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ABSTRACT: Multiple Sclerosis (MS) is a disease that disrupts the flow of information within the brain. It affects
approximately 1 million people in the US. And remains incurable. MS treatments can cause side effects and impact the
quality of life and even survival rates. Based on existing research studies, we investigate the risks and benefits of three
treatment options based on methylprednisolone (a corticosteroid hormone medication) prescribed in (1) high-dose,
(2) low-dose, or (3) no treatment. The study currently prescribes one treatment to all patients as it has been proven to
be the most effective on average. We aim to develop a personalized approach by building machine learning models and
testing their sensitivity against changes in the data. We first developed an unsupervised predictive-prescriptive model
based on K-means clustering in addition to three predictive models. We then assessed the models’ performance with
patient data perturbations and finally developed a robust model by re-training on a set that includes perturbations.
These increased the models’ robustness in highly perturbed scenarios (+10% accuracy) while having no cost in scenarios
without perturbations. We conclude by discussing the trade-off between robustification and its interpretability cost.
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1 Introduction
The exact causes of MS are still unknown in the medical community, and treatment methods are active

research. As there is no known cure [1] and the disease affects patients differently, prescribing effective
treatments is of paramount importance. The variation of symptoms and treatment response represents
a strong motivation for a personalized treatment approach. Thus, it is important to identify the disease
through risk modeling approaches the patient characteristics can influence treatment, enabling the choice
given patient effects. Prediction models help in identifying and estimating the impact of patient, inspection,
and setting characteristics on future health outcomes [2]. The main risk of patients is often the basis of
heterogeneous treatment effects [3].

Multiple sclerosis (MS) is a disease of the central nervous system [4] with several subtypes. The most
common subtype is relapsing-remitting Multiple Sclerosis (RRMS) [5]. Patients with RRMS present with
intense symptoms (relapses) followed by periods without symptoms (remission) [6]. Several treatments
are available [7] with direct patient responses, with each treatment having a very different safety profile.it
is also important to monitor progression of the disease [8]. Patient and particular setting characteristics
can be included in network meta-regression models [9,10] to make predictions for different treatments
and subgroups of patients [2]. This approach presents computational and practical difficulties when many
predictors are to be included in the model.
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Studies such as [11] advocate a particular treatment based on the best results obtained by the treatment
on average across a pool of patients. We use the dataset from this study to develop a robust machine-learning
approach to treatment prescription.

While modern machine learning methods like random forests and SVMs are known for their high
accuracy in healthcare predictions, K-means clustering remains a valuable and practical alternative. One
of its biggest strengths is its ability to identify patient subgroups without needing labeled data, which is
especially useful in real-world medical settings where labeled datasets can be limited. Unlike complex
models, K-means produces clear and interpretable groupings that doctors can easily understand and apply
in treatment decisions.

That said, newer AI models like GPT-4 and BioBERT have made impressive strides in healthcare
analytics, particularly in processing large amounts of medical text and identifying intricate patterns. These
models can uncover deep insights, but they often require massive labeled datasets and heavy computational
resources, making them less accessible for some applications. A promising direction for future research
would be to combine K-means clustering with deep learning techniques, aiming for a balance between
accuracy and interpretability. This way, we can harness the strengths of both approaches to improve clinical
decision-making while keeping the results transparent and actionable.

2 Motivation
MS treatments are used to manage disease progression often throughout the life of the patients. We

believe machine learning approaches can provide accurate treatment choices based on individual patient
characteristics, leading to higher chances of symptom remission. This paper focuses on building models
and testing them against perturbation in the underlying data. Patient data is variable, challenging to
measure, and prone to human input errors [12]. Moreover, incorrectly predicting MS treatment can cause
serious side effects for the patient. For this reason, we believe robust models bring an essential benefit to
treatment analysis.

3 Dataset
The dataset was obtained from the study [2], and it consists of 10,000 observations of patient utility

data. The target variable is the best treatment, a categorical variable taking three possible values: (1) high-
dose, (2) low-dose, or (3) no treatment. The predictors are the utilities (i.e., risks) of each side effect (e.g.,
0.8 utility of cardio-pulmonary distress). They differ as patients are impacted differently by the same side
effect (e.g., an older patient will have a higher negative impact from a cardiac arrest). A higher utility means
a higher risk and worse impact of a particular side effect. These utilities are calculated in the study [11]
with qualitative information and depend on relapse severity, the difference between lethal and non-lethal
outcomes, and individual patient characteristics. We used stratified sampling to split the data into training
(7000 observations) and testing (3000 observations) while preserving the proportions of the three values of
the target variable (best treatment).

The treatment outcome is not directly observable in the data. It is not recorded how the patient reacted
to the treatment, whether there were any side effects, and how the MS disease progressed. We can only
observe the calculated utility that each of the three treatments has on each patient. For example, for patient
I, the utility of high-dose treatment was 0.87, the utility of low-dose treatment was 0.65, and the utility of no
treatment was 0.54. A higher utility of treatment means a greater benefit to the patient.

Moreover, the dataset itself has been obtained via simulations, and in reality, the patient utility data is dif-
ficult to calculate. Patient measurements could be imprecise (e.g., recorded incorrectly by the measurement
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device), or they could be inputted into the system incorrectly by nurses or physicians. Furthermore, they
represent only a snapshot of a patient’s state obtained when we take measurements such as blood pressure.
Finally, future patients may not present the same characteristics as past patients MS symptoms and treatment
reactions vary widely across the patient population. In other words, we cannot fully assume that patient
utilities in the train and test set are drawn from a common distribution. This represents a strong argument
in favor of sensitivity analysis and robust models for treatment prescription.

4 Methodology

4.1 K-Means Predictive-Prescriptive Models
K-means clustering is the basic clustering to find groups of data or clusters in the dataset.
This dataset is unsuitable for an approach such as Optimal Prescriptive Trees due to the lack of

treatment outcomes. We instead developed an unsupervised prescriptive-predictive method based on
K-means clustering [13]. The process follows two steps:

Perform the K-means algorithm on the patients’ utilities
For each new patient, prescribe the most common treatment of the cluster he/she belongs to. This can

be formulated via the following optimization problem:
We defined T as the number of new patients, here 3000 (patients in the test set), and n the number of

previous patients here 7000 (patients in the train set), z_p the treatment to prescribe (1 for high-dose, 2 for
low-dose, and 3 for no treatment) for new patient p, and y_i the best treatment evaluated for the previous
patient i, hence we get the following formulation:

max
z p ∈ (1,2, 3)

T
∑
P=1

n
∑
i=1

w pi 1z p=yi

This formulation can be linearized with the introduction of additional variables and a sufficiently large
constant M to obtain the following mixed-integer optimization problem:

max
zp ∈ (1, 2, 3)

T
∑
P=1

n
∑
i=1

wpi (1 − qpi)

subject to w pi = 1 if p and i are in the same cluster

Mqpi ≥ q1
pi (z p − yi) + q2

pi (yi − z p) ≥ 0

q1
pi + q2

pi = 1

qpi , q1
pi , q2

pi ∈ {0,1)

Results: We obtained a 0.64 out-of-sample accuracy with 20 clusters, which is equal to the baseline
accuracy, as we explained in the results section. This value changes slightly with the number 1 of clusters
but remains within 2% of 0.64 for 5 to 100 clusters. The challenge of the unbalanced dataset in terms of the
target variable remains prevalent even when splitting the patients into numerous clusters; hence, a clustering
approach did not bring significant value.
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4.2 Predictive Models: CART, OCT, OCT-H
For a personalized treatment approach, we predict the best treatment based on adverse effects utilities.

Study [2] simply proposes the most effective treatment on average (high-dose) to all patients and will
represent a baseline for our predictions. The accuracy of the baseline is 0.64.

We focus solely on interpretable models: (classification and regression tree) CART [13], OCT [14], and
OCT-H [15]. The initial challenge with all three models was that after cross-validation, they were never
predicting class = 2 (low-dose treatment), as it is the lowest-occurring option in the dataset. This challenge,
especially when dealing with diseases, is common as the major part of the target observation may not
surely get you what you want [16]. This has been addressed by implementing penalty matrices or slightly
compromising performance in favor of a model that predicts all three classes. We believe detecting low-dose
cases is important, rather than defaulting to a high-dose, which can be potentially dangerous for the patient,
or no treatment that does not address the symptoms.

4.2.1 Classification Trees
To develop an interpretable predictive model, we implemented a Classification and Regression Tree

(CART) model as shown in Fig. 1. Through cross-validation, we selected min bucket = 35 and cp = 0.0025.

Figure 1: CART model

The minbucket parameter ensures that each terminal node contains at least 35 observations, preventing
overfitting small variations in the data. A smaller value would create overly specific branches, reducing
interpretability, while a larger value might oversimplify the model and obscure important distinctions.
The chosen value strikes a balance between stability and capturing meaningful treatment patterns. The
cp (complexity parameter) controls the pruning process by setting the minimum improvement in error



J Intell Med Healthc. 2025;3 5

required for a split. A smaller cp allows for deeper trees, capturing more nuanced patterns, while a larger cp
aggressively prunes the tree, improving interpretability at the cost of potential underfitting. The selected cp
= 0.0025 ensures a reasonable trade-off between complexity and interpretability.

The resulting model primarily splits on variables indicating the absence of serious adverse effects.
Intuitively, this means the decision tree differentiates patients based on whether they are at risk for severe
side effects (e.g., cardiac arrest, diabetes, cardio-pulmonary distress) rather than on specific types of side
effects. From a treatment perspective, the model suggests that patients with a low risk of serious adverse
effects should receive high-dose treatment (option 1), which aligns with medical intuition—these patients
are least likely to experience complications from the strongest treatment.

To address the issue of underprediction for class = 2 (low-dose treatment)—a common problem in
imbalanced datasets—we implemented a loss matrix. This over-penalized misclassification of low-dose
cases ensured the model did not default to prescribing only high-dose or no treatment. This adjustment is
crucial, as identifying cases where less aggressive treatment is sufficient can help minimize unnecessary risks
for patients.

The final CART model achieved 70% accuracy, demonstrating a significant improvement over the
baseline (64%). The key advantages of CART are its simplicity, computational efficiency, and interpretability,
making it a practical choice for clinical decision-making. However, given its greedy nature in selecting
splits, we further explored Optimal Classification Trees (OCT) to assess whether a more global optimization
approach could yield additional benefits.

We implemented a loss matrix to ensure class = 2 (low-dose treatment) was being predicted by the
model. As mentioned, this is because we believe less invasive treatment to be beneficial. We over-penalize
misclassification of low-dose, and we also consider the trade-off between prescribing treatment when we
should not go vs. under-prescribing. The best accuracy of a CART model was 70%. The advantage of CART
is that it is a simple model, runs fast, and performs very similarly to OCT and OCT-H.

4.2.2 Optimal Classification Trees
We next attempted an OCT-model (Fig. 2), and ran cross-validation, obtaining the parameters min-

bucket = 35, cp = 0.003, and max depth = 4. Cross-validated accuracy was 0.71; however, we encountered the
same issue of never predicting a low dose; therefore, we decided on a final model of depth 5 with an accuracy
score of 0.70.

Like CART, the variables are split to detect the absence of serious adverse effects, yet we see new variables
such as gastrointestinal hemorrhage, seizure, and cardio-pulmonary distress. OCT does not make greedy
splits in the way CART does, enabling it to output splits across more features, providing us with richer
information. OCT also is more interpretable than CART, having only five layers, as opposed to 7. Since the
accuracy scores are the same, we favor OCT over CART.
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Figure 2: OCT-model

4.2.3 Optimal Classification Trees with Hyperplanes
Finally, we looked at OCT-H as shown in Fig. 3, hoping to improve performance, yet the model

performed very similarly to both CART and OCT, improving only to 0.71 accuracies. The chosen model also
has depth = 5 instead of the cross-validated model with depth = 2. We chose this for the same reason that the
cross-validated tree did not predict low-dose treatment.

Figure 3: OCTH-model
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The drawbacks of OCT-H are the reduced rate at which they can be interpreted (e.g., most splits have
four variables) and the significant runtime for cross-validation (over 3 h).

4.2.4 Multinomial Logistic Regression
We also performed a multinomial logistic regression on this problem, giving an out-of-sample accuracy

slightly lower, at 0.59. The main advantage of this method is that it can be robustified by adding a lasso
regularized term. This model has a lower performance than the baseline (0.64); however, it has proven useful
in the robustification process.

5 Sensitivity Analysis
The goal of sensitivity analysis was to test the models against changes in the underlying data and check

the impact on accuracy as we increase the magnitude of changes. We first calculated the means mj and
standard deviation σj of each predictor (patient utility) j. Then, we progressively perturbed the test dataset.
For each feature column i, for each patient j, having the utility uij, we associate the perturbation pij. Hence,
uij becomes u′ij = uij + pij where pij is generated randomly with the normal distribution of mean mj and
standard deviation pσj where p is in the range of perturbation, up to 3 in our case. By progressively perturbing
within 1σj, 2σj, and 3σj, we test how the accuracy changes at different stages.

5.1 K-Means Prescriptive-Predictive Model
The impact of the perturbation on the K-means predictive-prescriptive method gives us the following

results as shown in Fig. 4:

Figure 4: K-means perturbation impact

This shows an underlying characteristic of the problem: for low values of clusters, the most common
treatment is the same for all clusters. These also correspond to this project’s reference study [1], where one
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treatment was given to all the patients. For a high number of clusters, the accuracy remains at levels of 0.62
and 0.64, which means we predict treatment 1 for most clusters but not all.

5.2 Sensitivity Analysis of the Tree Models
5.2.1 Sensitivity Evolution with the Tree Depth and Complexity

After building the initial models, we vary their tree depth in Fig. 5a and assess their sensitivity to out-
of-sample perturbation.

Figure 5: (a): OCT depth impact. (b): Perturbation impact: OCT vs. OCT-H performance
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The OCT is highly sensitive to perturbation in the test set with the evolution of the perturbation range,
with accuracy decreasing from 0.70 to 0.55 when the data is perturbed within a range of 3σ . The perturbation
impact is higher for deeper trees, making sense as the deeper the tree is, the more complex it is and sensitive
to external perturbations. Similarly, OCT-H is more sensitive to perturbations than OCT as show in Fig. 5b.
This also matches our intuition as OCT-H is more complex and fits better the data in-sample but is sensitive
to out-of-sample perturbations.

5.2.2 Sensitivity Evolution with the Number of Features Perturbed
Another approach is to assess the sensitivity evolution with the number of features perturbed. The first

step was to identify which features to perturb. We already have the feature importance from CART and OCT
as provided in Table 1 as well as a random forest model that we ran:

Table 1: Perturbed features

Features Mean decrease gini
Standard.relapse.no.adverse.effect 291

Standard.relapse.non.serious.adverse.effect.only 182
Reduced.relapse.non.serious.adverse.effect.only 173

Reduced. Relapse. Persistent. Diabetes 71
Reduced.relapse.persistent.osteonecrosis 72

The top three features indicate no adverse effect or no serious adverse effect, conditioned by the
progression of the MS disease (standard vs. reduced relapse). In essence, high values in these features signal
a relatively healthy patient with a high chance of no adverse effect from the methylprednisolone treatment.
This is different from the rest of the predictors, where high values indicate a high risk (e.g., diabetes). The
aim is to verify if there is a correlation between the feature’s importance and the impact of its perturbation
on the model’s performance.

In Fig. 6 below, the main three lines (blue, red, and green) correspond to perturbing the three features
with the highest importance (as taken from the table above) at different perturbation levels. The other lines
at the top of the chart highlight perturbation in the rest of the features, excluding the three most important
ones. These give two very interesting insights. The first one is that only the three most important features
influence the model’s performance, as there is almost no impact while perturbing a higher and higher number
of features. These also could be seen in the perturbations, including all the features. This perturbation does
not evolve a lot with the number of features, implying that the perturbation comes only from a sparse
number of parameters. A second observation is that when the important features are excluded, whatever the
perturbation intensity is in terms of the number of standard deviations, the impact remains the same. These
observations enable us to conclude that our model will be very robust to out-of-sample perturbations if we
precisely control the three most important features.

We can also draw another interesting conclusion—the top three features are sufficient to predict the best
treatment with high accuracy (e.g., CART split on these three features alone and achieved 0.70 accuracies).
Currently, a high-dose treatment is prescribed to all patients, perhaps justified by the difficulty in measuring
all 56 of the predictor variables. Since the top three features are sufficient, we could only measure those
for each patient. In practice, this may prove challenging since the features are “no adverse effect”, which
technically still implies we must look at all adverse effects. Yet, it is a valuable insight that if we find one single
serious adverse effect, this is enough information to make a prediction.
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Figure 6: Perturbation by number of variables

6 Models Robustification and Results

6.1 Impact of Multinomial Logistic Regression
First, we assessed the performance of the multinomial logistic regression by introducing a lasso

regularize. Hence, we implement the following formulation:

max
β, βo

−∑n
i=1 log1 + e−yi (βT x i + β0) + λ∣∣β∣∣1

Cross-validation on the training set gave us 0.01 as an optimal value for λ, which led to an out-of-
sample accuracy of 59% without perturbation. Now, we perturb the data and see how the performance is
evolving. Fig. 7 shows the comparison on the performance on robust and classic models.
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Figure 7: Robust logistic regression vs. standard performance

6.2 Robustifying the Training Set—OCT
We robustify the model by generating a training set that includes perturbed scenarios. We first select the

three most important variables. We generate three additional training sets as shown in Fig. 8a, the first one
where the three most important variables have been perturbed to a level of 0.5σ (in green), the second one
to a level of σ (in orange), and the third one to a level of 1.5σ (in blue). We concatenate these three training
sets with the initial one to build a final training set. Finally, we re-train the model on this concatenated set.

With an OCT of depth 5, there is a clear improvement due to robustification as shown in Fig. 8b. In
highly perturbed scenarios, the accuracy stays at 0.62, whereas the non-robust model falls to 0.55. It is very
interesting to observe that this comes at no cost for low perturbations, as both models stay at a level of 0.70.
We also conclude that this model is far more robust than the regularized logistic regression as it maintains
accuracy at a level of 0.60, whereas regularized logistic regression falls below 0.40. Lastly, in highly perturbed
scenarios, the robust model remains accurate, similar to the baseline, while still predicting all three treatment
classes as in Fig. 9. This represents an improvement as we can differentiate patients and prescribe less-invasive
methods instead of the current practice, which prescribes high doses to all patients.
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Figure 8: (a): OCT robustification: building the robust training set. (b): OCT robustification: robustification of training
set

Figure 9: Cart cross-validation Cp parameter vs. accuracy

7 Conclusion
To conclude, this research had two major contributions. The first one is building models that allow us

to predict the best treatment for a patient with accuracy levels of 0.70 (an improvement from 0.64 baselines).
This personalized approach improved the previous practice of simply prescribing the most commonly
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effective treatment to all patients. We also note the three top features (i.e., the presence of any serious adverse
effects), which are sufficient to make highly accurate predictions.

The second contribution is the robustification of the OCT model by designing a new training set. These
include perturbed scenarios, and it is based on a sparse number of features (the three most important ones).
The major observation is that it came at no cost in unperturbed scenarios while remaining much more
robust in perturbed ones. These outperform models that are already robust, such as regularized multinomial
logistic regression.

Nevertheless, this robustification design came at the cost of the interpretability of our models. We can
associate a price to the interpretability of models as defined in the paper [17]. Interpretation is reduced
since we train on a concatenated dataset that includes the same patient observation multiple times (with
perturbations). An interesting area of research to explore is which price could be associated with this process
and which formulation could be developed to include this price. For example, the interpretability penalty
can be added as part of the mixed integer Optimization (MIO) formulation of an OCT or a regularized term
in logistic regression.
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