals based on cardiometabolic risk factors such as blood pressure and lipid levels. The second component
(11.9% variance) differentiates those exhibiting liver and kidney function abnormalities.

The clustering results identified four clinically relevant subgroups:

o A high-risk group showing combined cardiometabolic and organ damage.

« A metabolic syndrome group characterized by isolated cardiovascular risks.
o Aliver/kidney predominant group reflecting hepatic and renal dysfunction.
o A relatively healthier cluster exhibiting stable physiological parameters.
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Figure 6: PCA + K-Means clustering of health metrics showing four distinct health profiles among smokers. The first
principal component captures cardiometabolic risk variation, while the second captures hepatic and renal dysfunction
patterns, highlighting biological heterogeneity in smoking-related health decline

These findings demonstrate that smoking-related health decline manifests in heterogeneous ways
across individuals—some develop systemic damage, while others exhibit localized effects in specific organ
systems. The clear separation of clusters along these axes suggests that the observed groupings represent
genuine biological differences in how patients respond to smoking exposure, rather than random variation.
The moderate total variance explained (34.2%) further implies that additional factors—such as genetic
predispositions, environmental co-exposures, or lifestyle influences—likely contribute to the diverse health
outcomes observed within smoking populations. To evaluate the generalizability of our machine learning
approaches across different disease endpoints, we assessed model performance as visualized in Fig. 7 for
predicting specific smoking-related conditions, including cardiovascular disease, diabetes, kidney disease,
liver disease, and metabolic syndrome (Table 9).
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Random Forest
XGBoost

LightGBM

Logistic Regression
SVM

Cardiovascular Disease

Diabetes

Kidney Disease

Disease Target

Liver Disease

Metabolic Syndrome

0.0 0.2 0.4 0.6 0.8
Mean AUC Score (5-fold CV)

Figure 7: The performance of various machine learning models (Random Forest, XGBoost, LightGBM, Logistic
Regression, and SVM) across multiple disease targets, including Cardiovascular Disease, Diabetes, Kidney Disease,
Liver Disease, and Headache Syndrome. The metrics illustrate the effectiveness of each model in predicting disease
outcomes, emphasizing differences in performance across the disease categories

Table 9: Representation of the performance metrics of various machine learning models applied to predict different
diseases, including Cardiovascular Disease, Diabetes, and Kidney Disease. Key indicators such as AUC (Area Under the
Curve), standard deviation, number of features, and major predictors for each model are highlighted, showcasing the
effectiveness of different algorithms in handling health-related data

Disease Model AUC Mean AUC Std Num. Key predictors
features

Systolic, Cholesterol, HDL,
Random Forest 0.86654 0.06686 8 LDL, triglyceride, age,
weight (kg), waist (cm)

Systolic, Cholesterol, HDL,
XGBoost 0.77111 0.03455 8 LDL, triglyceride, age,
weight (kg), waist (cm)

cD Systolic, Cholesterol, HDL,

LightGBM 0.75709 0.01467 8 LDL, triglyceride, age,
weight (kg), waist (cm)

Systolic, Cholesterol, HDL,
Logistic regression 0.72502 0.00458 8 LDL, triglyceride, age,

weight (kg), waist (cm)

Systolic, Cholesterol, HDL,
SVM 0.72274 0.00627 8 LDL, triglyceride, age,
weight (kg), waist (cm)

(Continued)
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Table 9 (continued)

Disease Model

AUC Mean

AUC Std

Num.
features

Key predictors

Random Forest
XGBoost
Diabetes LightGBM

Logistic regression

SVM

0.85986

0.76213

0.75228

0.72311

0.71672

0.07007

0.03073

0.01292

0.00523

0.00428

Fasting blood sugar, age,
weight (kg), waist (cm),
triglyceride, HDL
Fasting blood sugar, age,
weight (kg), waist (cm),
triglyceride, HDL
Fasting blood sugar, age,
weight (kg), waist (cm),
triglyceride, HDL
Fasting blood sugar, age,
weight (kg), waist (cm),
triglyceride, HDL
Fasting blood sugar, age,
weight (kg), waist (cm),
triglyceride, HDL

Random Forest
XGBoost
Kidney Disease LightGBM

Logistic regression

SVM

0.66339

0.66336

0.66331

0.65820

0.58708

0.00729

0.00727

0.00697

0.00608

0.02150

Serum creatinine, Urine
protein

Serum creatinine, Urine
protein

Serum creatinine, Urine
protein

Serum creatinine, Urine
protein

Serum creatinine, Urine
protein

Random Forest
XGBoost

Liver disease LightGBM
SVM

Logistic regression

0.82817

0.76966

0.76641

0.74300

0.73332

0.08214

0.01830

0.01185

0.00585

0.00596

AST, ALT, GGT, serum
creatinine

AST, ALT, GGT, serum
creatinine

AST, ALT, GGT, serum
creatinine

AST, ALT, GGT, serum
creatinine

AST, ALT, GGT, serum
creatinine

Random Forest
XGBoost
MS LightGBM

Logistic regression

SVM

0.83068

0.70913

0.69990

0.67691

0.65507

0.08470

0.03849

0.01830

0.00407

0.00600

Waist (cm), triglyceride,
HDL, fasting blood sugar,
systolic
Waist (cm), triglyceride,
HDL, fasting blood sugar,
systolic
Waist (cm), triglyceride,
HDL, fasting blood sugar,
systolic
Waist (cm), triglyceride,
HDL, fasting blood sugar,
systolic
Waist (cm), triglyceride,
HDL, fasting blood sugar,
systolic




] Intell Med Healthc. 2026;4 29

4.8 Comparison to Traditional Clinical Risk Scores

To contextualize our machine learning models against conventional clinical risk stratification methods,
we computed a simplified Framingham cardiovascular risk score [57] has been shown in Fig. 8 using
established predictors: age, total cholesterol, HDL cholesterol, systolic blood pressure, smoking status, and
diabetes indicators. Participants were subsequently categorized into low, moderate, or high risk groups
according to standard Framingham point thresholds. Fig. & illustrates the distribution of these Framingham
risk categories among smokers and non-smokers in our dataset. A substantial proportion of smokers were
classified within the moderate or high cardiovascular risk categories, reinforcing the clinical relevance of
smoking as a dominant determinant of cardiovascular health. While the Framingham score provides a well-
validated baseline for risk estimation, our machine learning models demonstrated the potential to refine
these predictions by integrating a broader set of physiological and biochemical variables. This enhanced
predictive capacity underscores the ability of data-driven models to complement traditional clinical tools,
offering more individualized and nuanced risk assessments for smoking-related health decline.

Smoking Status
I Non-Smoker
N Smoker

20000 -

17500

15000

12500 -

10000 -

Number of Participants

7500 -

5000 -

2500 A

Low Moderate High
Framingham Risk Category

Figure 8: Distribution of Framingham cardiovascular risk categories among smokers and non-smokers. A larger
proportion of smokers fall within moderate-to-high risk categories, highlighting smoking’s strong contribution to
cardiovascular risk and the potential of machine learning models to improve upon traditional risk assessments

5 Discussion

This study’s primary contribution is a rigorous, systematic comparison of machine learning approaches
for smoking risk assessment rather than algorithmic innovation. While the methods employed (Random
Forest, XGBoost, LightGBM) are established techniques, our work advances the field through: (1) com-
prehensive evaluation across multiple physiological systems rather than isolated endpoints; (2) emphasis
on clinical interpretability via SHAP analysis; (3) direct benchmarking against traditional clinical risk
scores; and (4) thorough investigation of practical deployment considerations including fairness, ethics, and
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generalizability. This comparative framework provides evidence-based guidance for clinicians and healthcare
systems considering the adoption of predictive analytics for smoking-related health assessment.

We acknowledge that no predictive tool is perfect, and model errors can have consequences. False
positives might lead to unnecessary testing or increased anxiety, while false negatives could result in
missed prevention opportunities. Therefore, we recommend deploying these models in a human-in-the-
loop framework, where clinicians validate and contextualize automated predictions before acting on them.
Clear communication with patients about model limitations, combined with shared decision-making, will
help ensure these tools support rather than replace clinical reasoning. While the research employed widely
recognized machine learning techniques, its key contribution lies in the thorough combination of a large-
scale health screening dataset (55,691 individuals) with a variety of biomedical and lifestyle factors. In
contrast to previous studies that typically concentrate on limited sets of biomarkers or smaller populations,
our analysis utilized a broad range of demographic, anthropometric, clinical, and behavioral variables at
once, which facilitated a more comprehensive understanding of health patterns associated with smoking.
Additionally, we emphasized the interpretability of the model by pairing feature selection (Boruta) with
importance ranking, offering clear insights into how each health indicator contributes comparatively. This
clarity is especially important in biomedical settings, where trust and transparency are critical for successful
clinical implementation. In this manner, the study sets itself apart not through innovative algorithms, but
rather through the extent of the dataset, the synthesis of diverse health variables, and a focus on clinically
relevant interpretability.

5.1 Limitations and Generalizability

Several limitations warrant consideration. First, our dataset originates from a single South Korean
health screening program with predominantly urban, ethnically homogeneous participants. Model perfor-
mance may differ in other ethnic groups due to genetic polymorphisms affecting nicotine metabolism [58]
(e.g., CYP2AG variants) [59] and varying baseline disease prevalence. External validation in diverse pop-
ulations (European, African, Latino cohorts) is essential before clinical deployment. Second, the dataset
lacks socioeconomic indicators (income, education, occupation), which are known confounders of both
smoking behavior and health outcomes. Without controlling for these factors, our model may partially
conflate socioeconomic health disparities with smoking-specific effects. Third, the cross-sectional design
precludes assessment of temporal causality or prediction of future disease outcomes. Longitudinal validation
tracking individuals over 5-10 years is needed to confirm that high-risk predictions translate to actual disease
incidence. Fourth, smoking status relied on self-report, which may underestimate prevalence due to social
desirability bias. Biochemical validation (cotinine levels) would strengthen outcome ascertainment [60].
Future validation priorities include: (1) multi-site studies in diverse ethnic populations; (2) prospective
cohorts with longitudinal follow-up; (3) rural and socioeconomically disadvantaged populations; and (4)
integration of detailed smoking history variables (pack-years, cessation attempts).

5.2 Ethical Considerations for Clinical Deployment

Deploying predictive algorithms raises important ethical considerations requiring proactive mitigation.
Managing Prediction Errors: Our model achieves 86.5% specificity (13.5% false positives) and 80.1%
sensitivity (20% false negatives). False positives may cause patient anxiety and unnecessary testing, while
false negatives risk delayed intervention. Mitigation strategies include: (1) two-stage screening with clin-
ical confirmation; (2) clear communication that predictions are probabilistic, not definitive; (3) shared
decision-making frameworks; and (4) combining algorithmic predictions with routine clinical assessment.
Discrimination Risks: Predictive risk scores could be misused by insurers or employers for discrimination.



] Intell Med Healthc. 2026;4 31

Recommended safeguards: (1) restrict access to treating clinicians only; (2) prohibit sharing with third parties
absent explicit consent; (3) advocate for legal protections under medical privacy laws. Algorithmic Fairness:
Our model’s reliance on sex (13.1% of importance) raises equity concerns [61]. While reflecting genuine bio-
logical differences, sex-based predictions require: (1) stratified performance reporting; (2) disparate impact
analyses; (3) ensuring adequate accuracy for both sexes, and (4) continuous fairness monitoring across
demographic subgroups. Explainability and Autonomy: SHAP analysis provides transparency enabling
clinicians to verify predictions against domain knowledge. Algorithms must function as decision support
tools, not replacements for clinical judgment. Clinicians retain authority to override recommendations,
and patients retain the right to opt out of algorithmic assessment. Implementation Requirements: (1)
comprehensive informed consent; (2) clinician training on model limitations; (3) continuous fairness audits;
(4) patient feedback mechanisms; (5) regulatory compliance [62] (FDA, GDPR, HIPAA); and (6) transparent
documentation of model limitations and validation status.

6 Conclusion

This study demonstrates that machine learning can do more than just predict smoking-related
diseases—it can help us understand them in fundamentally new ways. By combining robust predictive
performance with interpretable insights, our models provide a practical tool for clinicians to identify
high-risk smokers earlier and intervene more effectively. The consistent superiority of ensemble methods,
especially Random Forest, makes a strong case for adopting these approaches in clinical risk assessment
tools. The real value lies not just in the algorithms themselves, but in how they reveal the complex interplay
of risk factors that conventional statistical methods might miss. As we look to the future, these findings point
toward more personalized approaches to smoking cessation and health monitoring. By understanding which
specific systems are at risk in individual patients—whether cardiovascular, metabolic, hepatic, or renal—we
can tailor interventions that address each smoker’s unique vulnerability profile.
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List of abbreviations

Abbreviation Definition
COPD Chronic Obstructive Pulmonary Disease
AST Aspartate Aminotransferase (liver enzyme)

ALT Alanine Aminotransferase (liver enzyme)
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Ggt (Gtp) Gamma-Glutamyl Transferase (liver/biliary marker)

HDL High-Density Lipoprotein (“good” cholesterol)

LDL Low-Density Lipoprotein (“bad” cholesterol)

MS Metabolic Syndrome

CD Cardiovascular Disease

SBP Systolic Blood Pressure

DBP Diastolic Blood Pressure

ML Machine Learning

AUC Area Under the ROC Curve

ROC Receiver Operating Characteristic

SHAP Shapley Additive Explanations (model interpretability method)
PCA Principal Component Analysis

SMOTE Synthetic Minority Over-sampling Technique (for class imbalance)

NRSBoundary-SMOTE
RF

Neighborhood Rough Set Boundary SMOTE (advanced resampling)
Random Forest

SVM Support Vector Machine

LR Logistic Regression

XGBoost Extreme Gradient Boosting

LightGBM Light Gradient Boosting Machine

Ccv Cross-Validation

SD Standard Deviation

BMI Body Mass Index

F1 F1-Score (harmonic mean of precision/recall)
G-mean Geometric Mean (of sensitivity/specificity)
CI Confidence Interval

PPV Positive Predictive Value

MICE Multiple Imputation by Chained Equations
MCAR Missing Completely At Random
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