
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/jimh.2024.051340

ARTICLE

Enhancing Multi-Modality Medical Imaging: A Novel Approach with
Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary
Wavelet Transform Fusion

Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2 and
Naeem ur Rahman6

1Department of Computer Science, Institute of Management Sciences, Peshawar, 25000, Pakistan
2Department of Computer Science, City University of Science & Technology, Peshawar, 25000, Pakistan
3Department of Computer Science, Iqra National University, Swat, 19200, Pakistan
4Department of Computer Science and Software Technology, University of Swat, Swat, 19200, Pakistan
5Department of Medical Science, Saidu Medical College, Swat, 19200, Pakistan
6Department of Allied Health Science, Iqra National University, Swat, 19200, Pakistan

*Corresponding Author: Sarwar Shah Khan. Email: sskhan0092@gmail.com

Received: 03 March 2024 Accepted: 28 May 2024 Published: 08 July 2024

ABSTRACT

Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis
and treatment. To harness the complementary data provided by various modalities, these images are amalgamated
to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness
of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment
decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier
Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details,
captures small information, and sharpens edge details, effectively identifying meaningful discontinuities and
modifying image frequencies from low to high. The sharpened images are then fused using the Stationary Wavelet
Transform (SWT), an advanced technique. Our primary objective is to improve image clarity and facilitate better
analysis, diagnosis, and decision-making in healthcare. We evaluate the performance of the resultant images both
visually and statistically, comparing the novel SWT (LF+DFT) approach with baseline techniques. The proposed
approach demonstrates superior results on both breast and brain datasets, with evaluation metrics such as Root
Mean Square Error (RSME), Percentage Fit Error (PFE), Mean Absolute Error (MAE), Entropy, and Signal-to-
Noise Ratio (SNR) confirming its effectiveness. The technique aims to enhance image quality, enable better medical
analysis, and outperform existing fusion methods. In conclusion, our proposed LF+DFT approach followed by
SWT fusion shows promising results for enhancing multi-modality medical images, which could significantly
impact medical diagnosis and treatment in the future.
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1 Introduction

Image fusion involves merging multiple source images of the same scene into one fused image that
contains complete and valuable information. This fused image is higher informative and accurate than
any individual source image, as it incorporates complementary data [1]. Image fusion techniques find
application in various domains, including image recognition, hazy image restoration [2], multi-focus
image fusion [3], surveillance systems, foggy image enhancement [4], pan-sharpening [5], and medical
imaging [6]. This manuscript specifically emphasizes the fusion of multi-modality medical images,
which assists doctors in disease diagnosis.

In today’s healthcare, medical imaging is essential, revolutionizing the field and enabling scientists
to study and understand various aspects of the human body. Many modalities such as Single-
Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic
Resonance Imaging (MRI), and Computed Tomography (CT) are used to extract valuable and hidden
information [7]. For example, CT images are excellent for visualizing bones and blood vessels but
are not as effective for soft tissue. Conversely, MRI images offer a higher soft tissue contrast but
lack clarity in bone visualization. To overcome these limitations, a combination of CT and MRI
images from different modalities is often required for accurate diagnosis and treatment. There are
two approaches to integrating these modalities. The first involves upgrading hardware devices, which
is complex and expensive. The second approach involves image processing, which is a cost-effective
and convenient way to obtain a valuable and informative integrated image [8].

In recent decades, significant research efforts have focused on developing and implementing fusion
methods to improve the quality and effectiveness of medical images. However, when it comes to multi-
modality fused images, such as combining CT and MRI images, several issues arise that can impact
their utility in diagnosing and treating diseases. One common issue is the presence of gradient and
texture distortion in the affected regions of the fused images. This distortion can lead to inaccuracies
and inconsistencies in the representation of the affected area, making it challenging for radiologists to
interpret the images accurately. These distortions may arise due to the differences in imaging principles,
acquisition parameters and image resolutions between the two modalities. Another issue is the
misalignment or registration errors between the CT and MRI images. Since these modalities capture
images using different techniques, it can be challenging to precisely align the corresponding anatomical
structures in the fused image. Misalignment can result in spatial discrepancies and misinterpretation of
the fused image, affecting the accuracy of diagnosis and treatment planning. Furthermore, variations
in image intensity and contrast between the CT and MRI images can pose challenges in achieving a
seamless fusion. Differences in intensity levels, brightness and contrast can make it difficult to integrate
the information from both modalities effectively, leading to inconsistencies and artifacts in the fused
image [7].

Trying to cover and resolve these issues developed many techniques such as Guided Image Filter
(GIF) [7], Rolling Guidance Filtering [8], Stationary Wavelet Transform (SWT) Gram-Schmidt Spec-
tral Sharpening, Discrete Wavelet Transforms (DWT) [9], Dual-Tree Complex Wavelet Transforms
(DTCWT) [10], Majority Filter (MF) [11], and Principal Component Analysis (PCA) [12], Discrete
Cosine Harmonic Wavelet (DCHWT) [13]. While these techniques address specific challenges in
multi-modality image fusion, it is challenging to find a single approach that accommodates all issues
comprehensively. Ongoing research focuses on developing hybrid fusion frameworks that combine
a couple of techniques to overcome the limitations and enhance the overall performance of multi-
modality image fusion.
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This manuscript introduces a novel hybrid sharpening algorithm that combines the benefits of
LF+DFT. The novel technique aims to enhance the visibility of sharp edges in multi-modality medical
images, specifically MRI and CT images. Following the sharpening step, the fused image is generated
using the SWT approach. The contribution of this paper can be summed up as follows:

• The utilization of a Laplacian Filter (LF) helps to emphasize the primary details of the image,
detect small information and enhance edge sharpness. LF is particularly effective in identifying
significant changes and discontinuities within the image.

• Discrete Fourier Transform (DFT) is essential in calculating the frequency information of the
image discretely. This frequency information is integral to the image-sharpening process. DFT
helps to identify rapid changes in the image, which correspond to shifts from low to high
frequencies.

• The novel sharpening approach combines the frequency information obtained from the Fourier
transform with the second derivative masking of LF, thereby leveraging the strengths of both
techniques.

• The proposed method follows a two-step process where image enhancement is applied to
sharpen the images, followed by the fusion approach for combining the sharpened images.

• This dual-step process represents a novel concept in the field of image fusion, yielding excep-
tional results compared to existing methods.

The remaining structure of the manuscript is formed as follows. Section 2 briefly depicts the
previous work of fusion techniques on medical images. Section 3 depicts the algorithm, such as LF
+ DFT with SWT. Section 4 shows the discussion with experimental results. Section 5, finally the
article is concluding.

2 Literature Review

In [14], Gram-Schmidt Spectral sharpening has been used to display the anatomical items from
the higher resolution CT image alongside the physiological data from the PET imaging. Wei et al. A
novel approach to multimodal medical image fusion has been introduced, aiming to address various
medical diagnostic challenges. This method leverages a fusion strategy employing a pulse-coupled
neural network with boundary measurements, combined with an energy attribute fusion strategy
within the non-subsampled shearlet transform domain. In [8], Rolling Direction uses a filter to divide
the architectural and technical elements of the source medical photos. According to the Laplacian
Pyramid fusion rule, the structural component is fused. For the detail component, a sum-modified-
Laplacian (SML) based strategy is applied.

In [15], Principal Components Analysis (PCA) and Stationary Wavelet Transform (SWT) are used
to analyze many types of imagery. For input photos with various contrast/brightness levels, PCA
seems to perform improved. When the input visuals are multi-sensor and multi-modal, SWT seems
to perform better.

Based on a guided image filter and the image statistics [7], a weighted average fusion method to
marge CT and MRI brain images has been presented. This is the suggested algorithm: Each source
image detail layer is extracted using a guided image filter. Arif et al. [16], based on the genetic algorithm
(GA) and curvelet transform, offer a novel technique and algorithm of fusion for multi-modality
biomedical images.
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In [17], the last ten years have seen tremendous advancements in the multimodal medical image
fusion sector. However, color distortion, blurring, and noise are constant problems with older tech-
niques. In this paper, we offer a brand-new Laplacian re-decomposition (LRD) architecture designed
specifically for the integration of multimodal medical images. There are two technical advancements
in the suggested LRD. First, offer a Laplacian decision graph decomposition approach with image
augmentation to get more information, redundant information and low-frequency subband images.
Second, introduce the concepts of the overlapping domain (OD) and non-OD (NOD), where the OD
helps to fuse extra information and the NOD helps to fuse complementary information, taking into
account the varied properties of redundant and complementary information. Wang et al. [18] present
a biomedical image fusion algorithm established on convolutional neural networks (CNN).

In [19], the advantages of convolutional neural networks (CNNs) and non-subsampled shear
let transform (NSST) are combined in a novel model for biomedical picture fusion equally. Al-
Ameen et al. [20] introduce a new method for fusing multimodal medical images to address existing
challenges. The proposed approach combines guided filtering and image statistics within the shearlet
transform domain. Initially, the multimodal images undergo decomposition using shearlet transform,
which captures texture information in various orientations. This decomposition separates the images
into low-and high-frequency components, representing base and detail layers, respectively. Subse-
quently, a guided filter with a high epsilon value determines the weights of the original paired images.
These weights are then applied to the base layer to obtain unified base layers. Fusion of the base layers
is achieved through a guided image filter and image statistics fusion rule, which computes covariance
matrix and Eigenvalues to identify significant pixels in the neighborhood.

Trentacoste et al. [21] introduce a morphological preprocessing technique to tackle issues like
non-uniform illumination and noise, employing the bottom-hat–top-hat strategy. Subsequently, grey-
principal component analysis (grey-PCA) is applied to convert RGB images into grayscale, preserving
intricate details. Next, the local shift-invariant shearlet transform (LSIST) decomposes the images into
low-pass (LP) and high-pass (HP) sub-bands, effectively recovering significant characteristics across
various scales and orientations. The HP sub-bands are then processed through two branches of a
Siamese convolutional neural network (CNN), involving feature detection, initial segmentation, and
consistency verification to capture smooth edges and textures. Meanwhile, the LP sub-bands are fused
using local energy fusion via averaging and selection modes to restore energy information.

3 Proposed Methodology

This article presents a new approach aimed at improving the accuracy and visibility of objects
in a multi-modality image fusion environment. The key concept introduced in this study involves a
pre-processing assessment of the image before fusion, followed by the application of the conventional
SWT approach for fusion, as demonstrated in Algorithm 1. The entire procedure is visually depicted
in Fig. 1 and the novel approaches are further elaborated below for better understanding.



JIMH, 2024, vol.2 39

Figure 1: The novel concept schematic flow-chart

3.1 Unsharp Mask (UM)

The term “unsharp mask” may seem misleading, but it is an effective edge-sharpening filter used
to enhance the visibility of edges in an image. The name originated from the process it employs, which
involves creating an unsharp version of the original image and identifying the presence of edges, similar
to a high-pass filter [20]. By sharpening an image, the texture, and finer details can be enhanced. One
common method for sharpening is known as “unsharp masking,” which can be employed in various
kinds of images. It should be noted that the unsharp mask technique does not introduce artifacts
or add new details to the image, but it significantly enhances the appearance of existing details by
increasing the acutance of small-scale elements, making important details easier to perceive [12,21,22].
When images are sharpened, their size and similarity are maintained, but a UM simply increases the
acutance of an image’s sharpness. In the UM method, the sharpened image q (e, f ) will be generated
from the input image r (e, f ) as:

q (e, f ) = r (e, f ) + s (e, f ) (1)

where s (e, f ) is the correction signal computed as the output of a high-pass operator and λ is a positive
scale parameter that regulates the amount of contrast flavoring obtained at the output [5,23].

3.2 Laplacian Filter

LF is a popular image enhancement technique used to highlight edges and fine details in an image.
It is based on the second derivative of the image intensity, which measures the rate of change of intensity
across the image. By employing the Laplacian operator in the image, we can accentuate regions of rapid
intensity changes, such as edges and fine structures. The Laplacian operator is a differential operator
that calculates the Laplacian of a function. In the case of image processing, it is typically applied
to grayscale or single-channel images. The Laplacian operator is defined as the sum of the second
derivatives of the image concerning the spatial coordinates. In mathematical notation, the Laplacian
operator (∇2) can be represented as follows:

∇2 (g (r, s)) = ∂2g(r, s)/∂2g(r, s)/∂s2 (2)

Here, g(r, s) represents the pixel intensities of the given image and ∂2g(r, s)
∂r2 and ∂2g(r, s)

∂s2 represent the
second derivatives of the image concerning the r and s spatial coordinates, respectively.
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To apply the Laplacian Filter to an image, we convolve the image with the Laplacian operator.
The convolution operation involves sliding a small kernel (representing the Laplacian operator)
over the image and computing the sum of element-wise multiplications between the kernel and the
corresponding image pixels. The resulting values are then mapped to a new image, known as the
Laplacian image. The Laplacian Filter highlights regions of rapid intensity changes by producing
positive values for bright-to-dark transitions (edges) and negative values for dark-to-bright transitions.
This creates a sharpening effect, enhancing the edges and fine details in the image.

3.3 Discrete Fourier Transform (DFT)

The DFT is a mathematical approach used to analyze the frequency components of a signal or
an image. It converts a signal from its time or spatial domain representation to the frequency domain
representation. In the case of images, the DFT provides information about the frequency content of
different spatial components of the image. The equation for the DFT is given by:

F (x, y) =
∑ ∑

g (r, s) ∗ e(−j2π( xr
M + ys

N )) (3)

Here, F(x, y) represents the transformed image in the frequency domain, g(r, s) denotes the
original image in the spatial domain, (x, y) represents the spatial frequency indices, M and N represent
the dimensions of the image, and j represents the imaginary unit. The DFT calculates the frequency
spectrum of the image, representing the magnitude and phase of different frequency components. It
allows us to analyze the frequency content of the image and apply various frequency-based operations,
such as filtering, enhancement and reconstruction.

3.4 LF + DFT Method

This article introduces a novel method for multi-modality medical image fusion using a hybrid
sharpening algorithm called LF + DFT. This hybrid algorithm combines the advantages of LF and
DFT approaches. LF, also known as an edge detection approach, is utilized to identify important
edges in the image. It detects areas of the image where rapid changes occur, similar to abrupt changes
in frequencies from low to high. On the other hand, DFT is a widely used method for computing
frequency information in discrete form. The hypothesis is that incorporating frequency information
through DFT can significantly enhance image sharpness. In this unique technique, the frequency
information obtained from Fourier transforms is combined with the second derivative masking from
LF. This combination results in a powerful sharpening method that takes advantage of both LF and
DFT to improve the visibility of edges and fine details in the image shown in Fig. 2. By merging the
strengths of LF and DFT, this novel hybrid sharpening approach offers a promising solution for multi-
focus image fusion. It provides a more effective and accurate method for enhancing image sharpness
and improving the overall quality of fused images. Here is the requirement of spatial conversion to
the frequency and inverse see Eqs. (3) and (4). So, this is the purpose of calling that the cross-domain
technique.

Where the square image of resolution M × M, the multidimensional DFT in Eq. (2) is as follows:

Q (e, f ) =
∑M−1

a=0

∑N−1

b=0
h(a, b)e−y2π( xa

M + yb
M ) (4)

Whereas h(a, b) is the spatial-domain picture, and the exponential term is the base operation
presenting every point Q(e, f ) in the Fourier infinite. The expression can be interpreted as the value of
every point Q(e, f ) is acquired by multiplying the spatial picture with presenting basis operation and
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adding the results. The main procedures are cosine and sine waves with growing frequencies, i.e., Q(0,
0) representing the DC components of the picture, which corresponds to the average brightness, and
Q (M-1, M-1) representing the high-frequency. As illustrated in Fig. 2, the frequency domain picture
may also be transferred (through an inverse transform) into the spatial domain. Following is the inverse
frequency transform:

h (i, j) = 1
N2

∑M−1

r=0

∑N−1

s=0
F(r, s)er2π( ki

M + rj
M ) (5)

Figure 2: The proposed approach’s framework

The new approach for a square picture of resolution M × M, the multidimensional is given by
using the Laplacian Eq. (1) and Fourier Eq. (3):

L (�) =
∑M−1

i=0

∑N−1

j=0
(�2)e−l2π( km

M + ln
M ) (6)

Resolution and acutance are two fundamental factors that contribute to the clarity and sharpness
of an image. Resolution refers to the size of the image in terms of pixels and is a straightforward and
objective measure. A higher-resolution image, with more pixels, generally results in sharper details. On
the other hand, acutance is a subjective measure that quantifies the contrast at an edge. It reflects the
perceived sharpness and clarity of an edge in an image. While there is no precise numerical measure
for acutance, our visual system recognizes edges with higher contrast as having more distinct and
well-defined boundaries. Given the significance of both resolution and acutance in image quality,
the motivation for using edge sharpening techniques becomes evident. By enhancing the visibility
and sharpness of edges, edge sharpening methods aim to improve both the resolution and acutance
of an image. This not only enhances the overall visual appeal of the image but also enables better
analysis, interpretation, and decision-making in various applications. Therefore, incorporating edge
sharpening techniques, such as the one proposed in this article, holds great potential for improving
the clarity and quality of multi-modality medical images. By emphasizing the important edges and
enhancing their contrast, the proposed approach can provide medical professionals with more accurate
and informative images, facilitating better diagnosis and treatment decisions.

3.5 Stationary Wavelet Transform (SWT)

In image fusion applications, the SWT can be utilized to decompose multiple input images into
wavelet coefficients at different scales. The fusion process involves combining these coefficients to
create a single fused image that contains the relevant information from each input image. Let’s consider
two input images, A and B, that are decomposed using the SWT. The SWT decomposes an image into
approximation (Aj) and detail (Dj) coefficients at different scales. These coefficients capture the low-
frequency and high-frequency information, respectively. Mathematically, the decomposition of image



42 JIMH, 2024, vol.2

A at level j can be represented as:

A = Aj + Dj (7)

Similarly, the decomposition of image B at level j can be represented as:

B = Bj + Dj (8)

The approximation coefficients (Aj and Bj) represent the low-frequency content of each image,
while the detail coefficients (Dj) capture the high-frequency details. To fuse the coefficients, various
fusion rules or strategies can be applied. One common approach is to combine the approximation
coefficients using a weighted average or maximum selection. For example, the fused approximation
coefficient (Fj) can be computed as:

Fj = wA ∗ Aj + wB ∗ Bj (9)

where wA and wB are the weights assigned to images A and B, respectively. These weights can be
determined based on image quality, relevance, or other factors. The fused detail coefficients (FDj)
can be obtained by applying a fusion rule, such as maximum selection or weighted averaging, to the
corresponding detail coefficients (Dj) of the input images. Finally, the fused image can be reconstructed
by combining the fused approximation and detail coefficients at each level using the inverse SWT
[12,19].

We provide a brief explanation of the process of the suggested multi-modality image fusion method
in Algorithm 1 to condense all the above considerations.

Algorithm 1: Sharpen images fusion algorithm (LF+DFT) SWT
Input: Multi-modality images Inputj → jεA, B
1. Apply the Laplacian Filter (LF) to each Inputj → jεA, B:

-Convert each input image to grayscale if they are in color.
-Apply the LF to each grayscale image with Eq. (6)

2. Perform the DFT on the LF A′ and B′:
-Compute the DFT of each LF image using a Fast Fourier Transform (FFT) algorithm with

Eq. (4)
3. Apply a high-pass filter (HPf ) in the frequency domain:

-Identify the low-frequency components (LFc) in each DFT image.
-Multiply the LFc by a HPf

-Multiply the HPf image with the original DFT image.
4. Perform the inverse DFT (iDFT) for each image:

-Compute the iDFT of each modified DFT image using an iFFT algorithm with Eq. (5)
5. Perform the Stationary Wavelet Transform (SWT) on the A′ and B′ images:

-Apply the SWT to each input image, decomposing them into wavelet coefficients with Eqs. (7)
and (8).
6. Combine the HFc from the DFT-based approach with the SWT-based coefficients:
\\For Loop to select the high-frequency coefficients

-ForLoopeach subband (Sband) of the SWT, select the high-frequency coefficients from the DFT
-Based approach if they provide better edge information.
-Combine the selected coefficients with the remaining coefficients from the SWT to create a

fused Sband.
End

(Continued)
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Algorithm 1 (continued)
7. Perform the iSWT to reconstruct the fused image:

-Combine the fused Sband from step 7 using the iSWT algorithm with Eq. (9).
Output: Display the fused image (A′ + B′) = F ′.

4 Experimentation
4.1 Performance Measures

The following table presents the measurements used to assess the experimental results of the novel
method:

Table 1: Evaluation metrics for experimental results

Measures Description Equation Value
status

Root mean square
error (RMSE)

RMSE is the measure of the quality index. It
is generally calculated between the reference
image and the fused image [24].

RMSE =√
1

M ∗ N

M∑
a=1

N∑
b=1

(I_Z (a, b) − I_f (a, b))2

Lower
value

Percentage fit error
(PFE)

PFE measures the percentage difference
between the fused image and the original
images. It is calculated by comparing the
pixel values of the fused image with the pixel
values of the original images [25,26].

PFR = 100 × norm (xt − x)

norm (xt)
Lower
value

Mean absolute error
(MAE)

MAE measures the average absolute
difference among the pixel values of the
fused image and the original images. It
provides a measure of the average deviation
between the fused image and the original
images [27].

MAE =
1

MN

M∑
a=1

N∑
b=1

∣∣∣Ix (a, b) − If (a, b)

∣∣∣ +
1

MN

M∑
a=1

N∑
b=1

∣∣∣Iy (a, b) − If (a, b)

∣∣∣ +

Lower
value

Entropy (E) Entropy measures the between of
information or randomness in the fused
image. It quantifies the complexity or
uncertainty of the pixel distribution.

E = −
L−1∑
J=1

PilogPi Higher
value

Signal-to-noise ratio
(SNR)

SNR measures the ratio between the signal
power and the noise power in the fused
image. It assesses the quality and clarity of
the fused image by comparing the signal
strength to the noise level [28].

SNR =
10log10

( ∑M
a=1

∑N
b=1 (Iz (a, b))∑M

a=1
∑N

b=1
(
Iz (a, b) − Ip (a, b)

)
)Higher

value

Peak signal-to-noise
ratio (PSNR)

PSNR measures the ratio between the
maximum possible signal power and the
power of the noise in the fused image. It is
commonly used to assess the fidelity or
quality of the resultant image [24].

PSNR = 20 log[G2/1/M × N∑M
a=1

∑N
b=1

(
Iz (a, b) − Ip (a, b)

)2]
Higher
value

4.2 Results and Discussion

This section evaluates the effectiveness and accuracy of the novel algorithm for multi-modality
medical images, specifically focusing on brain lesions and breast images. The algorithm aims to
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enhance the images and sharpen the edges to improve small details before performing the fusion
process. The evaluation was conducted using three pairs of CT and MRI images, obtained from
the website “https://sites.google.com/site/aacruzr/image-datasets” (accessed on 06/03/2024). The image
sets had dimensions of 258 × 258 for sets 1 and 2, and 385 × 460 for set 3. The evaluation of the
algorithm was carried out both visually and statistically [29].

The resulting fused images were assessed using six commonly used statistical evaluation metrics
shown in Table 1. The PFE measures the dissimilarity between the corresponding pixels of the fused
image and the original image, normalized by the norm of the original image. Entropy is used to evaluate
the texture, appearance, or information content of the resultant image. The PSNR quantifies the
spatial quality of the resultant image. The MAE is calculated to determine the difference between the
resulting image and the reference image. The SNR is a performance metric that measures the ratio of
information to noise in the fused image. The RMSE indicates the discrepancy between the fused image
and the original image. These statistical metrics serve as quantitative measures to assess the quality and
accuracy of the resultant images obtained from the novel algorithm. The novel technique outperforms
the existing approaches, as demonstrated through comparisons with six other techniques, namely
SWT, DWT [9], DTCWT [10], Majority Filter MF [11], PCA [12], and DCHWT [13]. The experiments
were conducted using MATLAB 2018b on a computer equipped with an Intel(R) Core (TM) i7-6700K
CPU operating at 4.00 GHz and 8 GB of RAM. The performance of the novel technique was assessed
on three benchmark multi-modality medical image datasets. This evaluation aimed to compare the
proposed technique with baseline techniques in terms of visual quality and statistical measures.

4.3 Visual Analysis

Figs. 4–11 display the original CT and MRI images along with their corresponding enhanced
images obtained through the proposed sharpening technique, including Unsharp masking and
LF+DFT Sharpen. The enhanced images effectively highlight and enhance minor details, making
them clearer and more perceptible. These enhanced images play a crucial role in subsequent stages
of the fusion process, where the aim is to integrate the essential information from both CT and MRI
modalities.

Figs. 4–11 present the fused images obtained from both existing and proposed hybrid approaches.
The existing approaches, including PCA, MF, DWT, DTCWT, DCHWT and SWT, initially fuse the
source images. Then, the SWT method is combined with the proposed sharpening techniques and
applied to fuse the sharpened images. Comparatively, the fused images generated by the proposed
methods, namely SWT+Unsharp masking and SWT+(LF+DFT), exhibit significant improvements
compared to the baseline techniques. To highlight the differences among the fused images and facilitate
a better understanding of the enhanced and informative nature of the images, specific areas are marked
with red and green boxes in Figs. 3–10. Furthermore, a magnified version of the region marked with
the red box is provided in Figs. 5 and 9 to further illustrate the qualitative analysis of brain datasets.

https://sites.google.com/site/aacruzr/image-datasets
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Figure 3: The sharpened results of “Brain CT, and MRI Image set 1” (a, b) are two source images CT
and MRI, respectively, (c, d) are sharpened images by Unsharp masking and (e, f) LF+DFT sharpen
images

Figure 4: The fusion results of “Brain CT and MRI Image set 1” (a) PCA (b) MF, (c) DWT,
(d) DTCWT, (e) DCHWT, (f) SWT, (g) SWT+UM, (h) SWT+(LF+DFT)
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PCA MF DWT DTCWT

DCHWT SWT SWT (Unsharp) SWT (LF+DFT)

Figure 5: The magnified version of the red region marked in Fig. 4, correspondingly

Figure 6: The difference between (a, b) simple CT and MRI images and (c, d) Sharpen CT and MRI
images

Understanding the difference between simple and sharpened images is crucial. Sharpened images
exhibit higher acutance, which is a subjective measure of edge contrast. Acutance cannot be quantified
directly; it relies on the observer’s perception of whether an edge has sufficient contrast or not. Our
visual system tends to perceive edges with higher contrast as having more clearly defined boundaries.
In Fig. 6, we zoom in on specific areas of the images, highlighting them with green and red boxes for
simple and sharpened images, respectively. This allows us to easily observe the dissimilarity between
the two versions, particularly in the enhanced details visible within the green boxes.

Figure 7: (Continued)
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Figure 7: The sharpened results of “Brain CT and MRI Image set 2” (a), (b) are two source images
CT and MRI, respectively, (c), (d) are sharpen images by Unsharp masking and (e), (f) LF+DFT
sharpened images

Figure 8: The fusion results of “Brain CT and MRI Image set 2” (a) PCA (b) MF, (c) DWT, (d)
DTCWT, (e) DCHWT, (f) SWT, (g) SWT+UM, (h) SWT+(LF+DFT)

PCA MF DWT DTCWT

DCHWT SWT SWT (Unsharp) SWT (LF+DFT)

Figure 9: The magnified version of the red region marked in Fig. 8, correspondingly
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Figure 10: The sharpened results of “Breast CT, and MRI Image set 3” (a, b) are two source images CT
and MRI, respectively, (c, d) are sharpen images by unsharp masking and (e, f) LF+DFT sharpened
images

Figure 11: The fusion results of “Breast CT and MRI Image set 3” (a) PCA (b) MF, (c) DWT, (d)
DTCWT, (e) DCHWT, (f) SWT, (g) SWT+UM, (h) SWT+(LF+DFT)
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4.4 Statistical Analysis

In this section, a quantitative comparison is performed between the novel approach and baseline
methods using well-known assessment measures. The evaluation metrics used are RMSE, PFE, MAE,
entropy, SNR and PSNR. Tables 2–4 present the quantitative results, demonstrating the superiority
of the proposed methods. The bold values in the tables indicate favorable outcomes, indicating better
image quality. However, Table 4 provides a detailed analysis and comparison of the results obtained
by the proposed methods (SWT with Unsharp masking and SWT with LF+DFT) across the three
datasets. In dataset 1, the DTCWT method performs well in terms of entropy, indicating a higher level
of information contained in the image. The SWT with Unsharp masking achieves high results in MAE,
indicating its ability to capture the dissimilarity between the final and reference images. The other four
metrics show favorable values for the proposed approach SWT with LF+DFT. Moving on to dataset
2, the SWT with Unsharp masking exhibits higher RMSE values, highlighting the differences between
the final and reference images. However, the remaining five metrics indicate good values for SWT
with LF+DFT. Lastly, in dataset 3, the DCHWT method achieves the best PSNR value, indicating
high spatial quality in the image. Similarly, the other five metrics demonstrate favorable values for the
proposed approach SWT with LF+DFT.

Table 2: Quantitative comparisons of multi-focus image fusion on the “Brain CT and MRI Image
set 1”

Matrices PCA MF DWT DTCWT DCHWT SWT SWT (Unsharp) SWT (LF+DFT)
RMSE 43.5479 36.5473 34.9929 23.2028 22.3192 22.0339 17.9981 17.6825
PFE 39.6033 40.5041 30.6786 31.2097 32.9859 29.2947 28.9374 23.0422
MAE 3.5632 3.5464 3.3135 4.2723 3.8110 3.8107 2.1123 2.8122
Entropy 0.6263 0.0984 0.1006 0.9829 0.3322 0.8002 0.9008 0.9047
SNR 7.2541 5.9335 6.7185 7.2419 7.5253 7.7834 7.3578 8.0830
PSNR 30.7226 32.4190 31.7491 32.5094 31.3049 31.8976 30.3209 32.5202

Table 3: Quantitative comparisons of multi-focus image fusion on the “Brain CT and MRI Image
set 2”

Matrices PCA MF DWT DTCWT DCHWT SWT SWT (Unsharp) SWT (LF+DFT)
RMSE 39.9800 32.2221 38.1032 27.2244 27.7410 26.5043 22.2134 22.3887
PFE 50.8766 51.3221 33.0333 31.8823 31.8821 31.1221 30.0203 30.0024
MAE 11.1130 11.1099 11.2109 10.2314 10.2116 9.2123 10.0215 8.9925
Entropy 1.1129 1.0794 0.9997 2.0112 2.9812 4.3299 4.0121 4.8921
SNR 6.4343 9.5643 9.2134 9.7453 10.1123 10.3223 10.9332 11.2493
PSNR 25.3329 23.1992 25.4521 27.9827 26.2321 27.1913 29.2343 29.3722

Table 4: Quantitative comparisons of multi-focus image fusion on the “Breast CT and MRI image
set 3”

Matrices PCA MF DWT DTCWT DCHWT SWT SWT (Unsharp) SWT (LF+DFT)

RMSE 51.7607 39.2192 45.0964 32.3002 33.0567 32.0461 24.1682 21.3575
PFE 47.4791 55.2624 41.1071 36.8823 48.2090 35.1443 28.9633 19.7224
MAE 9.4792 10.0175 9.1989 7.7354 8.2096 7.9119 7.8775 7.6025
Entropy 0.0821 0.3792 0.1305 0.2314 0.3950 0.2323 0.4755 0.9375

(Continued)
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Table 4 (continued)
Matrices PCA MF DWT DTCWT DCHWT SWT SWT (Unsharp) SWT (LF+DFT)

SNR 3.9445 0.4216 4.4307 3.6377 6.3374 7.3342 7.3332 8.4952
PSNR 30.7881 30.8808 31.5945 31.0927 32.9722 31.1203 27.7723 31.7813

In Fig. 12, a comparison is presented between the fusion techniques using SWT along with two
different sharpening methods: Unsharp masking and the proposed sharpening technique LF+DFT.
The purpose of this comparison is to evaluate the effectiveness of these techniques and determine which
one yields better results. By visually examining the fused images, it can be observed that both Unsharp
masking and LF+DFT sharpening techniques contribute to enhancing the quality and clarity of
the fused images. This comparison serves to emphasize the advantages of the proposed LF+DFT
sharpening technique in improving the overall quality of the resultant images. It demonstrates that
the combination of LF+DFT sharpening with SWT fusion produces superior results compared to the
fusion technique using Unsharp masking.
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Figure 12: The comparison is presented between the fusion techniques using SWT along with two
different sharpening methods: Unsharp masking and the proposed sharpening technique LF+DFT
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4.5 Time Complexity

The computational resources used by a technique concerning the size of the input are measured
by an algorithm’s time complexity. In Table 5, the time complexity values represent the execution times
(in seconds) for each technique on different image datasets (Image set 1, Image set 2 and Image set 3).
Based on the values in the table, it can be observed that the SWT technique generally has lower time
complexity values compared to the other techniques, indicating faster computation. The bold values
in the table indicate lower time complexity values for SWT in comparison to the other techniques.
However, it is important to note that the proposed algorithms, which involve the combination of
SWT with LF+DFT or Unsharp masking sharpening techniques, have slightly higher time complexity
values. This is because the additional time required for the sharpening step is incorporated into the
overall computation time.

Table 5: The time complexity of proposed and state-of-art techniques

Technique Image set 1 Image set 2 Image set 3

PCA 4.4853 4.9001 5.9712
MF 11.3771 14.7233 12.3321
DWT 4.3221 4.9832 6.1102
DTCWT 8.3882 9.4432 7.4322
DCHWT 7.4302 7.9111 8.4882
SWT 3.0012 4.0010 3.4922
SWT (Unsharp) 4.3234 4.7833 5.4882
SWT (LF+DFT) 3.9822 4.3299 4.9220

5 Conclusion

In this study, we focused on the fusion of CT and MRI images, which belong to different medical
modalities. The aim was to generate a single resultant image that combines both anatomical and phys-
iological information effectively. To achieve this, introduced a novel approach that involves enhancing
the images through sharpening techniques before performing the fusion process. Specifically, we
utilized LF+DFT and Unsharp masking as the sharpening methods, followed by fusion using SWT.
The combination of these two steps, sharpening and fusion, demonstrated promising results compared
to other existing and baseline techniques. The effectiveness of the proposed approach was evaluated
both visually and statistically. For the statistical evaluation, we employed six well-known performance
metrics and assessed the results across three different brain datasets. In future work, it would be
valuable to explore the use of alternative sharpening techniques in conjunction with advanced fusion
methods to further improve the results. This concept has the potential to be applied in various scenarios
and applications, offering opportunities for further advancements in image sharpening and fusion
techniques. In the future, we aim to incorporate various modalities such as PET or ultrasound images.
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