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ABSTRACT: With the internet and modern mobile technologies, health-related information is readily available, and
thus, the security aspect of health information is at great risk. Confidentiality and protection of medical information
regarding patients are of prime concern in the context of sharing such data with different healthcare providers. On
one hand, Electronic Health Record Systems (EHRS) and online sites have proved to be hassle-free ways of exchanging
medical information between health professionals. On the other hand, data security issues remain a concern. The
proposed paper presents an improvement in the security mechanism of EHRS by utilizing the Lion Optimization
Algorithm (LOA) and the Secure Hash Algorithm (SHA-256) algorithm, which is a better security mechanism, and
elliptic curve cryptography. This design will use LOA for the generation of an Elliptic Curve Cryptography (ECC) private
key to improve the security of data storage in EHRs. The design will be further justified by comparing the encoding
and decoding time against the other techniques such as ECC-GA-SHA-256. The results depict that the proposed model
indeed gives faster encoding and decoding times. It also outperforms other encryption methods, as it presents encoding
and decoding times higher by more than 18.89% when compared to those methods. This means there is great potential
for the proposed approach to boost both the security and performance of EHRS. That is, this work could be one of the
effective solutions to the security-related challenges of the EHR systems, as it was designed using LOA with SHA-256
and ECC.

KEYWORDS: Information security; electronic health record systems; lion optimization algorithm; elliptic curve
cryptography; SHA-256 algorithm

1 Introduction
EHRS is a complete electronic repository of the patient’s health information, such as medical history,

diagnoses, medications, allergies, immunization records, laboratory results, and all other relevant clinical
data, as explained in [1]. An EHR contains real-time, up-to-date, accurate patient information for the
healthcare professional to make informed decisions on diagnosis, treatment, and follow-up care.

EHRs play a critical role in enhancing communication and coordination among healthcare prac-
titioners, significantly improving patient safety and care quality. By streamlining administrative tasks
such as reducing paperwork and eliminating redundant testing, EHRs alleviate the burden on healthcare
professionals while promoting efficiency [2]. These records are securely maintained in electronic databases,
ensuring access is restricted to authorized personnel directly involved in patient care. Moreover, EHRs enable
data sharing across different healthcare facilities, facilitating seamless integration and coordination of care
delivery, ultimately optimizing patient outcomes [3]. However, standardization of electronic usage protocols
and practices is required for the realization of universal usability and interoperability. Strong mechanisms
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for access control, storage, transmission, and regulatory obligations are required to ensure patient privacy
and the security of the data [4]. In this regard, a hybrid model has been proposed that will integrate the SHA-
256 hashing algorithm, elliptic curve cryptography, and Lion Optimization Algorithm [5]. In this model,
the ECC private key will be generated by LOA to optimize key generation to enhance the overall security of
the system. LOA is a metaphorical optimization algorithm, taking inspiration from the behavior and social
organization of lions. It improves the candidate solutions through exploration and exploitation, using the
territorial defense and hunting nature of the lions to reach the optimal solution in a given population. As time
goes on, the solution using the algorithm tends to converge to the best possible one, hence improving the
security performance of the system. The public-key encryption method of ECC utilizing elliptic curves over
finite fields has widely been recognized as having strong security combined with computational efficiency
and shorter key length in contrast to the more traditional encryption methods. Due to these advantages, ECC
finds a wide range of applications in secure messaging, digital signatures, and exchanging keys. The smaller
key sizes of ECC will offer better computational and memory efficiency without compromising security [6].
In addition, SHA-256 is a hash function in cryptocurrency, taken to involves fixed-size 256-bit output that
keeps data integrity to detect even slight changes during transmission [7]. Even when the input of the data
alters slightly, the value of the hash completely changes, hence an indication of tampering [8]. Key exchange
with ECC and digital signature, along with integrity using SHA-256, makes the communication and data
exchange secure over the Internet. Using such hybrid techniques, namely LOA for the generation of keys,
ECC for encryption, and SHA-256 for integrity verification, healthcare systems can ensure more security for
EHRs. It ensures the privacy of patients while still allowing the sharing of information to take place, thus
improving effective, efficient, and secure health delivery.

1.1 Motivation
Security concerns of EHRS data from unauthorized access are very basic issues related to any infor-

mation of patients concerning confidentiality and integrity. The breaches in EHRS data without authorized
access can easily lead to a situation with serious consequences, such as compromising the confidentiality of
patients and even manipulation of sensitive health data. For that, methods for strong encryption of storage
and transportation of data need to be developed. The most important strategies to protect this information
involve encrypting it before any transmission is made, so only trusted personnel would be able to read such
information. This paper will present a method of increasing EHRS data security by making use of LOA for
generating a private key for ECC. Further, it embeds the SHA-256 algorithm for cryptographic hashing to
enhance data security. Conclusively, LOA, ECC, and SHA-256 provide an integrated solution in this proposed
work for holistic fortification in strengthening EHRS security from unauthorized access, and also for reliable
transmission and storage of data.

1.2 Contributions
The contribution this paper makes to the security of EHRS is done in four important ways. First, it

introduces a new concept in EHRS security by integrating Elliptic Curve Cryptography, the Lion Optimiza-
tion Algorithm, and the SHA-256 cryptographic hashing algorithm. Second, it creates an effective generation
method of private keys in ECC with the LOA for optimized key generation. It refines the study of security
in data by performing encryption on ciphertext with ECC and LOA, which is further strengthened by the
SHA-256 algorithm. Finally, empirical evaluation models the proposed approach along with other existing
approaches for a performance study of encryption speed and security strength.
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1.3 Organization
The rest of the paper is organized as follows: Section 2 presents some related works in this field. Section 3

explains LOA and ECC. Section 4 proposes the model of EHRS that will be implemented. Section 5 compares
the proposed approach to other existing approaches. Section 6 discusses how the proposed model could be
integrated into existing EHRS or its impact on system usability. Section 7 includes a discussion on compliance
with data protection laws and ethical considerations in healthcare. Finally, Section 8 concludes the study and
outlines the future directions.

2 Related Works
In the last decade, the security and privacy challenges in EHRS have emerged as a serious health

concern; therefore, many innovative methodologies have been proposed, keeping in mind confidentiality,
the integrity and availability of medical data are critical in healthcare systems. For instance, the study
presented in [9] introduces robust authentication mechanisms and anonymity-focused security measures
aimed at safeguarding user privacy in telecare medical information systems. That method uses biometri
LOA and pseudonyms, which ensure the confidentiality of the patients’ identities, while the healthcare
providers can obtain the medical data. In the same context, reference [10] proposes a data aggregation
scheme in a manner that ensures the preservation of privacy, which uses the bilinear ElGamal cryptosystem
in order to protect the sensitive information of patients when their medical data are aggregated. Another
novel approach was presented in [11] in order to secure ECG data in telecare medical information systems.
It is an approach that makes use of SVD in encryption and data compression; this goes a long way in
adding security to the data without tampering with the quality of the data while in transmission. The
integrity of the data would thus be intact. A fragile watermarking scheme for detecting medical images
when tampered with is also supported in. Using the embedding of marks, done through a combination of
discrete wavelet transform and singular value decomposition on medical images, this mechanism identifies
any modification and hence can maintain data integrity [12]. It also proposes two methods in for protecting
patient privacy in IoT-based healthcare systems [13] a mechanism called PrivacyProtector, which does not
disclose the patients’ identity and allows data collection; and a quantum information hiding approach based
on quantum entanglement and quantum teleportation that sets a secure channel for transmitting medical
images across an unsecured channel. In [14], the authors propose a cancelable finger-vein biocryptosystem
that leverages smart card technology to improve security in mobile healthcare data while ensuring the
preservation of user privacy. A cancelable biometric template is generated from the finger-vein pattern
of a user.enabling secure and reliable authentication without revealing or compromising sensitive identity
information. Similarly, the study in [15] introduces an efficient public-key cryptosystem implemented on a
NanoPi Fire platform, designed to safeguard medical data. This system ensures robust security while offering
fast encryption and decryption processes, facilitating real-time protection of sensitive medical information.
Another state-of-the-art approach, proposed in [16], has been oriented toward the secure audio transmission
of medical reports for processing visas with a view to mitigating the spread of communicable diseases
among the immigrant population. This would improve the security and privacy of data while providing
better health access to immigrants through the secure transmission of sensitive information regarding
patients’ medical data. The idea in proposes a secure cloud-based medical data processing methodology
that involves watermarking and encryption of the medical data as a way of ensuring confidentiality and
integrity, and at the same time allowing for efficient and secure sharing of the data. All these cumulatively
have attained milestones in securing medical data sharing while keeping patients’ privacy [17]. Various
advanced techniques have been implemented to address the security and privacy challenges of EHRs.
Various methodologies have been proposed to enhance security and privacy, including biometric-based
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authentication systems, techniques for secure data aggregation, approaches integrating compression and
encryption, the application of watermarking methods, advancements in quantum information hiding, and
the utilization of cancelable biometric templates [18]. Furthermore, the study in [19] proposes a novel
approach integrating the CS, SHA-256, and ECC to enhance EHR system security. By utilizing CS to generate
ECC private keys, this method significantly improves the security of data storage while achieving faster
encoding and decoding times compared to conventional techniques. In another significant contribution,
reference [20] investigates the security of medical images in IoT healthcare using cryptographic and
optimization approaches. The framework utilizes RSA-AM, HO, and OBBO to optimize key management
for enhanced encryption and decryption. Similarly, research in [21] explores the potential of HE to secure
EHR systems, enabling data processing on encrypted information without compromising privacy. The study
demonstrates the feasibility of HE in enhancing both data confidentiality and system performance for
healthcare analytics and machine learning. Additionally, reference [22] discusses the safeguarding of medical
images in IoT healthcare through lightweight cryptographic techniques, incorporating deep learning-based
encryption and decryption networks. This approach enhances the confidentiality, integrity, and availability of
medical images, providing a secure framework for medical imaging in connected healthcare environments.

The work in [23] proposed the Blockchain-Assisted IoT Healthcare System, BHS-ALOHDL, which
combines the Ant Lion Optimizer for feature selection, a hybrid deep learning model comprising CNN
and LSTM for intrusion detection, along with the FPA for hyperparameter optimization. This approach
has been able to show superior detection accuracy with enhanced system security on benchmark datasets.
Similarly, reference [24] proposed a secured cloud-based medical data-sharing system using a hybrid A-
BRSA encryption model that integrates attribute-based encryption with B-RSA. It utilized the SALO to select
the best key value and demonstrated that it improves the performance of this system in secure medical data
sharing within cloud-assisted environments. Finally, IoT-based patient monitoring was proposed by [25]
integrating a hybrid LSTM-RNN with the Lion Optimization for feature selection. It achieved 99.99%
accuracy regarding the prediction of cardiac health conditions based on real-time data for early detection
and personalized interventions. These studies together reveal the potentials of optimization algorithms along
with advanced computational models to resolve some key security, efficiency, and prediction issues related
to IoT healthcare systems.

3 Preliminaries
This section presents an overview of the LOA and ECC algorithms.

3.1 Meta-Heuristic Lion Optimization Algorithm
The LOA is a metaheuristic stochastic approach designed for solving optimization problems [5].

Algorithms based on metaheuristics are effective in giving good solutions in each iteration. An LOA typically
generates a random population in the solution space. Each solution here is called a “lion,” modeled as Eq. (1):

L = (y1 , y2, y3, . . . , yNd) (1)

Here, y1 , y2, y3 are dimensional positions of individual lions, while yNd presents the number of
dimensions in the search space. A fraction P of the population consists of nomadic lions that are generated
randomly, and the rest may be resident lions. The position of every lion denoted by y has n elements as:
y = (y1 , y2, . . . , yn). It represents the position of the candidate solution in the search space. Further, the
algorithm calculates the fitness value of each lion. The fitness function specifies how the candidate solution
will deserve to fit concerning the problem it will be applied to. Then, LOA goes into the following process:
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Step 1: Initialization: The population is initialized randomly throughout the solution space, and the
position of the lions is kept in a matrix. An objective function calculates the fitness value for every lion and
then sorts and stores it in a matrix as Eq. (2):

g(L) = g(y1 , y2, . . . , yNd) (2)

where g(L) is the fitness value and yNd represents the dimensional space.
Step 2: Mating: The generation of new solutions through the combination of the existing ones, with

operations like mutation and crossover. Eliminate worse solutions to retain better ones only.
Step 3: Territorial Defense: This step compares the fitness values for nomadic lions against those

of resident lions. If a better fitness value of a nomadic lion within the resident lion exists, it replaces the
resident lion.

Step 4: Territory Takeover: In this phase, all resident lions are sorted according to their fitness values.
The weak males get expelled to become nomads, and the stronger ones continue as resident lions.

The LOA does a good job in feature selection and enhancing the generalization of classification models.

3.2 Balancing Exploration and Exploitation in LOA
A critical aspect of the Lion Optimization Algorithm (LOA) is balancing exploration and exploitation

within the solution space. This balance ensures that the algorithm effectively searches for potential solutions
(exploration) while converging on the optimal ones (exploitation).

LOA achieves this balance by the following mechanisms:

1. Population Division: The population of the lions falls into two portions: The resident lions and the
nomadic lions. The resident lion optimizes the solution in his territory by refining the solutions, while
the nomadic lion increases exploration through the search for new areas in the solution space to
maintain the diversity and avoid premature convergence.

2. Territorial Defense and Takeover: The strong resident lions replace the weaker ones to defend their
territories. If the nomadic lions are superior, they can take over the territories, hence introducing better
solutions and maintaining dynamic balance between local refinement and global search.

3. Crossover and Mutation: Mating introduces diversity into the gene pool, exploits superior character-
istics, and passes those on to new generations; adjustable probabilities for mutation are ways one can
manage the intensity of exploration.

4. Parameter Tuning: Parameters like the number of prides, pride size, and the probability of nomadic
replacement directly affect the balance. For instance, increasing nomadic replacement promotes
exploration, while a larger number of prides increases local exploitation.

5. Dynamics of Iteration: While in the early iterations, exploration dominates in order to have a broad
search in the solution space, in later stages, the focus shifts toward exploitation to refine the best
solutions in order to converge on the optimal result.

These mechanisms guarantee LOA adaptability and effectiveness in a wide range of optimization tasks.
In the context of this work, this balance is fundamental for the generation of secure and optimized private
keys: while exploration will provide randomness to robustly populate cryptographic properties, exploitation
will tune the keys toward optimal security properties.
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3.3 Elliptic-Curve Cryptography
ECC is a powerful technique of cryptographic that leverages the mathematics of elliptic curves over

finite fields to achieve secure communication. ECC is renowned for its efficiency, offering strong security
with relatively short key lengths, making it faster than many traditional encoding techniques. The security of
ECC is rooted in the computational complexity of the discrete logarithm problem over elliptic curves, which
ensures resistance to cryptographic attacks [6].

In ECC, two parameters, a and b, are selected from a finite field Fp, and the elliptic curve is defined as
a set of points satisfying the equation:

y2 = x3 + ax + b (3)

The curve includes a set of points, often known as E(Fp), with Q being an example of a point on the
curve. The ECC encryption process involves the following steps:

1. Parameter Initialization: This step establishes the necessary parameters and initializes data structures,
including the elliptic curve E, a base point Q, and the prime p. Additionally, random values or initial
parameters may be generated as needed.

2. Key Pair Generation: ECC employs a key pair, which is comprised of two distinct but mathematically
related keys: a public key and a private key. The private key, denoted as x, is a randomly selected number
from the finite field Fp in the range 1 ≤ x ≤ n − 1. The corresponding public key, H, is computed by
H = x ⋅ Q

3. The public key is primarily utilized for encoding information conversely, the private key plays a crucial
role in decoding the encrypted data. The key pair is generated through a process designed to ensure that
deriving the private key from the public key is computationally infeasible.

4. Encoding: The encoding process begins by converting plaintext data into a binary format and mapping
it onto the elliptic curve as a set of points (x , y). Encryption is then performed using the public key,
rendering the information unreadable without the corresponding private key. The ciphertext consists of
two components, as shown in the equation:

Ciphertext = Enc(data) =
⎧⎪⎪
⎨
⎪⎪⎩

Ciphertext1 = r ⋅ Q
Ciphertext2 = data + r ⋅H

(4)

Here, r is a randomly chosen number used to enhance encryption security.
5. Decoding: Decoding involves recovering the original data using the private key x. The ciphertext is

decrypted through the equation: Dec(Ciphertext) = Ciphertext2 − x ⋅Ciphertext1.
Substituting the values yields:

data + r ⋅H − x ⋅ r ⋅ Q = data + x ⋅ r ⋅ Q − x ⋅ r ⋅ Q = data (5)

This would ensure that only the owner of the private key successfully decrypts the encrypted data, and
confidentiality and security remain paramount during communication. If the elliptic curve algorithms are
used properly, their mathematical difficulty ensures that unauthorized access is not gained, and sensitive
information is available to the recipient it was intended for. This is a strong mechanism and one of the
backbones of secure systems: it protects data integrity and builds trust in digital interactions.
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4 The Proposed Model
A random private key generation is considered paramount to the secure encryption and decryption of

data in ECC. This paper aims at proposing a method where LOA could be used for generating such a key. The
randomness within a private key is actually one of the critical keys that decide upon the quality of sensitive
data encryption on ECC. These optimization techniques include LOA, which essentially function to find the
optimal set of solutions available within a pre-defined search space. In this regard, the goal of LOA would
be to determine the optimal privet key (Pr) for ECC so that the ciphertext can effectively be decrypted back
into its original plaintext securely and accurately.

The fitness degree of the solution of a private key might be obtained by a comparison with the decrypted
plaintext against its original plaintext. The fitness function could be based on security and accuracy in the
process of decryption. The objective function of LOA here may, therefore, be formulated as Eq. (6):

f (Pr) = −h(Dec (CP, Pr), B) (6)

In this model, the ciphertext CP represents the encrypted output generated after the encryption process,
while B corresponds to the original plaintext. The decryption process, denoted as Dec(CP, Pr), involves
decrypting CP using the private key Pr. The similarity or distance between the original plaintext y and the
decrypted plaintext x is computed using the function h(x , y). To frame the problem as a minimization task,
a negative sign is introduced in the objective function, aiming to minimize the discrepancy between the
original text and its decrypted counterpart.

The proposed model comprises a series of structured steps designed to achieve optimal results, detailed
as follows:

1. Initialization: The Lion Optimizaton Algorithm (LOA) is initialized by defining key parameters,
including the number of prides (n), the size of each pride (m), the detection probability of foreign
solutions (p_a), the step size (α = 0.01), and the maximum number of iterations. These parameters
establish the foundation for the optimization process.

2. Optimization Process: During every iteration of LOA, both the exploration and exploitation strategies
create new candidate private keys or solutions. The quality of each candidate solution is evaluated based
on the objective function as given by Eq. (6). Hence, the inferior solution would be replaced by the
better one, which serves to help the process incrementally refine the private key candidates.

3. Elimination of Inferior Solutions: “Weak” prides are identified by generating random numbers and
comparing them against the detection probability pa . If a pride’s fitness falls below a defined threshold,
it is replaced with a newly generated result. This iterative process continues until either the maximum
number of iterations is reached or an optimal solution is identified.

4. Termination: The process concludes when the best-performing pride achieves the desired solution
quality. Experimentation determines the optimal values for parameters such as n and pa , further
refining the algorithm’s performance.

The proposed scheme significantly enhances the efficiency of automating the assignment of private key
strings, eliminating the need for manual input. In this approach, the Level of Assurance (LOA) mechanism
is responsible for generating private keys for users (e.g., User 1 and User 2), while the corresponding public
key is derived from the private key and a computed point Q on the ECC curve. The algorithm is designed to
perform up to 150 iterations to optimize the solution.
Algorithm Overview:

• Initialization: The equation of ECC curve should be defined, and public key point Q calculated.
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• Private Key Generation: LOA computes the optimal value of private key.
• Encryption: The SHA-256 algorithm is run over the plaintext after private key generation, followed by

encryption with ECC.
• Decryption: In the process of decryption, the hashed values are tempered using XOR and left-shift

operations, and then decrypted by ECC to retrieve the original plain text.

It offers a variety of major advantages: time-saving, security in communications, and generation of
a private key automatically. Increased security in the encryption process through LOA-based private key
optimization is one of the benefits. SHA-256 hashing and the incorporation of extra operations like XOR and
shift-left contribute to the toughening of security mechanisms in the model.

In general, the proposed model represents an efficient and secure model for private key assignment
and, respectively, data transmission. The encoding and decoding operations in the design with ECC, in
combination with the XOR and shift-left techniques, have strong encryption that can transmit messages
securely between different users. Fundamentally, the four phases—Encoding (1), Encoding (2), Decoding (1),
and Decoding (2) strengthen the core of the model through the integration of ECC, sealing in confidence
and integrity of data to be transmitted. Then the decryption will operate the ciphertext by XOR and shift
left operations before final decryption using ECC for complete coverage in the entire process. As shown in
Algorithm 1, and Fig. 1.

Algorithm 1: Using LOA for ECC
1: function ECC
2: Initialize parameters and select prime p using E and Fp.
3: Generate base point Q on the elliptic curve.
4: Generate private key x using LOA() and public key H = x × Q.
5: end function
6: function Encoding
7: Retrieve plaintext (data), generate r using LOA(), and convert data to binary.
8: Generate random r, calculate CiP1 = Q × r.
9: Compute CiP2 = data + r. H store (CiP1,CiP2), and compute SHA-256 hash.
10: end function
11: function Decoding
12: Verify plaintext with SHA-256 hash, retrieve (CiP1,CiP2).
13: Recover data = CiP2 − x × CiP1) and convert data back to plaintext.
14: end function
15: function LOA
16: Initialize lion population and evaluate fitness.
17: Divide into male and female groups; perform defense and attack.
18: Update positions based on outcomes, mate lions to generate new solutions.
19: Continue optimization until reaching the maximum iterations or finding an optimal solution.
20: end function
21: function SHA-256
22: Initialize hash values, constants, and working variables.
23: Execute compression function, produce final 256-bit hash.
24: end function
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Figure 1: Diagram of the proposed model

5 Evaluation and Results
This section analyzes the encoding and decoding throughput of the proposed model, focusing on its

processing efficiency. The analysis examines performance across varying file sizes and iterations, highlighting
the model’s speed, scalability, and resource optimization compared to existing techniques. This provides
insights into its practicality for real-world applications. The experimental evaluation was conducted on a
Windows 10 Pro system using a custom implementation developed in C# within the Microsoft Visual Studio
2012 development environment. The test setup featured an AMD E-350 processor operating at 1.60 GHz,
paired with 4 GB of RAM.

An initial population size was selected depending on the key length. In this experiment, random integers
varying from 0 to 127 were used for the selection of the initial size of the population, and perhaps necessary
to note directly affected the performance of the system both in encoding and decoding operations. Therefore,
the evaluation of performances for the platform was done based on this experimental setup.

Besides, this evaluation tried to look at the model, in respect of efficiency in handling the cryptographic
operations, to get insights about its performance in terms of throughput, and computing speed in different
scenarios, hence such results are important for our decision on practicality and scalability of the model in
different scenes.

While the proposed model demonstrates significant improvements in encoding and decoding times, it
is also crucial to evaluate its security robustness against potential vulnerabilities:
Resistance to Side-Channel Attacks

Side-channel attacks exploit physical information leaks, such as timing, power consumption, or electro-
magnetic emissions, to extract cryptographic keys or sensitive data. Although the proposed model integrates
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ECC and SHA-256, it does not explicitly address resistance to these attacks. Simulations or experimental
setups testing such conditions would provide valuable insights into its robustness. Countermeasures such as
constant-time implementations, noise addition, or masking techniques could be incorporated to strengthen
the system further.
Quantum Computing Threats

The traditional cryptographic schemes, like ECC, are under threat with the advancement in quantum
computing due to algorithms like Shor’s, which solves discrete logarithm problems efficiently. Though
this work is on optimizing the ECC using LOA, the future work would be to incorporate quantum-
resistant cryptography techniques, such as lattice-based or hash-based cryptography into the system for
long-term security.
Attack Scenarios Simulated

For example, stimulation attacks-such as differential power analysis or timing attacks-or simply fault
injection may provide deep insights into the aspects of the performance of the model that are exposed to
adversarial conditions. Interaction testing, such as measuring system response to injected faults related to
encoding and decoding techniques, may serve to highlight and ensure the mitigation of potential “weak
links”.

5.1 Performance Analysis
Decoding and Encoding times

This section discusses the encoding and the decoding speeds of the proposed model. The results are
represented as Figs. 2 and 3, respectively. Fig. 2 describes the encoding time in millisecond units for the
proposed model based on different iteration types with an initial population of size 20. Based on the data,
the number of iterations will decide the encoding time, and the minimum encoding time is at 50 iterations.
For instance, a file of 10.000 KB takes 1.523 ms for 20 iterations to encode, 1.403 ms at 50 iterations, and
1.499 ms for 70 iterations. Likewise, and in the same stride, a file of 50.000 KB would encode for: at
20 iterations, 5.608 ms; at 50 iterations, 4.245 ms; and, finally, at 70 iterations, 4.583 ms. The findings
are substantiated by the data illustrated in the accompanying figures, derived from a comprehensive
experimental evaluation of the proposed model.
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Figure 2: Encoding time against no. of iterations
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Figure 3: Decoding time as a function of iterations

Fig. 3 depicts the decoding time in milliseconds at different iterations of the proposed model. It should
be considered that the target is always to have a decoding time less than the encoding time to make the
system more efficient and responsive. This can be observed from the results, where the decoding time has
its minimum at an iteration of 100. For instance, the decoding time for a file of 10.000 KB is 102.139 ms
when iterations are 20, 92.152 ms at 70 iterations, and 80.005 ms at 100 iterations. In the same manner as
above, for a file of 50.000 KB, decoding time is 582.091 ms at 20 iterations, 541.249 ms at 50 iterations, and
421.102 ms at 100 iterations. These values show the best performance of the proposed model by increasing
iteration number up to 100 and, after that, it improves for higher iterations.

Fig. 4 illustrates the variation in mean encoding and decoding times across iterations for the proposed
model. The results indicate that the most efficient encoding time occurs at the 50th iteration, measured
at 2602.2 ms, while the most efficient decoding time is observed at the 100th iteration, with a value of
2509.101 ms. These findings demonstrate that the proposed model achieves the desired security level while
optimizing execution time.
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Based on this, one might have come to a conclusion that the suggested model is appropriate for the
data encoding process in an unprotected environment. The second point the findings obtained within this
test relate to the efficacy of the proposed model as for the speed of data encoding/decoding. From that very
perspective, the number of iterations for optimal value represents 50 iterations from encoding time and 100
from the decoding time. The obtained results provide insight into how more efficient encoding algorithms
could be designed in the future. This contribution is, of course, great to cryptography. Besides, the better
execution time for the proposed model provides practical benefits related to the processing of large sizes of
files for applications.

5.2 Comparison and Evaluation
The experiments were conducted with the aid of Visual Studio, for a key length of 128 bits. In this section,

a comparative study between the RSA [26] vs. proposed model depending on the evaluation of 14 different
sizes files is presented.

The study primarily compares the proposed model with traditional cryptographic methods like AES and
RSA. Future work should include comparisons with modern advancements, such as lightweight and post-
quantum cryptography, to provide a comprehensive evaluation of the model’s performance and adaptability
in diverse scenarios.

5.2.1 Encoding and Decoding Based on Proposed Model and AES
In this regard, the main objective of the present study was set to investigate the efficiency of the proposed

model and AES by encoding and decoding times. The results derived from the study depicted that the
proposed model always outperformed AES, especially at large data sizes. A 50 MB size is shown in Table 1.
For example, at a file size of 50 MB, the encoding time of AES is 7.011 s, while in the proposed model, it
requires only 4.69 s. This depicts that as far as the processing time is concerned, huge improvement has
been achieved. Fig. 5 depicts that the encoding time of the proposed model is far lesser compared to AES,
which accounts for approximately 33.11% reduction in execution time to encode a 50 MB file. In addition,
performances of the proposed model have always outperformed those from AES so far; hence, it established
its efficiency advantage over the current approach of AES.

Table 1: Proposed model and AES—comparative evaluation

File size (MB) AES (second) Proposed model (second)

Encryption Decryption Encryption Decryption
1 0.194 0.75 0.79 0.73
2 0.567 1.01 1.08 0.81
5 1.108 1.22 1.35 1.35
10 1.781 1.89 1.91 1.83
15 2.711 1.99 2.15 1.89
20 2.902 2.11 2.2 2.01
25 3.984 2.23 2.43 2.13
27 4.003 2.43 2.77 2.4
30 4.034 2.37 2.3 2.27
37 4.12 2.79 3.27 2.84
40 4.191 2.87 3.31 2.91

(Continued)
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Table 1 (continued)

File size (MB) AES (second) Proposed model (second)

Encryption Decryption Encryption Decryption
45 6.121 3.12 3.72 3.34
47 5.792 3.15 3.95 3.25
50 7.011 3.79 4.69 3.3
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Figure 5: Comparison of encoding times between the proposed model and AES

The time comparison for decoding is shown in Fig. 6, where the proposed model, compared to AES,
takes less time for decryption. As rules and table-wise, the numbers of computation required to encode or
decode by the proposed model are lower in number compared to that of AES; thus, the proposed is faster.
These findings showed that the encoding time taken by the proposed model is much lesser, which achieved
about 12.92% faster execution time for a 50 MB-sized file in the process of encoding.

Its encoding and decoding are way faster than those of the AES, making this model much more efficient
and feasible for cryptographic applications, especially under resource-poor circumstances. The contribution
of ECC thus provides the suggested model with less computational complexity; hence, it makes it speedier
and suitable under conditions where immediacy is required. In fact, this presents the model as promising for
secure data chatting.

In a nutshell, the proposed model has proved better performance than AES by a factor of encoding
and decoding time, which makes it stronger and more practical in actual cryptographic applications,
especially when resources are limited. The model, with an integration of ECC, has demonstrated effective
reduction in computational overhead hence improving its operating efficiency. Therefore, with this model,
real-time applications will be highly convenient, providing a strong as well as efficient solution toward secure
data communication.
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Figure 6: Timing comparison between proposed and AES decoding

5.2.2 Encoding and Decoding Based on the Proposed Model and RSA
This section presents a comparative study of the proposed model against the RSA algorithm as referred

to in [26]. The main aim of the evaluation is to determine the performance of the proposed model in
comparison with RSA using the time consumed in encoding and decoding.

The results for the above are shown in Table 2, where one can appreciate how the proposed model
outperforms RSA with a large margin, considering the huge dataset of 50 MB.

Table 2: Comparative assessment of the proposed model and RSA

File size (MB) RSA Proposed model (second)

Encryption Decryption Encryption Decryption
1 15.452 22.641 0.72 0.73
2 43.771 75.438 1.02 0.98
5 73.021 121.871 1.15 1.09
10 130.191 205.941 1.81 1.87
15 166.011 243.801 2.54 1.91
20 171.205 293.712 2.13 2.01
25 359.851 401.751 2.19 2.2
27 268.211 437.962 2.67 2.33
30 272.301 483.071 2.11 2.31
37 329.112 569.032 3.73 2.83
40 339.221 583.815 3.64 2.91
45 371.205 630.128 3.93 3.39
47 374.581 643.023 3.97 3.27
50 460.918 779.341 4.88 3.32

Taking the case of the RSA encoding time of a file sized about 50 MB, the encoding time is 460.918 s;
for the proposed model, it takes only 4.88 s, and as observed, this forms a great advantage in decreasing the
processing time. With a huge key size, RSA has a huge computational cost. An alternate efficient approach
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comes with ECC as under discussion in [27]. With ECC, higher processing speed is achievable with much
smaller key size and less memory usage. The proposed model and other models based on ECC may be more
applicable to the resource-poor device hence allowing for higher speed real time computation.

Fig. 7 presents a comparison of the encoding time between the proposed model and the RSA method,
revealing that the proposed model achieves significantly shorter encoding times. Specifically, it reduces the
encoding execution time by approximately 98.94% for a file size of 50 MB. Furthermore, the proposed model
consistently outperforms RSA, highlighting its superior efficiency.
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Figure 7: Encoding time comparison of the proposed model against RSA

Fig. 8: Performance comparison between the proposed model and RSA during decoding. From this
figure, it can be seen that the proposed model possesses very high performance in terms of speed. This is
attributed to its efficient key generation mechanism and efficient decryption mechanisms. It is suitable for
applications requiring fast processing, such as those involving big data sets or tasks where timing is critical.
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Figure 8: Comparison of decoding time between RSA and proposed model
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This is because the fact that RSA applies complex encryption and decryption procedures could be
an important factor contributing to its slowness, considering the algorithms make heavy computation of
modular exponentiation together with calculation of a private key exponent, hence making them slower than
other models. While, on the other hand, the encoding and decoding processes proposed by the model require
fewer computations. Hence, it can assure faster processing speeds than in RSA. Therefore, the computational
requirements are relatively smaller in the proposed model, which explains its better performance.

In brief, the model proposed in this work is faster compared with AES-RSA in both encoding and
decoding, hence more efficient and viable for cryptographic applications, especially under scarce resources.
ECC used in the proposed model reduces computational overhead; thus, it is faster and suitable for real-
time applications. With regard to the discussion above. The proposed model demonstrates superior decoding
speed and efficiency, making it ideal for high-performance applications.

5.2.3 Encoding and Decoding Based on GA, and Proposed Model
This section compares the performance of the metaheuristic Genetic Algorithm [28] with that of

the proposed model in generating the keys in ECC. Both algorithms employ selection, crossover, and
mutation operators to optimize ECC solutions, enabling efficient key generation and improved cryptographic
performance.

As per the results represented in the Table 3, the proposed model outperforms GA by showing better
solutions with enhanced search efficiency and power convergence. In fact, for a 5.000 KB file, the time taken
to encode and decode using GA-ECC-SHA-256 is 701 and 693 ms, respectively, but the proposed model
reduced them to 667 and 602 ms, respectively. Also, for the file size of 23.750 KB, encoding time taken by GA-
ECC-SHA256 is of 3.239 ms, and decoding time taken is 3.153 ms, while in the proposed model, encoding
time is taken of 2.928 ms, and decoding time is taken of 2.652 ms. Results conclude with no doubt that the
proposed model would support an even faster and more effective solution than Genetic Algorithm.

Table 3: Comparison of encoding and decoding times (in ms) between GA and the proposed model

File size (KB) GA-ECC-SHA-256 Proposed model

Encryption Decryption Encryption Decryption
500 52 43 40 35
750 93 92 73 64
1000 105 87 77 68
1500 199 179 149 124
2000 257 253 242 201
2500 321 309 301 248
3000 409 400 379 354
3500 511 503 475 432
4000 591 594 525 524
5000 701 693 667 602
23750 3239 3153 2928 2652

Throughput 7.332510034 7.532508722 8.111338798 8.955505279

It also further details how Figs. 9 and 10 depict further proof of the proposed model with better execution
time and efficiency of encoding, in comparison to previous methods. These further emphasize the model
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effectiveness in the generation of the ECC keys within the LOA algorithm framework. These results clearly
show that the LOA algorithm, implemented according to the proposal developed in this work, significantly
improves efficiency and security in cryptographic systems, making it a more robust and reliable solution
compared to traditional ones.
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Figure 9: Comparison based on encoding time between proposed model and GA
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Figure 10: Decoding time comparison between the genetic algorithm (GA) and the proposed model

5.3 Throughput
This study aimed to evaluate the coding and decoding capabilities of the proposed model by applying

a speed benchmark defined through Eqs. (7) and (8) [29], where higher reading speeds indicate superior
performance. To test the model’s efficiency, a file size of 23,750 KB was utilized, and the results were compared
with those of the ECC-GA-SHA-256 model. The encoding and decoding throughputs achieved by the
proposed model were approximately 8.111 and 8.956 ms, respectively. In comparison, the ECC-GA-SHA-256
model exhibited encoding and decoding throughputs of 7.333 ms for both processes. These findings highlight
the performance of the proposed model, indicating its capability to process data efficiently while maintaining
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competitive speed relative to existing models. Such performance improvements are essential for real-time
applications requiring fast and secure encryption and decryption processes.

Encoding Throughput = Σ(Input File)/Σ(Encoding Time) (7)
Decoding Throughput = Σ(Input File)/Σ(Decoding Time) (8)

The results of these experiments are presented to testify that the performance of the model proposed,
once applied, increased by about 10.62% with respect to encoding throughput and about 18.89% related
to decoding throughput, comparing to the ECC-GA-SHA-256 model. These results depict efficiency and
effectiveness of the model proposed in this work to provide a more secure and fast way of encoding and
decoding data when compared with other models.

6 Practical Integration with Existing EHRS
The integration of the proposed cryptographic model into existing electronic health record systems

(EHRS) requires careful consideration of several factors, including compatibility, computational overhead,
and user-interface implications. This section outlines how the proposed model can be effectively embedded
into current systems and the potential impact on system usability.
Compatibility with Existing EHRS

The proposed model is designed to be modular and adaptable, making it compatible with most existing
EHRS architectures. By leveraging standard cryptographic protocols such as elliptic curve cryptography
(ECC) and SHA-256, the model can seamlessly integrate into systems that already utilize similar encryption
standards. Additionally, the use of a lightweight optimization algorithm (LOA) ensures that the model does
not impose significant architectural changes, allowing for straightforward implementation.
Potential Overhead

The computational efficiency of the proposed model minimizes the overhead introduced to existing
systems. The encoding and decoding times, as demonstrated in the evaluation, are competitive even for
larger datasets, suggesting that the model can handle typical EHRS workloads without noticeable latency.
However, real-world deployment scenarios may reveal additional processing overhead, particularly in
resource-constrained environments, which could be addressed through further optimization.
Impact on User Interface

The proposed model focuses on the backend cryptographic processes and does not directly inter-
fere with the user interface of EHRS. Nonetheless, the inclusion of advanced security measures might
introduce additional authentication steps or data encryption layers. To ensure usability, any new features
must be designed to be intuitive and minimally intrusive for healthcare providers. Training modules and
documentation should accompany the integration process to help users adapt seamlessly to the enhanced
security protocols.
Scalability and Maintenance

The modular nature of the model simplifies its scalability and maintenance. Updates to the cryp-
tographic algorithms or optimization techniques can be applied independently without disrupting the
entire EHRS infrastructure. This flexibility ensures that the system remains secure and up-to-date with
emerging threats.



J Cyber Secur. 2025;7 39

7 Compliance with Ethical Standards and Regulations
Healthcare data security is governed by stringent ethical standards and regulatory frameworks, such

as the General Data Protection Regulation (GDPR) in Europe and the Health Insurance Portability and
Accountability Act (HIPAA) in the United States. These frameworks emphasize patient privacy, data integrity,
and accountability in the collection, storage, and transmission of sensitive health information.
Alignment with GDPR and HIPAA Standards

The proposed cryptographic model aligns with key principles of these regulations in the following ways:

1. Data Confidentiality: By leveraging robust encryption techniques (ECC and SHA-256) and optimizing
private key generation through LOA, the model ensures that patient data remains confidential and
accessible only to authorized personnel.

2. Data Integrity: The integration of SHA-256 ensures that any unauthorized tampering or alteration of
data during transmission or storage can be detected, satisfying the GDPR and HIPAA requirements for
maintaining data integrity.

3. Minimization of Data Exposure: The model supports secure storage and transmission, reducing the risk
of unauthorized access or data breaches, which aligns with GDPR’s principle of data minimization and
HIPAA’s technical safeguard standards.

Ethical Considerations
The model’s focus on enhancing security aligns with ethical obligations to protect patient privacy and

prevent misuse of sensitive data. However, it is important to consider the following:

- Transparency: Healthcare providers should inform patients about the encryption measures used to
protect their data.

- Access Control: Proper policies must be in place to manage decryption keys, ensuring that only
authorized personnel can access sensitive information.

8 Conclusion and Future Works
Health information is more available and accessible through better means like the internet and health

information is more available and accessible through better means like the internet and cell phones
when compared to old ways. However, confidentiality within knowledge related to the patient remains an
important issue to be taken care of when that very information is shared among the doctors involved. While
the usage of electronic records, along with the internet, makes access to medical information rather much
more convenient and quick, the issues regarding security are not fully abolished. To enhance the security of
medical information, certain methods have proven to be more efficient than others. This research introduces
a novel approach to securing Electronic Health Records (EHRs) by integrating Elliptic Curve Cryptography
(ECC) and SHA-256 with the LOA algorithm.

The efficiency of the proposed method is depicted in the speed, with reduced encoding and decoding
time. Therefore, this work returns the best results by using 50 iterations in encoding and 100 iterations
in decoding through simulations. It provides an improvement of 18.89% as compared to other techniques
while being secure from various types of attacks. Thus, the result proves feasible on low-resource devices.
Meanwhile, the following two aspects should be pointed out. This research has made stimulating efforts to
improve EHR data security. However, there are a few limitations that have to be mentioned: The evaluation
was accomplished considering various assumed scenarios; therefore, the proposed method might work in a
different scenario in other environments or real-world implementation. Furthermore, the study has chosen
sets of security algorithms, which may have many alternative ways of encryption and key generation.
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One limitation of the current study is that the proposed model was evaluated within a controlled
experimental environment. While this approach allows for precise assessment of performance under fixed
parameters, it does not account for the variability and complexity present in real-world healthcare settings,
such as fluctuating network conditions, diverse healthcare infrastructures, or varying levels of user expertise.

Limitations: These relate to areas that would require possible future work in terms of clinical trials in
actual or daily healthcare environments. Potential studies would need to be about implementing the model
across diversified health systems, under heterogeneous states of the network, especially with regard to the
tests on its robustness, versatility, and general performance under typical operational constraints.

Besides scalability issues, interoperability with existing systems and compliance with various healthcare
regulations of different regions should also be considered. Until these real-world validations are

conducted, the results of this study should be interpreted with caution as a promising but initial step
toward enhancing the security and efficiency of electronic health record systems.

Furthermore, the current study does not particularly talk to or incorporate considerations on scalability
and resource consumptions that are required by handling large volumes of datasets or a high volume of users.
Additional work to be done would be performing the test using larger sets of data, as well as in simulated
high-traffic conditions that validate both its performance and efficiency in the use of resources. Metrics
around memory usage, CPU consumption, and response times among other indicators give validity to model
scalability and usability in diversified healthcare settings.

While this paper illustrates the feasibility of LOA for cryptographic key generation, further research
can be done to optimize encryption schemes like adaptive parameter tuning, hybridization with lightweight
cryptographic schemes, dynamic updating of keys, and integration with post-quantum cryptographic
techniques. For all such enhancements, extensive testing regarding various security metrics will be necessary,
such as resistance to different cryptanalytic and side-channel attacks, to ensure that the process of encryption
remains robust and efficient.

The studies presented here should be extended to other encoding techniques and new methods of
generating private keys for EHRs. Some of the promising avenues that could be further explored in
enhancing data security and privacy in EHRs include blockchain and secure multi-party computation. Future
systems can be more robust in safeguarding sensitive information with the integration of such advanced
technologies. Besides, real-life trials and assessments across various healthcare settings will yield valuable
information on the effectiveness and feasibility of the proposed methods, which also helps in the validation
of practical applicability.

Future research should be channeled into overcoming the current limitations in EHR security and
exploring new methods of enhancing confidentiality, integrity, and availability. Ensuring these core principles
is central to protecting patient privacy, maintaining the accuracy and reliability of health data, and ensuring
timely access by authorized users. Such advancements will go a long way in enhancing not only the
trustworthiness of EHR systems but also, very importantly, the general advancement of secure healthcare
data management.
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