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ABSTRACT

This study introduces an electric vehicle charging station layout optimization method utilizing Point of Interest
(POI) data, addressing traditional design limitations. It details the acquisition and visualization of POI data for
Yancheng’s key locations and charging stations. Employing a hybrid K-Means and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) clustering algorithm, the study determines areas requiring optimization
through location entropy and overlap analysis. The research shows that the integrated clustering approach can
efficiently guide the fair distribution of charging stations, enhancing service quality and supporting the sustainable
growth of the electric vehicle sector.
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1 Introduction

The growing global environmental crisis has heightened the focus on sustainable development and
environmental protection. In this context, electric vehicles (EVs) have rapidly emerged as a key driver
of the green transition in the transportation sector, thanks to their clean and efficient characteristics.
Compared to traditional internal combustion engine (ICE) vehicles, EVs offer significant advantages
in reducing carbon emissions and minimizing environmental pollution. Additionally, EVs are powered
by electricity, which is typically less expensive than fuel, providing users with economic savings.
The reduced noise generated during EV operation also delivers a quieter, more comfortable driving
experience.

Despite these benefits, the widespread adoption and growth of EVs still face several challenges.
One of the main obstacles is the development and distribution of charging infrastructure. As the
number of EV users continues to increase, imbalances between the supply of and demand for charging
stations have become more apparent. In some areas, demand exceeds supply, resulting in long wait
times and difficulties finding available chargers, which intensifies users’ “range anxiety”—the fear of
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depleting battery power without access to charging. On the other hand, certain regions experience an
oversupply of charging stations, leading to resource inefficiency and reduced operational effectiveness.
This mismatch between supply and demand not only impacts the user experience but also hinders the
sustainable growth of the EV industry.

To address this issue, optimizing the layout of EV charging stations has become crucial. In recent
years, researchers have turned to analyzing EV charging demand data to optimize the distribution of
charging infrastructure. However, traditional methods have limitations when dealing with the dynamic
and complex nature of vehicle usage. Charging demand is influenced by various factors such as time,
location, and user behavior, which adds complexity to the planning of charging station layouts. Relying
solely on conventional methods makes it difficult to adapt to these dynamic changes and spatial
variability.

This paper aims to explore a new approach to optimizing charging station layouts through the
analysis and visualization of Points of Interest (POI) data. By using clustering algorithms to analyze
key urban locations, this study identifies areas with high concentrations of pedestrian and vehicle
traffic, allowing for more strategic planning and distribution of charging stations in those regions. This
method helps alleviate users’ range anxiety, improves the EV driving experience, and better satisfies
charging needs. Through an in-depth analysis of Yancheng City in Jiangsu Province, this study provides
a fresh perspective on charging station layout optimization and offers both theoretical and practical
support for the sustainable development of the EV industry.

The main contributions of this article include the following:

• An electric vehicle charging station layout optimization method based on POI data is proposed.
Combining the K-Means algorithm and the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) algorithm effectively overcomes the limitations of the K-Means
algorithm in the selection of initial clustering centers and avoids falling into the local minimum,
the problem of optimal solution.

• The location entropy method is innovatively introduced to quantitatively evaluate the social
equity of charging station layout. This method provides a new perspective and quantitative tool
for the uniformity of distribution of charging station services in different regions.

• By evaluating the fairness of charging station layout in different regions, this paper identifies the
main POI types that affect charging station utilization, and further determines the important
impact of these POI types on charging station layout optimization through sensitivity analysis,
providing guidance for charging station layout decisions. Data support is provided.

The rest of the paper is organized as follows. Section 2 analyses the related work. Section 3 presents
the questions raised and the research ideas. Section 4 introduces an electric vehicle charging station
layout optimization algorithm that combines the K-Means algorithm and the DBSCAN algorithm.
Section 5 provides the experimental results. Section 6 compares different models. Finally, Section 7
concludes the paper with a summary.

2 Related Work

Optimizing the layout of electric vehicle charging stations is one of the core issues in current
electric transportation system planning, which is directly related to the efficiency of the charging
network, construction and operating costs, and the user’s charging experience. With the rapid growth
of electric vehicles, how to arrange charging stations scientifically and rationally has become a hot
research topic. Different researchers have used a variety of optimization algorithms and data-driven
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technologies to optimize resource allocation and improve economic benefits while meeting users’
charging needs. Existing literature shows that optimization methods based on genetic algorithms,
improved heuristic algorithms and meta-heuristic algorithms have made significant progress. At the
same time, the introduction of data-driven models also provides new perspectives and methods for
optimization problems.

First, optimization methods based on genetic algorithms have been widely used in charging
station layout research. Literature [1] proposed a multi-agent system based on a genetic algorithm,
which comprehensively utilizes social network dynamic data and mobility data to accurately predict
the charging demand of electric vehicles in the city and determine the optimal layout of charging
stations. This method effectively integrates multi-source data and achieves more reasonable charging
station distribution planning through collaboration between agents. Literature [2] also used a genetic
algorithm to optimize the layout of electric vehicle charging stations in Ireland based on the total social
cost model, aiming to minimize the construction and operating costs of charging stations. Through
sensitivity analysis of key parameters, this study demonstrates the superiority of genetic algorithms in
solving such complex optimization problems.

Secondly, improvements in classic heuristic algorithms also show strong adaptability and com-
putational efficiency in optimizing charging station layout. Literature [3] proposed an improved
NSGA-II algorithm, which significantly improved the algorithm’s search capability and convergence
performance by introducing chaotic initialization and arithmetic crossover operators. This method
not only optimizes the layout and scale of charging stations but also effectively improves the coverage
efficiency of the charging network and reduces operators’ costs and users’ charging fees. Similarly,
literature [4] established an objective function model by improving the particle swarm optimiza-
tion algorithm to minimize the construction and operation costs of charging stations, successfully
optimized the layout of charging stations in Beijing, and solved the problem of uneven resource
distribution. This type of research shows that the improved heuristic algorithm can provide better
solution results in multi-objective optimization problems and has strong practicability.

In addition, data-driven methods provide new research perspectives and tools for charging station
optimization. Literature [5] developed a data-driven optimization model through large-scale electric
taxi GPS trajectory data to accurately capture the charging behavior in urban areas to determine the
optimal location and scale of charging stations. This study designed a heuristic algorithm and verified it
in a real case in Shenzhen, showing the strong application potential of data-driven methods in charging
station layout optimization. Literature [6] further expanded the scope of data application, using mobile
phone signal data combined with trip reconstruction technology to propose a two-stage optimization
model for charging station location selection. This type of research provides more accurate and feasible
solutions for charging station planning by integrating big data and optimization algorithms.

The application of metaheuristic algorithms also opens up new research directions for charging
station layout optimization. Literature [7] proposed a charging station layout method based on
an improved whale optimization algorithm. This method particularly considers dynamic charging
requirements and optimizes under different constraints through an improved metaheuristic algorithm,
successfully solving the problem of charging station—layout issues. Literature [8] further explores
the integration of wind energy, photovoltaic, and energy storage systems into the multi-objective
optimization design of charging stations, and uses a hybrid optimization algorithm to determine the
optimal capacity configuration and power dispatch strategy. This study verified the effectiveness of the
model through cases and demonstrated the broad applicability of metaheuristic algorithms in multi-
objective optimization problems.
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Optimization methods that combine actual data and case studies have gradually become an impor-
tant research direction in this field. Literature [9] proposed a charging station layout optimization
method through an optimization model based on actual driving data, which maximizes the coverage
of charging services while minimizing costs. Literature [10] proposed a set of optimized layout plans
for electric vehicle charging infrastructure in the central area of Chongqing. Through an in-depth
analysis of regional characteristics and charging needs, it provides new energy vehicle users with a more
reasonable distribution of charging stations. This type of research further enhances the operability and
practical application value of research results by combining real-world data to verify the optimization
model.

Important progress has also been made in multi-algorithm fusion research for different optimiza-
tion problems and scenarios. Literature [11] proposed a charging station location selection method
based on hybrid particle swarm optimization and tabu search algorithm (HPSO-TS). By combining
the advantages of the two algorithms, the search efficiency and global optimization capabilities of
the algorithm are effectively improved. Literature [12] proposed a comprehensive framework covering
the planning and demand forecasting of electric vehicle charging stations, aiming to provide a
scientific basis for the rational configuration of infrastructure. In addition, literature [13] discussed the
application of particle swarm optimization, Salp swarm algorithm (SSA), and arithmetic optimization
algorithm (AOA) in the design of fast charging stations. Through the comparison and combination of
three meta-heuristic algorithms, the optimization is further improved. Model robustness and economic
efficiency.

Although many scholars have conducted extensive research on the layout optimization of electric
vehicle charging stations, the data required for most studies are too difficult to obtain, which limits the
use of these studies in other cities and has low generalization. Therefore, this paper proposes a charging
station layout optimization method based on POI data. First, POI data including shopping malls,
office buildings, residential areas, transportation hubs, etc., as well as traffic flow data and population
density data are collected and prepossessed. Secondly, hot spot analysis, spatial clustering, and path
analysis are performed to identify high-demand areas and charging hot spots. Then, a coverage model
and an optimization model are constructed, and heuristic algorithms and mixed integer programming
methods are used to solve the optimal layout plan. Finally, the effectiveness of the optimization scheme
is evaluated through simulation experiments and actual verification.

3 Questions Raised and Research Ideas
3.1 Description of the Problem

This study focuses on solving the planning and optimization problems of electric vehicle charging
infrastructure. With the rapid expansion of the electric vehicle market, the demand for charging
stations is increasing. However, the current layout of charging stations is often difficult to cope
with charging demand during peak periods, causing users to wait for long periods of time and
reducing satisfaction. At the same time, unreasonable distribution of charging stations also leads to
low resource utilization. In order to deal with these problems, this article uses scientific data analysis
and optimization models to explore how to rationally layout and optimize electric vehicle charging
stations to improve the service efficiency and user experience of the charging network.
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3.2 Research Framework

The research framework of this article revolves around the two core contents of layout optimiza-
tion and analysis of electric vehicle charging stations, as shown in Fig. 1, which is divided into the
following two parts:

Layout optimization: In layout optimization, POI data and geographic information system
(GIS) technology were used to accurately identify potential areas with high charging demand. By
implementing a cluster analysis approach, we aim to determine the optimal layout locations of electric
vehicle charging stations to achieve effective coverage of demand hot spots.

Layout analysis: In the layout analysis, the location entropy method is used to determine the
fairness of the layout of electric vehicle charging stations.
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Figure 1: Research framework

4 Electric Vehicle Charging Station Layout Optimization Algorithm Combining K-Means Algorithm
and DBSCAN Algorithm

4.1 Preliminary Screening of POI Types

In this study, POI [14] is used as the database, which refers to geographic locations that have a
specific function or arouse interest in a Geographic Information System (GIS). These locations usually
include places such as restaurants, stores, hospitals, schools, parks, transportation hubs, etc. POI data
are widely used in the fields of urban planning, navigation systems, and business location analysis to
help researchers better understand the spatial structure of the city and the distribution of functional
areas through the geographic coordinates, names, categories, and other attribute information they
contain. Because POI data can accurately reflect the functional places and their distribution in reality,
it occupies a crucial position in urban research.

In order to improve the convenience of data acquisition and enhance the generalizability of the
proposed methodology, POI data from a single source is chosen as the basis of analysis in this study.
Based on the geographic characteristics of important locations in the study area, a classification
strategy of two districts and three centers was adopted to carefully divide the POI data. Specifically,
POI data are divided into primary and secondary classifications through the hierarchical structure
of the system, and this function-based classification can more clearly show the spatial distribution
characteristics of different types of locations. In this way, the study can not only accurately identify
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the important functional areas in the city, but also effectively analyze the spatial aggregation patterns
of different categories of POIs. Table 1 shows the specific POI classification results, which further
supports the study’s fine analysis of the spatial structure of Yancheng City.

Table 1: POI classification of important places in Yancheng City

Primary classification Secondary classification Specific facility name

Residential area Residential community Business residences, residential
complexes, villas, etc.

Residential ancillary land Community hospitals,
community service centers, and
other facilities.

Office area Science and Education Schools, training institutions,
children’s palaces, etc.

Medical facilities Hospitals, clinics, pharmacies,
etc.

Administrative land use Government agencies, public
institutions, social organizations,
etc.

Commercial center Catering Hotels, restaurants, cafes, dessert
shops, etc.

Shopping Hotels, restaurants, cafes, dessert
shops, etc.

Accommodation Accommodation such as hotels,
inns, guesthouses, star-rated
hotels, etc.

Leisure and entertainment Movie theaters, internet cafes,
KTVs, clubs, etc.

Financial insurance Banks, insurance companies,
securities firms, etc.

Industrial center Corporations Factories, industrial parks, etc.
Leisure center Sports leisure Gymnasium, sanatorium, etc.

Green space and square
land

Scenic spots, parks, squares, etc.

4.2 Combining K-Means Algorithm and DBSCAN Algorithm

Since the K-Means algorithm has difficulty in determining the number of clusters (K value) and
is very sensitive to the selection of the initial cluster center, which may lead to unsatisfactory clustering
results, this article proposes an algorithm that combines K-Means and DBSCAN Cluster analysis of
methods to optimize charging station layout. The DBSCAN algorithm does not need to preset the
number of clusters, can automatically discover clusters of any shape, and has good robustness to noise
and outliers. By first using the DBSCAN algorithm to identify high-density areas in the data, and then
using these areas as the initial clustering centers of the K-Means algorithm, it can effectively prevent
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the K-Means algorithm from falling into local optimality, further improve the clustering effect, and
ensure charging stations, accuracy and rationality of layout optimization.

The model in this article uses the DBSCAN algorithm to determine the K value of the study area.
The DBSCAN algorithm is a density-based spatial clustering algorithm proposed by Ester et al. in
1996 [15]. It is particularly suitable for discovering clusters of arbitrary shapes and handles noisy
data well.

For the DBSCAN algorithm, all points in the data set are first traversed and each point is
marked as “unvisited”. Select an unvisited point, mark it as visited, and check its ε-neighborhood. The
ε-neighborhood is defined by Eq. (1):

Nε (p) = {q ∈ D | d (p, q) ≤ ε} (1)

where is the distance between and (usually Euclidean distance is used). If it is a core point, create a
new cluster and add all points in its ε-neighborhood (including boundary points and core points) to
the cluster.

If it is not a core point and the number of points in its ε-neighborhood is less than MinPts, it is
marked as a noise point. If a point:

The ε-neighborhood contains at least MinPts points (including itself), then is a core point. As
defined by Eq. (2):

|Nε (p) | ≥ MinPts (2)

If the number of points in the ε-neighborhood of a point is less than MinPts, but there are points
in the ε-neighborhood of a core point, it is a boundary point. If a point is neither a core point nor a
boundary point, it is called a noise point.

For each core point in a cluster, its ε-neighborhood is examined. If some points in the
ε-neighborhood are also core points, their ε-neighborhood is added to the current cluster. The K
value can be determined according to the above steps.

According to the K value of K-Means determined in the previous stage, the cluster center of each
region is initialized, where is the number of clusters.

The goal of K-Means is to minimize the objective function, as shown in Eq. (3):

J =
k∑

i=1

∑

x∈Ci

‖x − ci‖2 (3)

Among them, x is the data point, ci is the cluster center, and ci is the set of data points contained
in the cluster.

Start

# Initialization

Initialize dataset, parameters (MinPts, epsilon for DBSCAN, K for K-Means)

# DBSCAN Clustering

For each point in the dataset:

If the point is not visited:

Mark point as visited
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Get neighborhood points based on epsilon distance

# Check if the neighborhood contains at least MinPts

If a number of neighborhood points >= MinPts:

Create new cluster

Add a point to the cluster

Add all neighboring points to the cluster

# Expand cluster

For each point in the neighborhood:

If the point is not visited:

Mark point as visited

Get new neighborhood points

If a number of neighborhood points >= MinPts:

Add these points to the cluster

# After visiting all points

If all points have been visited:

Get the number of clusters K from DBSCAN results

# K-Means Clustering

Initialize K centroids from DBSCAN clusters

Repeat until convergence:

Assign each point to the nearest centroid

Update centroids by computing the mean of points in each cluster

End

Based on the pseudo-code above, the complexity of the algorithm can be analyzed in detail,
involving two main parts: the DBSCAN clustering and the K-Means clustering.

First is the DBSCAN clustering part. DBSCAN determines the attribution of clusters by
traversing each data point and looking for points in its neighborhood. The specific process is that
for each unvisited point, the algorithm checks its neighborhood, i.e., it finds all the points whose
distances are within epsilon, an operation that requires traversing the entire dataset and therefore has
a complexity of O(n). Next, the algorithm checks whether the number of points in the neighborhood
is greater than or equal to MinPts, and if the condition is satisfied, the current point is added to
the new cluster, and all the points in the neighborhood are also added to the cluster. If the points
in the neighborhood are not accessed, the algorithm recursively checks the neighborhoods of those
points and continues to expand the cluster. In the worst case, each point may be visited multiple times,
especially in data-dense regions where the neighborhoods of all points may overlap. As a result, the
overall time complexity of DBSCAN is O(n2) because, for each point, it is possible that all other points
may need to be traversed to determine the neighborhood.

After the DBSCAN clustering is complete, the algorithm then proceeds to further optimize the
clusters using K-Means. DBSCAN outputs a number of clusters and the centers of these clusters
are used as the initial centers of mass for the K-Means. K-Means optimizes the location of these
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centers by iterating until convergence. In each iteration, K-Means first assigns each point to its nearest
center of mass, which requires K distance calculations for each point with a complexity of O(K ∗ n).
Subsequently, K-Means recalculates the location of the center of mass for each cluster by taking the
mean of all the points in each cluster, an operation that is also O(K ∗ n). K-Means usually require
multiple iterations, and assuming that the number of iterations is T, the overall complexity of K-Means
is O(T ∗ K ∗ n).

Overall, the total complexity of the entire algorithm is the sum of the complexity of DBSCAN
and K-Means. the complexity of the DBSCAN part is O(n2), while the complexity of the K-Means
part is O(T ∗ K ∗ n). Thus, the overall complexity of the algorithm is O(n2 + T ∗ K ∗ n). Of
these, the complexity of DBSCAN will dominate when dealing with large-scale datasets, especially
in dense data regions, which makes it computationally expensive in some cases. However, DBSCAN
has the advantage of being able to capture arbitrarily shaped clusters, while K-Means further
optimizes the allocation of clusters, which accelerates convergence and improves clustering quality.
Overall, the algorithm combines the advantages of DBSCAN and K-Means, which can effectively
handle clusters with complex shapes while optimizing the clustering results.

5 Experimental Results
5.1 Experiment Purpose, Principle, and Process

In this paper, we construct an electric vehicle charging station layout optimization model that
comprehensively utilizes POI data and geographic information system (GIS) technology. In order
to solve the limitations of the traditional K-Means algorithm in selecting cluster centers, this paper
proposes a clustering method that combines the K-Means algorithm and the DBSCAN algorithm,
aiming to balance the distribution of charging stations and improve charging stations through layout
optimization, utilization and service quality. In the cluster analysis stage, this paper uses the DBSCAN
algorithm to automatically identify high-density areas in the data, which may represent areas with
higher charging demand. The advantage of the DBSCAN algorithm is that it does not need to
specify the number of clusters in advance and has good robustness to noisy data. Then, the K-
Means algorithm is combined to determine the cluster centers of these high-density areas as candidate
charging station locations. In order to further improve the optimization effect of the model, the
location entropy method is used to evaluate the social equity of charging station layout, ensuring that
the distribution of charging stations not only meets high-demand areas but also takes into account
the service balance between different regions. In addition, through overlap analysis, the locations
of existing charging stations are compared with potential locations derived from cluster analysis to
identify areas that require optimization.

5.2 Experimental Conditions

This experiment was completed using Python programming in the PyCharm 2023 environment,
and the running platform was a computer equipped with a 12th generation Intel® Core™ i5-12500H
processor and 32 GB of memory. The Yancheng point of interest (POI) data required for the
experiment comes from the Amap API, while the vector data of the Yancheng administrative area
is obtained through the “OpenStreetMap” platform. All geographic data uses the WGS84 geographic
coordinate system.
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5.3 Data Processing

In order to ensure the accuracy of the geographical location of electric vehicle charging stations
obtained after single-source POI data clustering, abnormal and erroneous data were removed from
the collected POI data and classified according to Table 1. The processing results are shown in Fig. 2.

Figure 2: Yancheng City POI scatter plot

5.4 Electric Vehicle Charging Station Layout Optimization Model Combining K-Means Algorithm
and DBSCAN Algorithm
The core of this paper is to combine the advantages of two clustering algorithms, K-Means,

and DBSCAN, to analyze the POIs of important locations in Yancheng City in order to reveal the
spatial distribution patterns of these locations. The research object of the experiment is a number
of representative POIs in Yancheng city, which include locations with landmark significance such
as commercial centers, tourist attractions, and transportation hubs. By clustering these POIs, it is
expected to better understand the functional areas of Yancheng City and the spatial structure of
the city.

First, the experiment chooses the DBSCAN algorithm for preliminary clustering analysis.
DBSCAN is a density-based clustering algorithm that can recognize clusters of arbitrary shapes,
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which is especially suitable for dealing with complex spatial data like POIs. In this experiment, the two
key parameters of DBSCAN are the neighborhood radius Eps = 1 km and the minimum number of
points MinPts = 10.

The choice of Eps of 1 km is based on the spatial distribution characteristics at the urban scale
that defines the neighborhood range of a point, i.e., centered on a certain POI point, all points within
its radius are considered as the neighbors of that point. In city-level spatial data analysis, a distance
of 1 km usually reflects the closeness of urban functional areas well. In Yancheng City, for example,
the 1 km scale is sufficient to cover the relatively concentrated POI points within functional areas
such as commercial districts, residential districts, and transportation hubs, which in reality are usually
located within 1 km of each other. By setting the Eps of 1 km, DBSCAN is able to group those closely
neighboring POIs in the city into the same cluster, effectively capturing the dense features within the
area. If the Eps value is set too small (e.g., a few hundred meters), it may lead to certain closely
distributed POIs being mistaken as belonging to different clusters, thus failing to completely reflect
the spatial extent of a certain functional area; whereas if the Eps value is too large, POIs distributed
farther away may be mistaken as neighboring, leading to the overexpansion of clusters. Therefore, a
neighborhood radius of 1 km is a reasonable choice that can balance the density differences of different
areas in the city.

The choice of MinPts = 10 reflects the requirement of POI density. The MinPts parameter
determines whether a POI point can be a core point, i.e., there must be at least 10 other points in the
neighborhood around the point to form the core of a cluster. The threshold of 10 neighbors is chosen
based on the observation of POI data distribution within the city. In general, high-density areas such
as commercial districts and transportation hubs in Salt Lake City usually have a larger number of
POIs concentrated in a smaller area, which often contain multiple neighboring stores, office buildings,
or public facilities. Therefore, the requirement of at least 10 POIs within a point’s neighborhood can
ensure the identification of these truly dense functional areas. In contrast, in less dense areas (e.g., some
residential or suburban areas), where POIs are more dispersed, points with fewer than 10 neighbors
may be identified as noise or boundary points, and thus will not form an effective cluster.

In this way, the combination of Eps and MinPts ensures that DBSCAN can flexibly identify
high-density areas and filter out sparsely distributed or isolated noise points based on the density
characteristics of different functional areas in Salt Lake City. Setting Eps = 1 km and MinPts = 10
captures the tight clustering in the city center area and avoids excessive clustering in the lower-density
areas, thus obtaining a more reasonable delineation of the city’s functional areas. The reasonableness
of this parameter setting is that it adapts to the spatial density differences of different areas within
Yancheng City, and also can effectively balance the accuracy and robustness of the clustering results.

With these parameters, DBSCAN is able to effectively distinguish high-density areas and noise
points and successfully cluster the POIs of Yancheng City into 380 clusters.

After the DBSCAN clustering, the K-Means algorithm is further used to optimize the clustering
results. A significant advantage of DBSCAN is that it can automatically determine the number of
clusters, and the number of clusters obtained by DBSCAN in the experiments is 380, and this number
of clusters is also used as the K value in the K-Means algorithm. When performing K-Means, the
POI data after DBSCAN clustering is fed into K-Means with K = 380. This means that the K-Means
algorithm divides all the data points into 380 clusters and iteratively optimizes the position of the center
of mass of each cluster. The clustering process of K-Means aims to minimize the variance between the
data points within the clusters by continuously adjusting the center of mass of the clusters. Variance
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between data points within a cluster by continuously adjusting the center of mass position of the
clusters, thus obtaining more accurate clustering results.

The simulation environment of the experiment used Python programming language and combined
it with scientific computing libraries such as Scikit-learn to implement the clustering algorithm. In
order to improve the computational efficiency, spatial indexing structures such as KD trees were also
utilized in the experiments to speed up the neighborhood search process of the DBSCAN algorithm.
The iterative optimization of K-Means was also carried out in a high-performance computational
environment, and the experimental computers were equipped with a multi-core processor and suffi-
cient memory in order to efficiently process a large amount of POI data. Eventually, the clustering
results were used to generate scatter plots by visualization tools such as Matplotlib and Seaborn,
demonstrating the spatial distribution of different functional areas in Yancheng City.

In the visualization process, the 380 cluster centers obtained from K-Means clustering are
presented in the form of scattered points, as shown in Fig. 3. Each point represents the center of
mass of a cluster, and the location of the center of mass reflects the spatial concentration of POIs
in the region. By observing the distribution of these centers of mass, it is possible to visually analyze
the regional division of Yancheng City and identify the distribution of commercial centers, residential
areas, and other functional areas. The experimental results show that this clustering method, which
combines DBSCAN and K-Means, is not only able to discover the complex spatial distribution of POIs
in Yancheng City but also improves the accuracy of the clustering results by optimizing the location
of cluster centers.

Figure 3: Yancheng City POI cluster map

5.5 Cluster Analysis and Location Entropy Improvement of Charging Station Layout

The fairness of electric vehicle charging facilities is an important issue to measure whether social
groups can fairly enjoy charging station services. If the social equity of electric vehicle charging facilities
is not enough, people in some areas will not be able to enjoy the services of charging stations, which
will limit the promotion and development of charging stations. If you want to know whether the
distribution of charging stations in a certain area is fair, the location entropy method [9] is a method
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to evaluate whether the spatial distribution of charging stations is uniform. Specifically, it is shown in
the following Eq. (4):

LQn = (Pn/Mn) / (P/M) (4)

Among them, the study area is divided into n sub-regions, the total population of the region is M,
the total number of charging stations within the study range is P, the population of the sub-region is
Mn, and the number of charging stations in the sub-region is Pn. The ratio of the number of charging
stations in a sub-region to the population in the sub-region is the ratio of the number of charging
stations in the total region to the population in the total region, which is the location entropy. When
the location entropy is less than 1, it means that the per capita access to charging station resources in
the area is lower than that of the entire region; if the location entropy is greater than 1, it means that
the per capita access to charging station resources in the area is higher than the per capita access to
charging station resources in the entire area. When the location entropy is less than 1, we define that
if the location entropy is greater than 1, the fairness is considered to be good; if the location entropy
is between 0.9∼1, the fairness is considered to be good; if the location entropy is between 0.8∼0.9,
then the fairness is considered to be moderate; if the location entropy is between 0.7 and 0.8, then the
fairness can be considered to be moderate. If the location entropy is lower than 0.7, the fairness can
be considered poor.

According to the seventh national census data of Yancheng City, the total permanent population
of Yancheng City and the permanent population of each region can be obtained, see Table 2:

Table 2: Yancheng City’s total resident population, resident population in each region and location
entropy

Regional Population Number of charging station construction LQn

The City 6,709,629 346
Tinghu District 901,007 58 1.24831
Yandu District 832,584 49 1.14128
Dafeng District 645,603 51 1.53189
Xiangshui County 459,156 23 0.97138
Binhai County 820,084 27 0.63845
Funing County 794,036 30 0.73266
Sheyang County 759,403 34 0.86822
Jianhu County 609,346 25 0.79561
Dongtai City 888,410 49 1.06956

According to the above data, the fairness of Tinghu District, Yandu District, Dafeng District, and
Dongtai City is excellent, the fairness of Xiangshui County is good, the fairness of Sheyang County is
medium, and the fairness of Funing County and Jianhu County is to qualify, Binhai County has poorer
fairness. We must first strengthen the construction of Binhai County, followed by the construction of
Funing County and Jianhu County.
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5.6 Overlap Layer Analysis

In this paper, by performing a GIS spatial overlay on the locations of existing charging stations and
potential charging station locations obtained through a clustering algorithm, the spatial relationship
between the two is intuitively revealed, and service gaps and areas of over-service are identified. The
optimization of the charging station layout provides decision support, ensures a more reasonable
distribution of charging facilities, effectively meets the charging needs of electric vehicle users, and
thereby improves the utilization rate and service quality of charging stations.

Import SHP format maps through QGIS for overlap analysis. The overlay diagram is shown in
Fig. 4 below, where the red dot represents the original charging point and the green dot represents the
cluster center point.

Figure 4: Overlay image

Compare the POI scatter plots of important locations in Yancheng City with the overlay plots, as
shown in Fig. 5 below.
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Figure 5: Comparison chart. (a) POI scatter plot of important locations in Yancheng City. (b) Overlay
plot highlighting density and clustering patterns

In Fig. 5a, the place where the five colors gather in large numbers should be the place with the
largest flow of people and vehicles. The green dot in Fig. 5b is where the POI gathering center of
important places in Yancheng City is located, representing the place with the largest flow of people
and vehicles in each region of Yancheng City. The red points, that is the points where the original
charging station is close to or overlaps a lot with the center of the green cluster, indicate that it is more
reasonable to establish the original charging station in places with high POI density. As can be seen
from Fig. 5b, Sheyang County has a large geographical area. The layout of charging station facilities in
the central area of Sheyang County is relatively reasonable, but the layout of charging station facilities
around the central area of Sheyang County is relatively lacking. It is necessary to vigorously strengthen
the construction of Sheyang County to meet the needs of the people, followed by the construction of
charging stations in Binhai County, Xiangshui County, Funing County, and Jianhu County. Most
of the two-color points in Tinghu District and Yandu District are consistent. The original layout is
relatively reasonable and there is basically no need for additional construction. However, for Dafeng
District and Dongtai City, appropriate additional construction is needed.

As shown in Fig. 6, the optimized location entropy shows a more stable trend, effectively balancing
the population size and the distribution of electric vehicle charging stations in each region. After
improvements, the layout of charging stations has been significantly enhanced in suburban and remote
areas, making it easier for suburban residents to access charging facilities. This optimization not only
improves the service coverage of charging stations but also greatly facilitates the daily charging needs
of suburban car owners and promotes the balanced development of the charging network.
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Figure 6: Comparison chart of charging stations in Yancheng City

5.7 Analysis Suggestions

From the perspective of location entropy, the per capita resource acquisition of charging stations
in Tinghu District, Yandu District, Dafeng District, and Dongtai City is higher than the per capita
resource acquisition of charging stations in general areas, Xiangshui County, Sheyang County, Funing
County, Jianhu County the per capita access to charging station resources in counties and Binhai
counties is lower than the per capita access to charging station resources in general areas; and
the fairness is poor. In particular, the construction of charging stations in Binhai County must be
strengthened. Judging from the original charging stations and aggregation centers in the overlay map,
the construction of Sheyang County should be vigorously strengthened, followed by the construction
of charging stations in Binhai County, Xiangshui County, Funing County, and Jianhu County. The
two-color points in Tinghu District and Yandu District are mostly the same. The original layout
is relatively reasonable and there is no need to increase construction. Dafeng District and Dongtai
City need to increase construction appropriately. In general, priority should be given to strengthening
the construction of charging stations in northern Yancheng, followed by appropriate construction in
southern Yancheng.

6 Model Comparison

In order to compare the superiority of the proposed method, this paper uses three data sets to
evaluate the fusion clustering method, namely the Moons data set, the Circles data set, and the Blobs
data set.

The proposed fused DBSCAN and K-Means method is compared with the pure K-Means
method. The results of the fusion of DBSCAN and K-Means methods and the pure K-Means method
on three different data sets are shown in Fig. 7. Table 3 shows a comparison of the clustering results
of the fusion of the DBSCAN and K-Means methods with the pure K-Means method on different
datasets.
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Figure 7: Comparison between the fused DBSCAN and K-Means method and the pure K-Means
method

Table 3: Comparison between the fused DBSCAN and K-Means method and the pure K-Means
method

Dataset Ways Silhouette score Calinski-Harabasz
index

Davies-bouldin
index

Number of
clusters

Moons Fusion of
DBSCAN and
K-Means
methods

0.529 4591.321 0.547 10

KMeans 0.490 2226.574 0.781 2

(Continued)
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Table 3 (continued)

Dataset Ways Silhouette score Calinski-Harabasz
index

Davies-bouldin
index

Number of
clusters

Circles Fusion of
DBSCAN and
K-Means
methods

0.482 2093.861 0.578 17

KMeans 0.350 848.113 1.196 2
Blobs Fusion of

DBSCAN and
K-Means
methods

0.843 25,006.282 0.221 3

KMeans 0.843 25,006.282 0.221 3

From the results in Table 3, there is a significant difference between the performance of the fused
DBSCAN and K-Means method and the pure K-Means method on different datasets, especially on
datasets with irregular shapes. For the Moons and Circles datasets, the contour coefficient, Calinski-
Harabasz index, and Davies-Bouldin index of the fused method are better than those of the pure
K-Means method. On the Moons dataset, the silhouette coefficient of the fusion method is 0.529,
while K-Means is only 0.490; on the Circles dataset, the Calinski-Harabasz index of the fusion method
is 2093.861, which is much higher than K-Means’ 848.113. In addition, the number of clusters for the
fusion method on the Moons and Circles datasets is significantly higher than that for the K-Means
method, 10 and 17, respectively, compared to only 2 for K-Means. These results show that the fusion
method can better identify more clusters and provide higher-quality clustering results when dealing
with datasets of irregular shapes. In contrast, the pure K-Means method performed poorly on these
complex datasets. For the Blobs dataset, the two methods performed equally well, but overall, the
advantage of the fusion method on complex datasets is significant.

The two pictures in the first row of Fig. 7 show the clustering results of the two methods on the
Moons data set. All indicators of the fusion DBSCAN and K-Means method are better than KMeans.
A higher Silhouette Score indicates that the data points within the clusters of this method are closer
together and the discrimination between clusters is better. At the same time, the Calinski-Harabasz
Index is significantly higher than the K-Means, indicating that the fusion of DBSCAN and K-Means
methods has greater advantages in the concentration of data points within clusters and the separation
between clusters. The lower Davies-Bouldin Index indicates that the fusion of DBSCAN and K-Means
methods has stronger intra-cluster tightness and greater inter-cluster distance. Therefore, it can be
seen that the fusion of DBSCAN and K-Means methods is more suitable for processing such complex
cluster structures with overlapping and curved shapes in the Moons data set. KMeans has difficulty
identifying irregular cluster shapes in this case, while the density clustering of DBSCAN the class
method can better capture this complex shape. Through further fine-tuning combined with KMeans,
the overall clustering effect has been significantly improved.

The two pictures in the second row of Fig. 7 show the clustering results of the two methods on
the Circles data set. The performance of the fusion DBSCAN and K-Means method is still better
than K-Means. A higher Silhouette Score means that the data points in the cluster are closer and the
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clustering effect is better; at the same time, the Calinski-Harabasz Index and Davies-Bouldin Index that
combine the DBSCAN and K-Means methods are better than K-Means, which shows that DBSCAN
can perform well. Identify the structure of concentric circles in the Circles dataset. However, K-Means
cannot effectively handle this ring structure, resulting in its various indicators being significantly lower
than the fusion of DBSCAN and K-Means methods. Therefore, it can be concluded that the Circles
data set can better separate clusters using DBSCAN due to the structural characteristics of its inner
and outer rings, and combined with K-Means fine-tuning, can further improve the clustering effect.

The two pictures in the third row of Fig. 7 show the clustering results of the two methods on the
Blobs data set. The fused DBSCAN and K-Means method performs the same as K-Means. The values
of the Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index are completely consistent,
indicating that both methods can achieve the best results on this regular and evenly distributed cluster
structure. The cluster structure of the Blobs dataset is well suited to K-Means, itself with uniformly
distributed Gaussian clusters, and K-Means is already able to identify cluster boundaries well, so
DBSCAN does not bring additional improvement in this scenario.

7 Summary

This paper conducts an in-depth study on the layout optimization of electric vehicle charging
stations through the comprehensive application of POI data analysis, geographic information system
(GIS) technology, and clustering algorithms. This paper proposes a clustering method that combines
the K-Means algorithm and the DBSCAN algorithm to determine the optimization plan for the
charging station layout. This method makes full use of the advantages of the K-Means algorithm
in processing large-scale data sets and the strong robustness of the DBSCAN algorithm in processing
noisy data, effectively identifying areas with dense flow of people and vehicles in the city, and providing
a basis for reasonable planning of charging stations. Data support is provided.

Taking Yancheng City, Jiangsu Province in China as an example, the study used the location
entropy method to evaluate the social equity of charging facilities. By calculating the number of
charging stations constructed in different regions and the population ratio, the distribution balance
of charging station services in each region was identified. Finally, through the overlapping analysis
method, the existing charging stations were compared with the potential charging station locations
obtained by cluster analysis, and the areas that needed to be optimized in the charging station layout
were intuitively identified, and targeted optimization suggestions were put forward.

The research in this article not only provides a scientific and systematic methodology for the layout
optimization of electric vehicle charging stations but also has important theoretical and practical
significance for promoting the healthy development of the electric vehicle industry and improving
the service level of charging facilities. By optimizing the layout of charging stations, users’ anxiety
about battery life can be effectively alleviated, charging efficiency can be improved, and the widespread
application of electric vehicles can be promoted.
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