
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceJournal of Cyber Security
DOI: 10.32604/jcs.2022.031889

Article

An Adaptive-Feature Centric XGBoost Ensemble Classifier Model for
Improved Malware Detection and Classification

J. Pavithra* and S. Selvakumarasamy

SRM Institute of Science and Technology, Kattankulathur, 603203, India
*Corresponding Author: J. Pavithra. Email: pj1089@srmist.edu.in

Received: 01 September 2022; Accepted: 02 October 2022

Abstract: Machine learning (ML) is often used to solve the problem of mal-
ware detection and classification, and various machine learning approaches
are adapted to the problem of malware classification; still acquiring poor
performance by the way of feature selection, and classification. To address
the problem, an efficient novel algorithm for adaptive feature-centered XG
Boost Ensemble Learner Classifier “AFC-XG Boost” is presented in this
paper. The proposed model has been designed to handle varying data sets of
malware detection obtained from Kaggle data set. The model turns the XG
Boost classifier in several stages to optimize performance. At preprocessing
stage, the data set given has been noise removed, normalized and tamper
removed using Feature Base Optimizer “FBO” algorithm. The FBO would
normalize the data points, as well as perform noise removal according to
the feature values and their base information. Similarly, the performance of
standard XG Boost has been optimized by adapting the selection using Class
Based Principle Component Analysis “CBPCA” algorithm, which performs
the selection according to the fitness of any feature for different classes. Based
on the selected features, the method generates a regression tree for each feature
considered. Based on the generated trees, the method performs classification
by computing the tree-level ensemble similarity ‘TLES’ and the class-level
ensemble similarity ‘CLES’. Using both methods calculates the value of the
class match similarity ‘CMS’ based on which the malware has been classified.
The proposed approach achieves 97% accuracy in malware detection and
classification with the less time complexity of 34 s for 75000 samples.

Keywords: Malware detection; machine learning; XGBoost; PCA; ensemble
learner; CBPCA; CMS; AFC-XGBoost

1 Introduction

The recent development in the IT sector has encouraged society to depend on that for various
purposes. They even perform their most daily activities with support of that. The most organizations
depend on that to perform their processes and encourage their organizations to work over internet
even though the units of their organization located distributed. This encourages users in accessing

https://www.techscience.com/
https://www.techscience.com/journal/jcs
http://dx.doi.org/10.32604/jcs.2022.031889
https://www.techscience.com/doi/10.32604/jcs.2022.031889
mailto:pj1089@srmist.edu.in


136 JCS, 2022, vol.4, no.3

various services through the Web and approaches various web sites. Even they access different web
services provided by different solutions or organizations. The issue rise here when the user access a
service which is not part of their organization or when you access the service from external world or
when you provide access to a third party.

On the other hand, any network which provides services to users faces variety of security threats.
The threat may be generated not just by an external member, but also by the internal trusted user.
So, the service provider has the responsibility of monitoring such requests from malicious user and
stops them from accessing valuable resources. Malwares are the most dangerous software’s which are
spread by different malicious organization through various forms being send to the receiver end while
accessing their services. The purpose of the malwares are not just to damage your process, but also to
access your various files and data or computing resources in the sense of malfunctioning the system
being used. Also they can intrude to the operating system software and could control your entire
system. So it is necessary to monitor such malwares of any form and classify them related to malignant
and benign classes.

The presence of any intrusion attack can be identified in several ways. There are several approaches
available such as rule based approaches, which maintains set of rules in detecting the presence of any
intrusion attack. In recent times, machine learning algorithms are used in different scientific problems.
In this way, they can be used in malware classification. There are a number of machine learning
approaches available like genetic algorithm, support vector machine, fuzzy rules, neural network,
decision tree„ regression tree and so on. Snort is the popular tool, which is an IDS works based on
various rule sets available. Similarly, genetic algorithm, k means classifier, fuzzy classifier, principle
component analysis are most popular algorithms being used towards detecting the malwares [1]. In
this way, the random forest approach, which is a bagging-based approach used for the classification of
malwares and decision tree, has been used in the same. However, the performance of the methods is not
up to the expected level. They suffer with higher MSE (mean square error) because of the selection
of feature and how the loss functions have been designed. In case of random forest algorithms, the
classification is performed in parallel with all the trees as the methods maintains number of trees and
finally makes an average to get the decisions. This really affects the performance of classification by
increasing the mean square error value. But for a classification problem, it is necessary to reduce the
error rate and loss functions. Also, they generate trees with large siblings and the number of levels
is also higher, which increases the time complexity as well. So, the design of tree must be effectively
performed to produce better results.

By considering all this, an efficient adaptive feature centric XGBoost Ensemble Classifier (AFC-
XGBoost) is presented in this article. The reason here is, the classifier should produce less time
complexity and the error rate must be reduced. Unlike other algorithms, the boost algorithm generates
number of trees with less hierarchy and the classification will be done in a rapid way. Also, it performs
sequential generation so that the error rate has been sequentially reduced at each function. However,
the proposed method uses the beauty of XGBoost algorithm by modifying the kernel functions in
measuring the class weights. The ensemble learner approach has been modified to compute various
measures to support the performance development. The proposed approach would measure the
similarity of ensembles in feature, class levels to improve the performance. The detailed approach is
presented in the next section.



JCS, 2022, vol.4, no.3 137

2 Related Works

There exist several approaches towards the classification of malware with machine learning
algorithms. This section details a set of methods related to the problem.

A behavioral-based machine learning approach is presented towards malware detection is pre-
sented in [2], which handles the malwares by maintaining a number of behavior patterns which are
trained with machine learning algorithms in recognizing social malwares. Similarly, in detecting the
family of malwares and classifying them, a hybrid approach is presented in [3], which combines support
vector machine (SVM) and active learning by learning (ALBL) to handle unlabeled data to support
malware detection.

A genetic algorithm-based malware detection scheme for android devices is presented in [4],
which applies genetic algorithm in feature selection and uses machine learning classifiers in detecting
malwares. The problem of malware detection and classification is approached with a machine learning
algorithm in [5], which uses the Cuckoo sandbox to analyze the effect of malware in isolated
environment. The method extracts various features from the reports, and subsets of features are
selected to maximize the accuracy.

A semantic behavior based recognition scheme is approached with a deep learning method in [6],
which finds the spatial correlations with NLP tools and finds the semantic behaviors in classifying
the malwares. An Opcode-based Android malware analysis approach is discussed in [7], which clubs
different classifiers of machine learning in classifying the malwares. Similarly, a pixel based feature for
malware classification is presented in [8], which uses pixel level features in identifying the family of
malware. The model has been tested with different approaches like KNN, SVM, NB, Decision Tree,
and Random Forest.

A machine learning technique is presented towards optimizing the feature to be used in analyzing
the malwares in windows [9]. The method uses genetic algorithm in feature selection where the behavior
features are used in classification with Cuckoo search. The system calls and operational codes in byte
codes are used in analyzing malware with machine learning in [10]. The presence of Botnet framed by
a set of IoT devices has been classified with a novel Scikit machine learning approach in [11], which
groups the data using Weka and by applying the Scikit approach, the classification is performed.
A behavioral frequency-based malware detection model is presented in [12], which finds malware
according to the call invoked on system function calls. By monitoring the frequency of system calls,
the machine learning model classifies the malwares and genuine tools. An Electromagnetic Emission
Based Malware Analysis model is presented in [13], which uses Discrete Wavelet Transform (DWT) in
extracting the features from spectrograms traces. Extracted features are used in generating fine grained
patterns to identify the malware family.

A probability based classification model is presented in [14], which analyze the genuine of tools
by computing probability and based on the threshold. By computing Malscore for static and dynamic
analysis, the method performs classification. A permission-based machine learning model Significant
Permission Identification (SigPID) for malware detection in android devices is presented in [15], which
analyzes the usage of tool according to the permission given. The method works on three levels over
permission data in classifying the tools. A domain generation-based malware classification algorithm
is presented in [16], which classifies domains and cluster them to find such malicious domains.
The method uses Hidden Markov model in predicting the features which are coming in to perform
classification.



138 JCS, 2022, vol.4, no.3

A malware defensive model for IoT environment is presented in [17], which uses two different
approaches to select adversarial samples and by computing distance from cluster centers and proba-
bility values, the method performs classification. To identify the abuse in crypto mining generated by
malware, an efficient approach is presented in [18]. The method finds a set of network flow which are
relevant and able to classify a set of flow generated by crypto mining. The method works according
to the network flow and finds malicious flow generated.

A Trend micro locality Hashing (TMLH) based approach is presented in [19], to support cloud
environment. The method uses a cuckoo sandbox in analyzing the reports of tools in an isolated
environment. Essential features are selected using principle component analysis and uses different
classification algorithms. A malware detection scheme based on machine learning and visualization is
presented in [20], which generates gray scale images and generates GIST descriptor from the images
to perform classification with machine learning algorithms. Three different classification algorithms
are used to classify malwares.

Presence of botnet has been detected with a multilayer framework in [21], which analyze the
behavior of nodes in [22] network to find the botnet command and find the controller using a filtering
technique. Similarly, the presence of cyber-attack in an IoT environment is handled with a machine
learning model and feature engineering. The method uses the UNSW-NB15 data set to classify cyber
attacks. Also, K-Medoid sampling and scatter search-based feature engineering techniques are used
to obtain a representative dataset with optimal feature subsets.

A Cryptomining Detection based on machine learning in cloud is presented in [23], which monitor
the system call of Linux kernel and detect the presence of pod using different machine learning
algorithms. A Sequencing based ransom ware detection model is presented in [24], where DNA act-
Ran uses machine learning algorithm in searching the specific sequence and uses frequency vectors in
classifying the tool. The classification of malware and family has been approached with a prototype-
based machine learning algorithm in [25], which extracts low-dimensional features by computing
histogram entropy and uses the prototype selection algorithm with hyper rectangles. The method splits
the input into different sub spaces according to hyper-rectangles and uses cover optimization algorithm
is employed to find a small number of prototypes. The same has been used to perform classification.

The methods discussed above suffer to achieve higher performance in malware classification.
This analysis and evaluation motivates the design of a novel efficient malware classification model
to improve classification performance.

3 Adaptive Feature Centric XGBoost Ensemble Malware Classifier Model

The proposed model reads the data set and applies preprocessing using FBO-Preprocessor which
removes noise records and normalizes the features by computing feature mean and other factors.
Furthermore, the preprocessed data set has been applied with feature selection using CBPCA which
computes class-based fitness score for each feature and selects a set of features using the histogram
value of various features. In addition, the method generates the trees and is used for classification.
At the test phase, the method applies preprocessing and extracts the features and computes different
measures like Tree level ensemble similarity, Class level ensemble similarity to compute class match
measure. Based on the value of the class match measure, the method performs malware classification.
A detailed approach is presented in this section.

The functional architecture of proposed model has been pictorially represented in Fig. 1, where
the functional components such as are discussed briefly in forthcoming section.



JCS, 2022, vol.4, no.3 139

Figure 1: Architecture of proposed model

3.1 FBO Preprocessor
The data set considered would have number of features. The Kaggle data set obtained from open-

source platform contains 52 features in total which contains data, platform, software, operating system
and etc. The data set has a number of features which also include incomplete records. The feature base
Optimizer algorithm works on the data set to not just eliminate the noisy records but also improve the
quality of the data set. To do this, the features present in the data set have been initially identified.
Further, each record has been traced and identified for the presence of all features. The features
have been classified into three classes like numeric, binary, and alphanumeric. With this, the method
computes class based mean value (CBMV) for the features of numeric class which is being measured by
counting the class samples. Similarly, for the binary class features, the method computes the frequency
measures on each class. For example, for a feature with binary value class, the method identifies a list
of samples with the value 1 and a list of samples with the value 0. Using both of them, and with
the total samples of the class, the method computes the value of feature frequency measure (FFM).
Finally, an FFM with maximum class is identified and assigned. For categorical feature like name,
year, platform of the malware, the method computes multi-functional relative score (MFRS) which
is being measured according to the distance with the numeric features of various classes. The classes
with maximum MFRS are selected and the feature value with more frequency has been identified and
assigned. This improves the quality of the data to be used in classification.

FBO Algorithm:

Given: Data set Kds
Obtain: Preprocessed data set Pkds
Start

Read data set kds.
(Continued)



140 JCS, 2022, vol.4, no.3

FBO Algorithm: Continued

Find the feature list Fel =
size (Kds)

Fel ∪ ((Features ∈ Kds (i)) → (Feature � Fel))
i = 1

Find class of traces Tcs =
size (Kds)

Tcs ∪ (∑
kds (i) .Class � Tcs

)
i = 1

#80 features has been listed

For each feature f
Categorical set CS = ∑size(Tcs)

i=1 (Tcs (i) .f == Category) � Cs
If Numeric then

For each class c of Trace
Trace set Ts = Ts∪ (

∑size(Kds)

i=1 kds (i) .class == c)

Compute Class-Based Mean Value CBMV.

CBMV =
∑size(Ts)

i=1 Ts(f).value

size(Ts)

Add to the Fms mean set Fms.
End

Else-if Binary then
Compute Feature Frequency Value FFV.

FFV = Max(Count(
∑size(Ts)

i=1 Ts (i) (f) == 1), Count
(∑size(Ts)

i=1 Ts (i) (f) == 0
)

)

Else
Compute multi-feature relative score MFRS.

MFRS =
∑size(Tcs)

i=1 Tcs(i).f==Cs(i)

size(Tcs)

End
End
For each trace f

If f is numeric &&Tcs(i).f == Null then
Tcs(i)(f) = Fms(f)

Elseif f is binary &&Tcs(i).f == Null then
Tcs(i)(f) = FFV(f)

Else if f is categorical &&Tcs(i).f == Null then
Tcs(i)(f) = choose categorical value with maximum MFRS.

End
End
If clears all then

Add to preprocessed data set Pkds.
Else

Remove from data set.
End

Stop

Fig. 2 defines the process which is performing on the preprocessing algorithm. The data cleaning
removes the noise, normalizations perform the selection of important features, and the highly
correlated features are given as an output to perform the next stage that is feature extraction which
leads to classification. The method computes the value of class-based mean value (CBMV) for numeric



JCS, 2022, vol.4, no.3 141

data, estimates feature frequency value (FFV) for binary values and computes multi-feature relative
score (MFRS) for other features. For each trace, the method estimates the above mentioned values and
if any trace clears all the above, then it has been considered for further processes of feature selection.
Otherwise, it has been removed from the data set. The preprocessed data set has been used to perform
feature selection.

Figure 2: FBO preprocessor

3.2 CBPCA Feature Selection
The preprocessed data set has been applied with feature selection using the Class Based Principal

Component Analysis (CBPCA) approach. The method first identifies the set of features present in the
data set given. The features are classified according to their type as numerical, binary and categorical.
Now, for each feature, the method computes feature histogram values, which returns a set of unique
values of any feature and their histogram like image processing. According to the number of samples,
and the type of the feature, the method computes the Class Orient Fitness Score (COFS), which is
measured based on the variance of feature. According to the COFS value, the method selects a subset
of features to be used for tree generation and classification.

Algorithm:
Given: Preprocessed data set Pds.
Obtain: Feature setFs, Histogram Set Hgs.
Start

Find the feature list Fel =
size (Kds)

Fel ∪ ((Features ∈ Kds (i)) → (Feature � Fel))
i = 1

Find Feature Types FType = ∑size(Fel)

i=1 Fel (i) .Type
Initialize Feature set Fs.
For each feature f

Generate histogramFhist = Histogram (Pds(Fel(f))
If Ftype == categorical, then

(Continued)



142 JCS, 2022, vol.4, no.3

Algorithm: Continued
Compute Class orient categorical Fitness measure (COCFM).

COCFM = size (Fhist)>
(

1
8

× size (Pds)? 1:0
)

If COCFM>0
Fs = FS F
hgs = Hgs∪F

End
Else if Ftype == Numerical then

Compute Class orient numerical fitness measure CONFM.

CONFM = size(Fhist)>
1
3

× size (Pds) ?1:0

If CONFM > Th then
Add to the set Fs = FS ∪F
Hgs = Hgs∪F

End
Else

Add to the set Fs = FS ∪F
End

End
Stop

The above discussed algorithm visualized in Fig. 3, it computes Class orient categorical Fitness
measure (COCFM) for the categorical data and computes class orient numerical fitness measure
(CONFM) for the numeric values. According to the value of COCFM, CONFM values, and threshold,
the method performs feature selection. The feature selection algorithm performs feature selection
by computing class based fitness measure class orient numerical and class orient categorical fitness
measures to identify the suitable features. An identified feature has been added to the feature set which
has been used to perform malware classificiation.

Figure 3: CBPCA feature extraction

3.3 Tree Generation
The features of the data set being extracted are used to generate a regression tree here. The number

of trees has been decided on the histogram size. When the size of histogram is identified as higher, than
the value, then the variance this needs to be considered greatly. Similarly, when the size of histogram
is less or null, then it can contain low-variance feature values. So, according to the histogram size of
any feature, the method computes minimum feature value and maximum feature value and based on
that the number of trees to be generated for a feature has been measured. Similarly, for each feature,
the method computes the minimum and maximum with the number of histogram values. Using these



JCS, 2022, vol.4, no.3 143

values, the method computes the tree fitness score, TFS for several features. Finally, a subset of features
with different fitness scores has been selected and according to the value of histogram the number of
trees for each feature has been measured. Based on the number of small trees was generated to reduce
the loss ratio and error rate.

Algorithm:
Given: Feature Set Fs, Histogram Set Hgs
Obtain: Tree sets of Tree Set Ts
Start

Read the feature set Fs and the histogram set Hgs.
For each feature f

Compute the minimum value of histogram Min-Hist =
size (Hgs (f ))

Min(Hgs (f (i))
i = 1

Compute the maximum value of histogram Max-Hist =
size (Hgs (f ))

Max(Hgs (f (i))
i = 1

Compute the number of histograms Nhist = size(Hgs(f))
Generate range valuesFrange = split(minhist, maxhist, nhist)

Compute Tree Fitness Score FTS = Nhist
Frange

End
For each feature with FTS>3

Generate Tree FTree.
Add other features as leaf.
For each other feature Of

add to tree Ftree;
If leaf level == 3, then

Break.
End

End
Add trees to tree set Ts.

End
Stop

The algorithm discussed above represents how the tree generation is performed. The method
estimates the tree fitness score for various features and their feature sets by computing the minimum
and maximum values of histogram and total number of histograms available. Using the TFS value,
the method selects the feature for tree generation. Similarly, a subset of trees are generated for each
feature and added to the tree set. The generated tree set has been used to perform the classification
later.

3.4 Malware Classification
The proposed malware classification algorithm works based on the ensemble learning classifier

with the tree generated. The modified XGBoost algorithm has been designed to measure the tree-
level ensemble similarity (TLES) and Class level Ensemble Similarity (CLES) measured with all the
trees available with the tree set. As the tree has been generated and available for both malignant



144 JCS, 2022, vol.4, no.3

and benign class, there will be limited number of trees for each class of the test samples. Now, the
method takes the test sample and extracts the features of the test sample. With the features extracted,
the method identifies only the features that are identified from the feature selection phase. With the
features identified, the method visits each tree and match the ensemble features to compute Tree level
ensemble similarity which is computed based on the number of feature conditions gets through and
the total number of feature conditions exist in the tree. Similarly, the method computes the class level
ensemble similarity (CLES) based on the values of TLES. Using both values, the method computes
the value of Class Match Similarity CMS. Based on the value of CMS, the method identifies the class
of the sample whether malignant or benign.

Algorithm:
Given: Test sample T, Tree sets of tree Ts
Obtain: Class C
Start

Read T and Ts.
For each class C

For each tree Ti
Compute Tree-Level Ensemble Similarity (TLES).

TLES = Number of Levels or Conditions or Feature of T clears
Total Conditions or features contains

End
Compute Class-Level ensemble similarity (CLES).

CLES =
∑size(Ts(C))

i=1 Ts (C) (i) .TLES ≥ 1
size (Ts (C))

Compute class match similarity CMS = CLES ×
∑size(Ts)

i=1 Ts (C) .TLES
Size (Ts (c))

End

Choose the class C with maximum CMS =
Size (Ts)

Max (Class (C) .CLES)

i = 1
Stop

The algorithm discussed above measures the class match similarity based on the value of tree level
and class level similarity measures for a sample given with all the classes of trees. Now, based on the
CMS value, a single class has been selected as the class of the given sample. This is how the method
identifies the malware and classifies the given sample.

4 Results and Discussion

The proposed Adaptive feature centric XGBoost ensemble learning model has been implemented
and evaluated with Kaggle data set of malware detection. The method has been implemented using
Python, and the performance produced by the proposed model has been presented here and compared
with the result of other approaches. Finally, the method has higher accuracy in malware classification
and has been designed to fit the K feature data set and can be automatically adapted for N number of
solutions.

The details of the data set used for the performance evaluation of proposed algorithm have been
presented in the Table 1. According to this, the performance of the various methods are measured



JCS, 2022, vol.4, no.3 145

and presented in this section. The performances of the approaches are measured on the following
parameters.

Table 1: Details of the simulation

Parameter Values

Hyper parameters Epochs, learning rate
Data set From kaggle belongs to microsoft
Number of instances More than 75000
Number of features 56
Types of features Numeric, binary, alpha numeric
Tool Used Python

4.1 Malware Classification Accuracy
The malware classification accuracy represents the performance of any approach in identifying

the malware exactly for a given number of samples. The value of malware classification accuracy has
been measured based on the number of true positive and true negative classes with the total samples.
It has been measured as follows:

MCA = Number of True Positive + Number of True Negative
Total Samples

× 100 (1)

From the Eq. (1), the addition of true positive and true negative from the total samples helps to
calculate the malware classification accuracy. The values of MCA for the 75000 samples are listed.

With reference from the Table 2, the performance of malware classification accuracy is measured
by varying the number of samples in the data set. In each case, the performance of the malware
classification has been measured and compared with the results of other approaches. The results show
that the proposed AFC-XGBoost approach produced higher classification accuracy than any other
method considered.

Table 2: Analysis on malware classification accuracy

Malware classification accuracy

Algorithms 25000 Samples 50000 Samples 75000 Samples

DWT 73 77 81
SigPID 75 78 84
HMM 87 89 91
AFC-XGBoost 89 92 96

The performance methods in classifying the malware have been measured and presented in Fig. 4.
The performance of various methods are measured on varying number of samples and compared
in Fig. 4. In all the cases, the proposed approach has produced higher performance than any other
approach. The changes in hyper parameters such as epoch and the learning rate provide the appropriate



146 JCS, 2022, vol.4, no.3

results in classification. The main advantage in the proposed model has taken the lesser number of
epochs and learning rate. Here, 0.01 is the learning rate and you get the best results in 150 epochs.

Figure 4: Performance on malware classification accuracy

In Table 3, the validation accuracy for the detection of malware is 0.974 achieved in epoch 150.
The gradual increase of epochs reflects in the detection accuracy. The range of values varies from run
0 to run 3 where depends on the time. It has taken less epochs when compare to the existing algorithms
like SigPID, HMM and DWT. The proposed algorithm helps in enhancing the detection method and
the variation in max-depth and the fold weight.

Table 3: Validation accuracy for both malware and benign

Validation accuracy

Epochs Benign Malware

50 0.71 0.705
70 0.82 0.829
90 0.88 0.859
110 0.91 0.94
135 0.92 0.958
150 0.97 0.974

In Figs. 5a and 5b, represents the training loss and training accuracy. In Figs. 5c and 5d, represents
the validation loss and accuracy. There is the gradual increase from run 0 to run 3 which can be
visualized in the graph.

4.2 False Classification Ratio
The false classification ratio is the measure which represents the defect classification made by the

algorithm. It has been measured based on the number of false positive and false negative classification
produced by various approaches. It has been measured as follows:

FCR = Number of False Positive + Number of false negative classification
Total samples

× 100 (2)



JCS, 2022, vol.4, no.3 147

Figure 5: (a) Training loss (b) Training validation (c) Validation loss (d) Validation accuracy

With reference to Eq. (2), the calculation of false classification ratio for the total samples has been
calculated and the values were listed in Table 4.

Table 4: Analysis on false ratio on malware classification

False classification ratio %

Algorithms 25000 Samples 50000 Samples 75000 Samples

DWT 27 23 19
SigPID 25 22 16
HMM 13 11 9
AFC-XGBoost 11 8 4

The ratio of false classification introduced by different methods at the presence of different
number of samples in the data set are measured and compared in Table 3. In each case, the proposed
AFC-XGBoost algorithm has produced less false classification ratio in all the test cases than other
approaches.



148 JCS, 2022, vol.4, no.3

The graphical representation for the performance of false ratio is visualized in Fig. 6. The
performance of algorithm varies for the number of samples and the important thing is to get the
less false ration in detection and noticed that our novel model AFC-XGBoost achieved the less false
positive rate in classification of malware.

Figure 6: Performance on false ratio in malware classification

4.3 Time Complexity
Time complexity measures the value of time taken for classification of various algorithms based

on the given samples. It has been measured as follows:

Time Complexity = Total Time Taken for Malware Classification
Total Number of Test samples submitted

(3)

With reference to the Eq. (3), the analysis is performed by considering different number of samples
and features and the time taken for classification. In each case, it compares the results with the
existing approaches. The proposed AFC-XGBoost has produced less time complexity compare to
other methods.

From Table 5, it is observed and high lightened value is obtained based on the calculation of
time complexity. Here, AFC-XGBoost occupied less time which is concluded based on comparison
with various algorithms. In each case, the proposed approach has produced less time complexity in
classification compared to other approaches.

Table 5: Analysis on time complexity on malware classification

Time complexity in seconds

Algorithms 25000 Samples 50000 Samples 75000 Samples

DWT 67 83 97
SigPID 55 72 86
HMM 43 61 79
AFC-XGBoost 21 25 34



JCS, 2022, vol.4, no.3 149

The performance of time complexity produced by different methods are measured and compared
in Fig. 7, where the proposed AFC-XGBoost algorithm has produced less time complexity compare
to other methods.

0
20
40
60
80

100 67
55

43
21

83 72 61

25

97 86 79

34
S

ec
o

n
d

s

Algorithms

Time complexity

25000 Samples

50000 Samples

75000 Samples

Figure 7: Performance on time complexity in malware classification

5 Conclusion

An efficient adaptive feature centric XGBoost Malware classification model has been presented
and the model reads data set and performs preprocessing with Feature Base Optimizer algorithm
which eliminates noisy records as well normalize the tuples by computing class based mean value
(CBMV) for the features of numeric class and computes the frequency measures on each class toward
binary values. Similarly, feature frequency measure (FFM) is computed for the categorical values. At
the feature selection stage the method applies Class Based Principle Component Analysis (CBPCA)
algorithm which is computes class orient fitness score. Further the method generates the regression
trees according to histogram features of different features. At the test phase the method computes
class match measure (CMS) being computed using tree level ensemble similarity (TLES) and class
level ensemble similarity (CLES). Based on the value of CMS, the method performs classification of
malwares. The proposed approach improves the performance of malware classification with the data
set considered and reduces the false ratio and time complexity with the better accuracy of 97%.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: We declare that we do not have any commercial or associative interest that
represents a conflict of interest in connection with the work submitted.

References
[1] N. Udayakumar, V. J. Saglani, A. V. Cupta and T. Subbulakshmi, “Malware classification using machine

learning algorithms,” in 2nd Int. Conf. on Trends in Electronics and Informatics (ICOEI), America, pp. 1–9,
2018.

[2] S. Choudhary and A. Sharma, “Malware detection and classification using machine learning,” in Int. Conf.
on Emerging Trends in Communication, Control and Computing (ICONC3), America, pp. 1–4, 2020.

[3] C. Chen, C. Su, K. Lee and P. Bair, “Malware family classification using active learning by learning,” in
22nd Int. Conf. on Advanced Communication Technology (ICACT), America, pp. 590–595, 2020.



150 JCS, 2022, vol.4, no.3

[4] A. Fatima, R. Maurya, M. K. Dutta, R. Burget and J. Masek, “Android malware detection using genetic
algorithm based optimized feature selection and machine learning,” in 42nd Int. Conf. on Telecommunica-
tions and Signal Processing (TSP), America, pp. 220–223, 2019.

[5] K. Sethi, R. Kumar, L. Sethi, P. Bera and P. K. Patra, “A novel machine learning based malware detection
and classification framework,” in Int. Conf. on Cyber Security and Protection of Digital Services (Cyber
Security), America, pp. 1–4, 2019.

[6] J. Zhang, “CLEMENT: Machine learning methods for malware recognition based on semantic
behaviours,” in Int. Conf. on Computer Information and Big Data Applications (CIBDA), America, pp.
233–236, 2020.

[7] N. Tarar, S. Sharma and C. R. Krishna, “Analysis and classification of android malware using machine
learning algorithms,” in 3rd Int. Conf. on Inventive Computation Technologies (ICICT), America, pp. 738–
743, 2018.

[8] M. Z. Osman, A. F. Z. Abidin, R. N. Romli and M. F. Darmawan, “Pixel-based feature for android malware
family classification using machine learning algorithms,” in Int. Conf. on Software Engineering & Computer
Systems and 4th Int. Conf. on Computational Science and Information Management (ICSECS-ICOCSIM),
America, pp. 552–555, 2021.

[9] A. Irshad, R. Maurya, M. K. Dutta, R. Burget and V. Uher, “Feature optimization for run time analysis
of malware in windows operating system using machine learning approach,” in 42nd Int. Conf. on
Telecommunications and Signal Processing (TSP), America, pp. 255–260, 2019.

[10] H. Naeem, F. Ullah, M. R. Naeem, S. Khalid, D. Vasan et al., “Malware detection in industrial internet
of things based on hybrid image visualization and deep learning model,” Ad Hoc Networks, vol. 105, pp.
102154, 2020.

[11] D. Susanto, M. A. S. Stiawan, M. Arifin, Y. Idris and R. Budiarto, “IoT botnet malware classification using
weka tool and scikit-learn machine learning,” in 7th Int. Conf. on Electrical Engineering, Computer Sciences
and Informatics (EECSI), America, pp. 15–20, 2020.

[12] A. Walker and S. Sengupta, “Insights into malware detection via behavioral frequency analysis using
machine learning,” in MILCOM IEEE Military Communications Conf. (MILCOM), America, pp. 1–6,
2019.

[13] N. Chawla, H. Kumar and S. Mukhopadhyay, “Machine learning in wavelet domain for electromagnetic
emission based malware analysis,” IEEE Transactions on Information Forensics and Security, vol. 16, pp.
3426–3441, 2021.

[14] D. Xue, J. Li, T. Lv, W. Wu and J. Wang, “Malware classification using probability scoring and machine
learning,” IEEE Access, vol. 7, pp. 91641–91656, 2019.

[15] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an et al., “Significant permission identification for machine-learning-
based android malware detection,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3216–
3225, 2018.

[16] Y. Li, K. Xiong, T. Chin and C. Hu, “A machine learning framework for domain generation algorithm-
based malware detection,” IEEE Access, vol. 7, pp. 32765–32782, 2019.

[17] M. Khoda, T. Imam, J. Kamruzzaman, I. Gondal and A. Rahman, “Robust malware defense in industrial
IoT applications using machine learning with selective adversarial samples,” IEEE Transactions on Industry
Applications, vol. 56, no. 4, pp. 4415–4424, 2020.

[18] A. Pastor, A. Mozo, S. Vakaruk, D. Canavese, D. R. López et al., “Detection of encrypted cryptomining
malware connections with machine and deep learning,” IEEE Access, vol. 8, pp. 158036–158055, 2020.

[19] R. Kumar, K. Sethi, N. Prajapati, R. R. Rout and P. Bera, “Machine learning based malware detection
in cloud environment using clustering approach,” in 11th Int. Conf. on Computing, Communication and
Networking Technologies (ICCCNT), America, pp. 1–7, 2020.

[20] B. A. Ouahab, L. Elaachak, Y. A. Alluhaidan and M. Bouhorma, “A new approach to detect next
generation of malware based on machine learning,” in Int. Conf. on Innovation and Intelligence for
Informatics, Computing, and Technologies (3ICT), America, pp. 230–235, 2021.



JCS, 2022, vol.4, no.3 151

[21] W. N. H. Ibrahim, S. Anuar, A. Selamat, O. Krejcar, R. G. Crespo et al., “Multilayer framework for botnet
detection using machine learning algorithms,” IEEE Access, vol. 9, pp. 48753–48768, 2021.

[22] M. Panda, A. A. A. Mousa and A. E. Hassanien, “Developing an efficient feature engineering and machine
learning model for detecting IoT-botnet cyber attacks,” IEEE Access, vol. 9, pp. 91038–91052, 2021.

[23] R. R. Karn, P. Kudva, H. Huang, S. Suneja and I. M. Elfadel, “Cryptomining detection in container
clouds using system calls and explainable machine learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 3, pp. 674–691, 2021.

[24] F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry and Y. Nam, “A digital DNA sequencing engine for
ransomware detection using machine learning,” IEEE Access, vol. 8, pp. 119710–119719, 2020.

[25] B. Baek, S. Euh, D. Baek, D. Kim and D. Hwang, “Histogram entropy representation and prototype based
machine learning approach for malware family classification,” IEEE Access, vol. 9, pp. 152098–152114,
2021.


	An Adaptive-Feature Centric XGBoost Ensemble Classifier Model for Improved Malware Detection and Classification
	1 Introduction
	2 Related Works
	3 Adaptive Feature Centric XGBoost Ensemble Malware Classifier Model
	4 Results and Discussion
	5 Conclusion


