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ABSTRACT

In the contemporary era, the abundant availability of health information through internet and mobile technology
raises concerns. Safeguarding and maintaining the confidentiality of patients’ medical data becomes paramount
when sharing such information with authorized healthcare providers. Although electronic patient records and
the internet have facilitated the exchange of medical information among healthcare providers, concerns persist
regarding the security of the data. The security of Electronic Health Record Systems (EHRS) can be improved
by employing the Cuckoo Search Algorithm (CS), the SHA-256 algorithm, and the Elliptic Curve Cryptography
(ECC), as proposed in this study. The suggested approach involves using CS to generate the ECC private key, thereby
enhancing the security of data storage in EHR. The study evaluates the proposed design by comparing encoding
and decoding times with alternative techniques like ECC-GA-SHA-256. The research findings indicate that the
proposed design achieves faster encoding and decoding times, completing 125 and 175 iterations, respectively.
Furthermore, the proposed design surpasses other encoding techniques by exhibiting encoding and decoding
times that are more than 15.17% faster. These results imply that the proposed design can significantly enhance
the security and performance of EHRs. Through the utilization of CS, SHA-256, and ECC, this study presents
promising methods for addressing the security challenges associated with EHRs.
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1 Introduction

The Electronic Health Record System (EHRS) serves as a digital repository for a patient’s
comprehensive health information, including medical history, diagnoses, medications, allergies, immu-
nization dates, laboratory test results, and other relevant clinical data [1]. EHRs aim to provide
healthcare professionals with real-time access to updated patient information, enabling informed
decision-making in diagnosis, treatment, and care. Additionally, EHRs facilitate communication and
collaboration among healthcare providers, resulting in improved patient safety, enhanced quality of
care, and reduced administrative tasks such as paperwork and duplicate testing [2]. These records are
securely stored in electronic databases, accessible only to authorized healthcare professionals involved
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in patient care. EHRs can be shared electronically across healthcare settings to support coordinated
care [3]. However, to realize universal accessibility, standardization of electronic usage and protocols is
crucial. Safeguarding patient privacy and security is paramount to uphold medical ethics and societal
expectations, including access control, secure storage, transmission, and regulatory policies [4]. In an
effort to enhance EHR data security, a hybrid model has been proposed, suggesting the combined
use of SHA-256, ECC, and CS algorithms. The private key for ECC is generated using a CS-based
algorithm, which then applies SHA-256 hashing to the data. The CS Algorithm draws inspiration from
the behavior of cuckoo birds and serves as an optimization algorithm. It iteratively enhances candidate
solutions within the population, explores new solutions through random walks, and generates fresh
solutions using the cuckoo egg replacement mechanism [5]. Over time, the algorithm converges to the
optimal solution, progressively improving the quality of solutions in the population. ECC, a public-
key encryption technique that employs elliptic curves over finite fields, is gaining popularity due to its
robust security, computational efficiency, and smaller key sizes compared to other encryption methods.
ECC finds application in secure messaging, digital signatures, and secure key exchange. Notably, ECC’s
key sizes are considerably shorter, leading to improved computational and memory efficiency [6]. SHA-
256, a widely used cryptographic hash function, generates a fixed-size 256-bit output regardless of the
input size [7]. It ensures data integrity by detecting any modifications during transmission. Even a
single bit change in the data would result in a different hash value, indicating tampering [8]. Utilizing
ECC for key exchange and digital signatures, along with SHA-256 for data integrity, guarantees secure
communication over the Internet. By incorporating these hybrid approaches to enhance EHR data
security, healthcare systems can ensure both privacy and the seamless exchange of patient information,
promoting efficient and reliable healthcare delivery.

1.1 Motivation

Ensuring the security of Electronic Health Record Systems (EHRS) data against unauthorized
access is of utmost importance, and this objective can be accomplished by employing strong encoding
algorithms for data storage and transmission. The violation of data security could result in substantial
difficulties in upholding the confidentiality and accuracy of user data within EHRS. Consequently, the
encoding of data before transmission becomes an essential aspect. This study presents a viable method
to enhance data security by leveraging the Cuckoo Search (CS) algorithm to generate a private key for
Elliptic Curve Cryptography (ECC), while also incorporating the SHA-256 algorithm.

1.2 Contributions

This research presents four primary outcomes. First, it proposes a novel approach to secure EHRS
data, which involves the utilization of ECC, CS algorithm, and SHA-256. Second, it devises an efficient
private key for ECC with the use of the CS algorithm. Third, it enhances data security by encrypting
the ciphertext based on ECC-CS with SHA-256. Finally, the effectiveness of the proposed method is
demonstrated by comparing it with other existing models through empirical evaluation.

1.3 Organization

The paper is structured as follows: Related works are reviewed in Section 2. The CS algorithm
and ECC are explained in Section 3. Section 4 presents the proposed model. Section 5 provides an
evaluation and comparison of the proposed model with the other models. Finally, Section 6 concludes
the study and discusses future work.
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2 Related Works

In recent years, the healthcare industry has witnessed increasing concerns regarding the secu-
rity and privacy challenges inherent in Electronic Health Record Systems (EHRS). Consequently,
researchers have proposed various innovative methodologies to address these issues and ensure the
confidentiality, integrity, and availability of medical data. For instance, one approach suggested in [9]
involved the utilization of robust authentication and anonymity measures to protect user privacy in
telecare medical information systems. This system employs biometrics and pseudonyms to maintain
the confidentiality of patients’ identities while enabling authorized users to access medical data.
Similarly, study [10] introduced a privacy-preserving data aggregation scheme that employs the bilinear
ElGamal cryptosystem to secure patient privacy and data confidentiality during the aggregation of
data from multiple patients. In [11], a unique method was proposed for securing ECG data in telecare
medical information systems. The authors suggest encrypting the data using the singular value decom-
position method and subsequently compressing the encrypted data to enhance data security without
compromising its quality during transmission. This approach not only offers a high level of security
but also ensures the integrity of the data. Additionally, study [12] presented a fragile watermarking
scheme for medical images, allowing for the detection of tampered images. This technique utilizes
discrete wavelet transform and singular value decomposition to embed a watermark in medical images,
enabling the identification of any alterations made to the image. Consequently, the integrity of the
data is preserved. Another study [13] proposed two approaches to protect patient privacy in IoT-
based healthcare systems. The first approach, known as the PrivacyProtector mechanism, ensures
that data collection occurs without revealing the patient’s identity. The second approach employs a
quantum information hiding scheme, utilizing quantum entanglement and quantum teleportation to
securely transmit medical images over unsecured channels. This technique safeguards the medical
data from unauthorized access during transmission. In [14], a smart card-based cancelable finger-
vein biocryptosystem is proposed to enhance mobile healthcare data security while preserving user
privacy. This method generates a cancelable biometric template based on a user’s finger vein pattern,
facilitating authentication without divulging the user’s identity. As a result, user privacy is maintained
while authorized access to medical data is upheld. Furthermore, study [15] introduced an efficient
design for a novel public key scheme for medical data protection using the NanoPi Fire platform.
This scheme offers enhanced security and faster computation time, enabling real-time encryption
and decryption of medical data. Moreover, study [16] proposed an audio transmission approach
for medical reports in visa processing to mitigate the spread of communicable diseases among the
immigrant population. This approach enhances data security and privacy while improving immigrants’
access to healthcare services. It ensures the secure transmission of medical data while maintaining
the privacy of the immigrant population. Finally, study [17] presented a secured cloud computing
approach for medical data, incorporating watermarking and encryption to enhance data confidential-
ity and integrity while enabling efficient and secure data sharing. This approach ensures the secure
storage of medical data in the cloud while permitting authorized users to access the data securely.
Collectively, these innovative approaches have facilitated efficient and secure sharing of medical data
while preserving user privacy and data confidentiality. By employing a combination of techniques such
as biometrics-based authentication, secure data aggregation, encryption and compression of medical
data, watermarking, quantum information hiding, and cancelable biometric templates, researchers
have effectively addressed the security and privacy challenges associated with EHRS [18].
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3 Preliminaries

This section presents an overview of the CS and ECC algorithms.

3.1 Cuckoo Search Algorithm

The Obligate Interspecific Brood Parasites comprise a group of avian species, among which the
cuckoo is prominent, exhibiting a parasitic behavior driven by the cuckoo’s efficient egg-laying process.
This behavior entails depositing their eggs in the nests of other bird species and leaving them to hatch
and develop without any parental care. Consequently, the reproductive success of the host birds is
compromised, as their nesting success diminishes through various mechanisms. For instance, female
parasites may potentially remove or damage host eggs, while young parasites can evict or kill host
offspring following hatching. To address optimization problems inspired by natural phenomena, the
Cuckoo Search (CS) algorithm [5] was developed. This algorithm generates solutions within nests and
then improves them by modifying specific components of the solution while eliminating weaker nests.
Leveraging Lévy flights and Markov chain random walk, the CS algorithm creates new solutions that
are further optimized and efficient.

The term “Lévy flights” was originally coined by the French mathematician Paul Pierre Lévy
in the 1930s. Lévy flights refer to a type of random walk wherein movement lengths conform to a
probability distribution characterized by a power law tail. This distribution allows for infrequent yet
substantial movements, a pattern observed in various natural systems, such as the foraging behavior
of spider monkeys and the flight patterns of certain mammals. The power law distribution signifies
that occasional long-distance movements can yield greater benefits compared to numerous short
movements. Despite appearing random, Lévy flights have demonstrated efficacy in optimizing certain
search algorithms, leading to their application in diverse fields, including finance and biology [19].
Lévy [20] discovered that the equation y = |x|−α, where α is between 1 and 2, leads to a stable and
balanced distribution. Mantegna [21] created an algorithm to simulate this distribution, and the size
of each step is determined by a random variable described in Eq. (1).

η = x

|y|1/β
(1)

The standard deviation of the variable σ x can be determined by applying Eq. (2) when the variables
x and y follow a normal distribution with a mean of 0 and the standard deviation of σ y is 1.

σx =
{

� (1 + β) sin
(

πβ

2

)
[�(1 + β)/2] β2(β−1)/2

}1/β

(2)

According to a recommendation made in [21], when the standard deviation of x (σx) is 0.6965
and the standard deviation of y (σy) is 1, it is advised to use β= 1.5 in Eq. (2). Under these conditions,
when the absolute value of η is greater than or equal to 10, the probability distributions of η and the
symmetrical Lévy stable process exhibit similar asymptotic behavior. In [22], the performance of three
different methods for generating Lévy noise was compared, and Mantegna’s algorithm was found to be
the fastest. The proposed data security model incorporates multiple algorithms, such as the CS, ECC,
and SHA-256. The CS algorithm generates private keys for ECC, while SHA-256 ensures privacy
and security. This comprehensive solution ensures the confidentiality, integrity, and authenticity of
data, which makes it suitable for a variety of applications requiring high-level security, such as online
banking, e-commerce, and government systems.
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3.2 Elliptic-Curve Cryptography

ECC is a cryptographic technique that employs mathematical operations on small fields to provide
security. It is faster than other encoding techniques because of its short key length. The security of
ECC is maintained due to the complex exponential discrete logarithm problem [6]. To apply ECC,
two numbers (a and b) are necessary from a particular set called Fp. Moreover, an elliptical curve has
a set of points denoted as E (Fp), with Q being one of these points as shown in Eq. (3).

y2 = x3 + ax + b (3)

The process of encrypting data using ECC involves selecting a random number x from the Fp set,
between 1 and n−1, as a private key. The plaintext is first converted into bits and then mapped onto
an elliptic curve as (x, y) points. These points are subsequently encrypted and converted back into bits.
The process of encrypting an elliptic curve involves the following steps:

1. Initialization: The encoding algorithm is initialized by selecting appropriate parameters and
initializing necessary data structures, such as E, Q, and p. In some cases, this step may require
generating random numbers or other initial values.

2. Public Key Generation: A cryptographic key pair consisting of a public key and a private key
is created. The public key is used for data encoding, while the private key is used for decoding.
The keys are generated in a way that makes it computationally infeasible to derive the private
key from the public key. The private key, x, is used to determine the public key (H), which is
determined by the equation H = x.Q.

3. Encoding: Once the public key is generated, the plaintext data is encrypted using the public
key. Encoding involves transforming the original data into an unreadable form without the
corresponding private key, as depicted in Eq. (4), where r represents a random number.

Ciphertext = Enc (data) =
{

Ciphertext1 = r.Q
Ciphertext2 = data + r.H

(4)

4. Decoding: The encrypted data is decoded using the private key, as shown in Eq. (5). Decoding is
the process of reversing the encoding process and transforming the encrypted data back into its
original form. Only the owner of the private key can decrypt the data, ensuring confidentiality
and security.

Dec (Ciphertext) = Ciphertext2 − x.Ciphertext1 = data + r.H − x.r.Q = data + x.r.Q

− x.r.Q = data (5)

4 The Proposed Model

In order to ensure the secure encoding and decoding of data using ECC, it is necessary to generate
a random private key. To address this requirement, a proposed approach utilizes CS optimization to
generate such a key. The quality of the encoding for sensitive data in ECC is significantly impacted by
the randomness of the key used in the encoding process. CS is a mathematical technique that searches
for solutions in the search space, which is analogous to the discrete nests or eggs of host birds. In this
context, the objective of the CS algorithm is to identify the optimal private key (Pr) for ECC, which
can allow for accurate and secure decoding of the ciphertext to the original plaintext. The fitness of
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a solution, i.e., a private key, is determined by comparing the decrypted plaintext with the original
plaintext, and evaluating a fitness value based on the accuracy and security of the decoding. The
objective function for the CS algorithm in this context can be formulated as follows:

f (Pr) = −h (Dec(CP, Pr), B) (6)

where, CP is the ciphertext obtained after encoding, B is the original plaintext, Dec(CP, Pr) is the
decoding of the ciphertext CP using the private key Pr, h(x, y) is a function that measures the similarity
or distance between the decrypted plaintext x and the original plaintext y.

In this case, the negative sign is used to convert the fitness function into a minimization problem
where the goal is to minimize the distance between the decrypted plaintext and the original plaintext.

The following steps are involved in the proposed model:

1. The Cuckoo Search method starts by setting certain values: the number of nests (n), the size of
each nest (m), the chance of finding foreign eggs (pa), the step size (α = 0.01), and the maximum
number of iterations.

2. The host bird’s eggs are set up by picking a random sequence of numbers with the same length
as the private key. For ECC, the private key is 256 bits long.

3. New eggs are created using Eq. (1), except for the best egg, which stays the same. If the new
eggs are better than the current ones, they are selected randomly using Eq. (6).

4. Bad nests are removed by finding alien eggs through a process of generating a random number
and comparing it to the chance of discovering alien eggs (pa). If the random number is less
than pa, a new solution is created. If it is better than the current nests, it replaces them by
taking small steps from their current positions.

5. The creation of new nests and the finding of alien eggs are repeated until either the maximum
number of attempts is reached, or the best nest reaches the desired quality level. The values of
n, pa, and α are determined through experimentation.

The new method saves time by automatically assigning strings without user input. It uses the CS
algorithm to find the private keys for users 1 and 2, while the public key is based on Q and the private
key. The algorithm runs for a maximum of 175 iterations.

Algorithm 1 initializes variables and functions. It starts by defining the ECC curve equation and
calculating point Q. During encoding, the function CS() finds the best discrete nests or eggs for the
private key, and then SHA-256 is used to hash and encrypt texts. During decoding, the hash function
is applied first, employing XOR, and right-shift, and left-shift procedures, to modify the initial hash
values. ECC decoding is then performed. The proposed method offers many benefits: it automates
the string assignment process, reduces time, and ensures secure communication. It also uses CS to
optimize the solution and employs hash functions for extra security.

Overall, this new model is an efficient and secure way to assign strings and transmit data between
users. To increase data confidentiality, the suggested approach follows ECC encoding with the XOR
and shift-left operators. There are four ECC-based phases in these operators: Encoding (1), Encoding
(2), Decoding (1), and Decoding (2). This strengthens the model’s core and ensures secure message
transmission. During decoding, the encrypted text undergoes shift-left operations and XOR before
using the ECC algorithm.
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Algorithm 1:
1. ECC():

a. Perform the initialization phase.
b. Determine a large prime number (p) using the parameters E and Fp.
c. Select public parameters.
d. Produce a base point (Q).
e. Generate a secret key (Pr) using the CS() function.
f. Calculate a public key (Pu) by multiplying the base point (Q) with the private key (Pr).

2. Encoding():
a. Obtain the plaintext from a text file (B).
b. Generate a private key (PrB) using the CS() function.
c. Convert the plaintext to an integer value (m).
d. Generate a random number (r).
e. Calculate the first part of the ciphertext1 by multiplying the base point (Q) with the random

number (r).
f. Calculate the second part of the ciphertext2 by adding the plaintext (m) with the product of

the secret key (PrA) and the public key (Pu).
g. Store the ciphertext as a pair of ciphertext1 and ciphertext2 (CP).
h. Calculate the SHA-256 hash of the plaintext to obtain the encrypted text.

3. Decoding():
a. Calculate the SHA-256 hash of the encrypted text to obtain the original plaintext.
b. Obtain the ciphertext (CP).
c. Extract the left part of the ciphertext1.
d. Extract the right part of the ciphertext2.
e. Obtain the original plaintext (m) by subtracting the product of the secret key (PrA) and the

base point (ciphertext1) from the second part of the ciphertext (ciphertext2).
f. Convert the integer value of the plaintext (m) to its corresponding plain text.

4. CS():
a. Initialize the current solutions.
b. Initiate a loop.
c. Evaluate the fitness for each solution in the population of size n.
d. Identify the best solution.
e. For each solution in the population, take a step towards the best solution using a normally

distributed random number to calculate the step size.
f. Obtain the new solution by rounding off the result of the step.
g. Keep the solution within the bounds of the problem.
h. Evaluate the fitness of the new solution.
i. If the fitness of the new solution is better than the fitness of the previous solution, accept the

new solution.
j. Choose two random solutions from the population.

k. Generate a random scaling factor.
l. Generate a new candidate solution by adding the scaled difference between the two solutions

to each solution in the population.
m. Evaluate the fitness of the candidate solution.
n. If the fitness of the candidate solution is better than the fitness of the previous solution, accept

the candidate solution.
(Continued)
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Algorithm 1 (continued)
o. Randomly permute the population.
p. Obtain another random permutation of the population.
q. Generate a random number.
r. Evaluate the fitness of the candidate solution.
s. Generate another random number.
t. If the random number is less than a certain probability (pa), accept the candidate solution.
u. Keep the solution within the bounds of the problem.
v. Evaluate the fitness of the best solution.
w. Continue the loop until either the maximum number of iterations is reached or the fitness

threshold is achieved.
x. Evaluate the fitness of the best solution.
y. End the loop.

5. SHA-256():
a. Initialize the hash values.
b. Initialize the round constants.
c. Initialize the XOR and shift right operators.
d. Initialize the working variables.
e. Run the main loop of the compression function.
f. Add the compressed chunk to the current hash value.
g. Produce the final hash value.
h. End the function.

5 Evaluation and Results

This section aims to evaluate the encoding and decoding throughput and speed of the proposed
model. The experiments were executed on a Windows 10 Pro machine, utilizing C# programming
language via Microsoft Visual Studio 2012. The computer was equipped with an AMD E-350
Processor, running at a frequency of 1.60 GHz, and 4 GB of RAM.

The initial population size, randomly chosen by the algorithm, was influenced by the key length.
In this specific model, the key length was determined by selecting random integers between 0 and
127. The size of the initial population was therefore dependent on this key length. The performance
evaluation of the encoding and decoding process was based on these experimental settings.

5.1 Performance Analysis

5.1.1 Decoding and Encoding Times

This section presents an evaluation of the encoding and decoding speeds of the proposed model.
The results are depicted in Figs. 1 and 2, respectively. Fig. 1 displays the encoding time (measured
in milliseconds) of the proposed model at different iterations with an initial population of 25. The
data indicates that the encoding time decreases as the number of iterations increases, with the lowest
encoding time observed at 75 iterations. For instance, when encoding a file of 75,000 KB, the
encoding time is 8,125 ms for 25 iterations, 7,635 ms for 75 iterations, and 7,930 ms for 175 iterations.
The findings are supported by the data presented in the figures, which were obtained through a
comprehensive experimental study conducted on the proposed model.
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Figure 1: Encoding time based on iterations

Figure 2: Decoding time based on iterations

In contrast, Fig. 2 displays the decoding time in milliseconds of the suggested model at different
iterations while using an initial population of 25. The optimal condition is when the decoding time
is less than the encoding time, which results in a prompt and efficient system. The results reveal
that the decoding time reaches its minimum at 125 iterations. For example, when decrypting a file of
75,000 KB, the decoding time measures at 1123.201 ms for 25 iterations, 1102.012 ms for 125 iterations,
and 1237.072 ms for 175 iterations.

The findings depicted in Fig. 3 show that the proposed model exhibits varying mean encoding
and decoding times at different iterations. The most efficient encoding time is observed at the 75th
iteration, while the optimal decoding time is achieved at the 125th iteration. These results suggest that
the proposed model meets the desired security level while also demonstrating improved execution time.

Therefore, it can be concluded that the proposed model is a viable solution for achieving secure
and efficient data encoding and decoding. The outcomes of this evaluation indicate that the suggested
model is effective in terms of both encoding and decoding speed. The optimal number of iterations
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for minimizing encoding time is 75, while the optimal number for minimizing decoding time is 125.
These results have significant implications for the development of more efficient and effective encoding
algorithms in the future and contribute to the advancement of the field of cryptography. Additionally,
the proposed model’s improved execution time can provide practical benefits for various applications,
particularly those involving large file sizes.

Figure 3: Times on average for encoding and decoding at various iterations

5.2 Comparison and Evaluation

This section provides a comparative analysis between the proposed model and AES, RSA [23],
based on the evaluation of 14 files with varying sizes and a 128-bit key length using Visual Studio.

5.2.1 Encoding and Decoding Based on AES and Proposed Model

As presented in Table 1. The main aim of this study was to compare the efficiency of the proposed
model with AES in terms of encoding and decoding time. The results reveal that the suggested model
outperforms AES, particularly when dealing with a data size of 50 MB. The encoding time of AES in
this scenario is 7.009 s, while the proposed model only takes 4.62 s, indicating a significant improvement
in processing time. As shown in Fig. 4, the proposed model’s encoding time is considerably shorter than
that of AES, resulting in a reduction of about 34.17% in the execution time of encoding on a file size
of 50 MB. Additionally, the proposed model has been demonstrated to outperform AES, establishing
its superiority over the current AES approach in terms of efficiency.

Table 1: An evaluation of the suggested model in contrast to AES

Input file size (MB) AES (second) Proposed model (second)
Encoding Decoding Encoding Decoding

1 0.198 0.19 0.87 0.75
3 0.621 0.513 1.11 1.01
7 1.128 1.02 1.35 1.22

(Continued)
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Table 1 (continued)

Input file size (MB) AES (second) Proposed model (second)
Encoding Decoding Encoding Decoding

10 1.782 1.301 1.92 1.89
17 2.754 2.7 2.04 1.99
21 2.942 2.981 2.21 2.11
25 3.991 3.018 2.41 2.23
28 4.025 3.159 2.79 2.43
32 4.081 3.228 2.31 2.37
35 4.104 3.814 3.12 2.79
39 4.183 4.369 3.24 2.87
42 6.028 4.841 3.53 3.12
46 5.783 4.996 3.91 3.51
50 7.009 5.808 4.62 3.29

Figure 4: A comparison of the suggested model’s and AES’s encoding times

Regarding decoding time, the comparison between the proposed model and AES is illustrated in
Fig. 5, indicating that the proposed model outperforms AES in terms of speed. The proposed model
requires fewer computations during its encoding and decoding processes, resulting in faster processing
speeds when compared to AES. The findings indicate that the proposed model’s encoding time is
considerably shorter, resulting in a reduction of about 43.32% in the execution time of encoding on a
file size of 50 MB.

Overall, the proposed model in this study is superior to AES in both encoding and decoding
speed, making it a more efficient and feasible alternative for cryptographic applications, particularly
in situations with limited resources. The use of ECC in the suggested model reduces the computational
burden, making it more rapid and well-suited for real-time scenarios. These advantages make the
proposed model a promising solution for secure data communication.
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Figure 5: Evaluating the differences between the suggested model’s and AES’s decoding times

In brief, the model suggested in this study surpasses AES in both encoding and decoding
speed, thereby proving to be a more efficient and feasible alternative for cryptographic applications,
particularly in situations with limited resources. The utilization of ECC in the suggested model curtails
the computational burden, rendering it more rapid and well-suited for real-time scenarios. These
advantages make the proposed model a promising solution for secure data communication.

5.2.2 Encoding and Decoding Based on RSA and Proposed Model

This section offers a comparative evaluation between a newly suggested model and RSA, which
was discussed in the work of [23]. The main objective of the analysis was to assess the efficiency of the
proposed model against RSA in terms of both encoding and decoding time. The findings, which are
summarized in Table 2, reveal that the proposed model demonstrates superior performance compared
to RSA, especially when dealing with large data sets of 50 MB. The results indicate that RSA’s encoding
time for this data size is 475.128 s, whereas the proposed model only requires 3.29 s, representing a
significant enhancement in processing time. RSA is a heavyweight cryptography system due to its
large key size, while the ECC offers a more efficient alternative with a smaller key size, resulting in
faster processing speeds and less memory usage, as mentioned in [24]. Therefore, implementing the
ECC on devices with limited resources can lead to quicker computations in real-time.

Table 2: An evaluation of the suggested model in contrast to RSA

Input file size (MB) RSA (second) Proposed model (second)
Encoding Decoding Encoding Decoding

1 16.251 23.541 0.87 0.75
3 47.841 79.101 1.11 1.01
7 84.821 141.354 1.35 1.22
10 135.102 207.168 1.92 1.89
17 173.712 262.451 2.04 1.99
21 187.135 302.981 2.21 2.11

(Continued)



JIHPP, 2023, vol.5 13

Table 2 (continued)

Input file size (MB) RSA (second) Proposed model (second)
Encoding Decoding Encoding Decoding

25 259.354 413.012 2.41 2.23
28 278.235 454.13 2.79 2.43
32 286.361 470.012 2.31 2.37
35 344.312 552.231 3.12 2.79
39 352.421 572.291 3.24 2.87
42 384.135 606.041 3.53 3.12
46 394.281 632.701 3.91 3.51
50 475.128 775.992 4.62 3.29

Fig. 6 presents a comparison of the proposed model’s encoding time with RSA, demonstrating
that the proposed model’s encoding time is considerably shorter, resulting in a reduction of about
0.99% in the execution time of encoding on a file size of 50 MB. Additionally, the proposed model has
been shown to outperform RSA, establishing its superiority over RSA in terms of efficiency.

Figure 6: A comparison of the suggested model’s and RSA’s encoding times

Fig. 7 compares the decoding time between the proposed model and RSA, indicating that the
proposed model outperforms RSA in terms of speed. RSA’s slower performance can be attributed to
its computationally intensive encoding and decoding processes, which require modular exponentiation
operations and private key exponent calculations, resulting in slower processing speed. Conversely, the
proposed model requires fewer computations during its encoding and decoding processes, resulting
in faster processing speeds when compared to RSA. The proposed model’s superior performance is
therefore attributed to its reduced computational requirements.

In brief, the model suggested in this study surpasses AES-RSA in both encoding and decoding
speed, thereby proving to be a more efficient and feasible alternative for cryptographic applications,
particularly in situations with limited resources. The utilization of ECC in the suggested model curtails
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the computational burden, rendering it more rapid and well-suited for real-time scenarios. These
advantages make the proposed model a promising solution for secure data communication.

Figure 7: Evaluating the differences between the suggested model’s and RSA’s decoding times

5.2.3 Encoding and Decoding Based on GA, and Proposed Model

This section provides a comparative analysis of the metaheuristic Genetic Algorithm (GA) [25],
combined with the proposed model for generating ECC keys. These algorithms utilize selection,
crossover, and mutation operators to search for the optimal ECC solution. The results, presented in
Table 3, indicate that the proposed CS algorithm outperforms GA in terms of encoding and decoding
times, resulting in better solutions, search, and power convergence. Specifically, when encoding a
10,000 KB file, the proposed CS algorithm demonstrated faster encoding and decoding times than
GA. ECC-GA-SHA-256 required 4370 ms for encoding and 4292 ms for decoding, while the proposed
model exhibited encoding and decoding times of 4011 and 3726 ms, respectively.

Table 3: Presents a comparison of the encoding and decoding times (in milliseconds) of the proposed
model with those of the (GA)

File size ECC-GA-SHA-256 Proposed model
Encoding Decoding Encoding Decoding

1000 103 99 75 63
2000 198 183 141 121
3000 251 247 221 193
4000 317 307 290 253
5000 402 398 374 350
6000 501 489 467 429
7000 583 571 527 513
8000 623 617 593 529
9000 679 673 645 597
10000 713 708 678 678

(Continued)
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Table 3 (continued)

File size ECC-GA-SHA-256 Proposed model
Encoding Decoding Encoding Decoding

55000 4370 4292 4011 3726
Throughput 12.58581236 12.81453868 13.7122912 14.76113795

The results presented in Figs. 8 and 9 offer additional evidence that the proposed model outper-
forms other methods in terms of both execution time and encoding efficiency. Thus, the proposed
model is a superior choice when compared to existing techniques for generating ECC keys within the
context of the CS algorithm. These findings strongly suggest that the implementation of the proposed
CS algorithm leads to an increase in the security and efficiency of cryptographic systems.

Figure 8: Illustrates a comparison of the encoding time between the proposed model and GA

5.3 Throughput

This investigation focused on examining the encoding and decoding capabilities of a proposed
model, as measured by its speed, using Eqs. (7) and (8) [26], as the determining factors. A higher
speed reading indicated a superior model. To assess the model’s effectiveness, a 55000 KB file was
utilized for testing, and the resulting data was compared against that of the (ECC-GA-SHA-256)
model. The proposed model demonstrated encoding and decoding throughputs of 13.71 and 14.76 ms,
respectively, whereas the (ECC-GA-SHA-256) model exhibited encoding and decoding throughputs
of 12.58 and 12.81 ms, respectively. Consequently, the proposed model outperformed the (ECC-GA-
SHA-256) model, as well as the other comparison models, in terms of encoding and decoding speed.

Encoding Throughput = �(Input File)/� (Encoding Time) (7)

Decoding Throughput = �(Input File)/� (Decoding Time) (8)
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Figure 9: Illustrates a comparison of the decoding time of the proposed model with that of GA

According to the results, the proposed model demonstrated approximately 8.95% improvement
in encoding throughput and 15.17% improvement in decoding throughput over the (ECC-GA-SHA-
256) model. These outcomes reveal that the proposed model offers a significantly more efficient and
effective approach to encoding and decoding data quickly and securely compared to the other models
examined.

6 Conclusion and Future Works

In contemporary times, the availability of health information on the internet and mobile devices
has increased significantly. However, maintaining the confidentiality of patients’ medical information
remains a crucial concern when sharing it with healthcare professionals. Despite the convenience
offered by electronic records and the internet for medical information sharing, concerns about data
security persist. To ensure the safety of medical information, certain security methods prove more
effective than others. This research paper introduced a novel approach to enhance the security
of electronic health records (EHRS) by employing a combination of ECC, SHA-256, and the CS
algorithm. The proposed approach demonstrates swiftness and efficiency, resulting in shorter encoding
and decoding times. Through simulations, the study concludes that employing 75 iterations for
encoding and 125 iterations for decoding yields optimal results. When compared to other techniques,
the newly proposed method showcases a 15.17% increase in efficiency and offers robust protection
against attacks. This makes it a suitable option for devices with limited resources. However, it is
important to acknowledge the limitations of this study.

While this research provides valuable insights into enhancing EHR data security, it is important to
note some limitations. Firstly, the evaluation and simulations were conducted under specific scenarios
and assumptions. The performance and effectiveness of the proposed method may vary in different
environments or real-world implementations. Additionally, the study focused on a specific set of
security algorithms, and further exploration of alternative encryption and key generation methods
could be beneficial.

Building upon this study, future research should investigate additional encoding techniques
and novel approaches to creating private keys for EHRs. Exploring the integration of emerging
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technologies, such as blockchain or secure multi-party computation, could further enhance the security
and privacy of electronic health records. Additionally, conducting real-world trials and assessments to
evaluate the proposed method’s effectiveness in diverse healthcare settings would provide valuable
insights and validate its practicality.

By addressing these limitations and pursuing these future directions, researchers can continue to
advance the field of EHR security, ultimately ensuring the confidentiality, integrity, and accessibility
of patients’ health information.
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