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ABSTRACT

A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management
and operation, assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger
safety and operation. First, the passenger flow sequence models in the study are broken down using VMD for noise
reduction. The objective environment features are then added to the characteristic factors that affect the passenger
flow. The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.
It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy, by setting BP, CNN, and LSTM
reference experiments. All models’ second order prediction effects are superior to their first order effects, showing
that the residual network can significantly raise model prediction accuracy. Additionally, it confirms the efficacy of
supplementary and objective environmental features.
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1 Introduction

Rail transit efficiently reduces the burden of ground traffic, and it has the benefits of being fast and
increasing land utilization. The accessible rail system has resulted in a massive influx of people. That,
however, concealed security risks as well. To schedule operational resources, plan for corresponding
safety emergency measures, and predict the passenger flow in advance.

Accurate real-time data on subway passenger flow serves multiple purposes. Firstly, it supports
the operation and scheduling of the subway system, ensuring its effective functioning and enabling
decision-making during major events or emergencies. Secondly, it helps the traffic management
department better understand passenger flow patterns in advance, allowing them to allocate resources
effectively and formulate emergency management measures. Accurate predictions of urban rail transit
passenger flow are crucial in preventing safety accidents. Therefore, precise forecasting of rail transit
passenger flow is vital for the future planning and development of rail transit routes [1].
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Short-term passenger flow prediction typically utilizes time intervals of 15 min, 30 min, and 1 h. In
terms of research methodology, there are three main focuses: prediction models based on mathematical
statistics, intelligent algorithm prediction models, and hybrid models.

The prediction model based on mathematical approaches aims to discover inherent patterns
within passenger flow data and achieve accurate predictions by leveraging mathematical relationships.
Specifically, this approach involves using mathematical equations to analyze the patterns of variable
changes based on available data. Commonly employed models include time series models, moving
average models, and Kalman filter models. In short-term passenger flow prediction, Pan [2] confirmed
the effectiveness of the time-series model. Additionally, Meng et al. [3] identified that subway passenger
flow exhibits regularity within specific periods of each day, aligning with daily work and rest
patterns. Accordingly, historical data can be effectively predicted using the moving average algorithm.
Furthermore, Xiong et al. [4] viewed the subway transfer process as a dynamic system. They developed
stochastic linear offline equations based on the Kalman filter to forecast passenger flow during rush
hours on both working days and holidays.

In the field of rail transit safety, intelligent algorithms have been further developed and applied
to short-term passenger flow prediction. Two main branches in this area are machine learning models
[5,6] and neural networks [7–10]. Machine learning models differ from the principles of mathematical
statistics and rely on supervised or unsupervised learning methods to extract important information
from data and make predictions. Hu et al. [11] used Support Vector Machines (SVM) to build a
regression model, demonstrating its higher accuracy and reliability. Roos et al. [12] incorporated
passenger flow characteristics from adjacent space and time into their model and proposed a dynamic
Bayesian network for real-time prediction. Li et al. [6] utilized the correlation between Gaussian
Bayesian networks to predict microscopic traffic data.

Based on big data, machine learning methods have limitations, such as limited feature processing
power. Neural networks [8,10,13] overcome these limitations by enabling large-batch computing and
deep mining, making them the mainstream method for predicting passenger flow. Neural networks aim
to learn complex features through a series of nonlinear transformations [14]. Wei et al. [15] employed
empirical modal decomposition to extract intrinsic modal functions (IMFs) and introduced temporal
characteristics to predict passenger flow. Li et al. [6] incorporated the relationship between passenger
flow and train schedules, utilizing dynamic radial basis function (RBF) to forecast passenger flow.
Gong et al. [16] recognized the strong memory capacity of LSTM in prediction tasks, addressing the
issues of gradient explosion and model over-fitting. Ma et al. [17] leveraged CNN to predict traffic
network speed on a large scale, organizing trajectory data from different road sections at different
times as spatial and temporal matrices.

In the idea of integrated learning, model fusion [18–28] can effectively leverage the strengths of
different models to extract valuable information. Bai et al. [19] utilized the Affinity Propagation (AP)
algorithm to mine features and incorporated it into a hybrid model (DBN) for enhanced feature recog-
nition and learning capabilities. Neural networks have also been recognized as fundamental models
in model fusion, particularly for their strong feature extraction capabilities in the convolutional layer.
Zhang [25] combined neural networks with time series models and iteratively updated the loss function.
Zhang [21] employed the graph convolutional neural network to extract complex characteristics of
available paths and subway station spaces, and combined it with the Gating Convolution (GLU)
algorithm to explore time-varying traffic patterns caused by fluctuations. Through comparative
analysis, it was found that the hybrid model exhibited high robustness. Peng et al. [24] combined
GRU and LSTM to extract external features and continuously update the loss using a weighted square
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method. LSTM, compared to linear methods, excels at capturing the temporal properties of sequences
and processing temporal features [29].

In the application of the above models for short-term passenger flow prediction, they are
directly employed to predict passenger flow data without considering the exploration of hidden time
information within the data. Furthermore, there is a lack of feature engineering from the perspective of
the external objective environment and space-time. The external objective environment encompasses
factors such as rush hour, weekends, air quality, weather conditions, wind direction, etc. Meanwhile,
regarding spatial characteristics, existing studies primarily focus on the presence of other station types
near specific stations, without exploring external features based on the passenger flow data.

In this research, the variational mode decomposition (VMD) algorithm is utilized for feature
engineering to further uncover the internal time information within the passenger flow sequence. This
enriches the temporal characteristics of short-term rail transit passenger flow. Additionally, objective
environmental factors such as rush hours and rest days are incorporated to explore the external
characteristic information on passengers’ travel patterns. Furthermore, the K-nearest neighbors
(KNN) algorithm is employed to cluster samples with similar characteristics, enabling the discovery of
similar passenger flow patterns at the target site and enhancing the understanding of external spatial
factors affecting the passenger flow.

The proposed hybrid model, VMD-CLSTM, combines VMD with the basic models LSTM and
CNN, taking advantage of LSTM’s temporal feature extraction and CNN’s spatial feature extraction
capabilities.

Although existing models have achieved certain levels of accuracy in predicting rail transit
passenger flow, as the carrying capacity of rail transit and user base increase, the corresponding
prediction errors also increase. Effective strategies to further improve the prediction accuracy of these
models are lacking. To address this, the concept of residuals is introduced in the application of short-
term rail transit passenger flow prediction to enhance prediction accuracy.

The remaining sections of the article are organized as follows: Section 2, focuses on data
preprocessing and visualization. Section 3, describes the research methods, including the theory of
feature engineering and the algorithm for model creation. Section 4, presents the design of the hybrid
model and introduces the residual structure for model optimization. Section 5, conducts example
analysis. Finally, the conclusions and limitations are discussed in Section 6.

2 Data Preprocessing and Visualization

In this research, the Automatic Fare Collection (AFC) records from January 1st to January 25th,
2019, in the city of Hangzhou are used as the training data for the experiment. These records were
obtained from the first Global City Computing AI Challenge conducted by the Hangzhou Public
Security Bureau and Aliyun Intelligence. The passenger flow data is selected between 5:30 and 23:45
and is cleaned for analysis.

To analyze the passenger flow, the number of incoming passengers at all stations is aggregated at
15-min intervals. Specifically, the data is aggregated at intervals [1,3,8,26,30,31].

By visualizing the data on a weekly basis in Fig. 1, it is observed that the subway passenger flow
exhibits a strong regularity. The highest traffic flow is recorded on weekdays, reaching up to 34,000
passengers. On the other hand, during weekends, the maximum passenger flow is nearly 15,000, which
is less than half of the weekday flow. Therefore, weekdays and weekends are identified as important
factors influencing the passenger flow.
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Figure 1: The total number of incoming passengers in Hangzhou subway

To investigate the relationship between ridership and legal working hours, Fig. 2 displays the daily
number of passengers at all stations. The working days in January, as defined by legal regulations, are
indicated by warm colors, while the weekends are represented by cold colors (specifically, the 5th, 6th,
12th, 13th, 19th, and 20th days).

Figure 2: The total number of Hangzhou subway stops in daily and time

A clear trend can be observed in the weekday passenger flow, with two distinct peak periods from
7:00 to 9:00 am and 17:00 to 19:00 pm. During these rush hours, the number of passengers significantly
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exceeds the daily average, and the morning peak can even reach 2.5 times the non-rush hour count.
In contrast, the number of passengers on weekends drastically decreases, and there are no distinct
rush hour patterns as seen on weekdays. Therefore, it can be determined that peak periods also play a
crucial role in influencing passenger flow. In this study, the time frames of 7:00–9:00 and 17:00–19:00
are designated as rush hours for commuting.

Based on the analysis of the time characteristics, the original AFC records are processed following
the aforementioned feature extraction methods. Xianghu Station, which is the 0 station of Line 1,
is chosen as the test station. The data from this station is divided into a 20% test dataset, and the
remaining 80% is used for training the model.

3 Methodologies
3.1 Characteristic Engineering

3.1.1 Variational Modal Decomposition (VMD)

The VMD algorithm is employed for decomposing arbitrary data signals to extract their under-
lying intrinsic information. VMD is a non-recursive adaptive modal variational process. It formulates
the variational problem as solving a constraint equation on the smallest possible finite broadband sum
of modal components around an optimal central frequency [1]. The constructed constraint model is
the following:⎧⎪⎪⎨
⎪⎪⎩

min{vk},{wk}
{
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In the above model, {vk} = {v1, v2, v3, ..., vk} are the intrinsic modal functions (IMFs). {wK} = {w1,
w2, w3, ..., wk} are the center frequency of corresponding IMF components.

The algorithm aims to discover a set of IMFs and their respective corresponding central fre-
quencies from the raw data signal according to a certain frequency range, achieving an efficient
decomposition of specific components in a given signal. The effectively separated IMFs are the optimal
solution of the constraints. To solve the model, the Lagrange multiplier γ and the second-order penalty
factor α are introduced to transform the constraint problem into an unconstrained problem, namely:
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The variational model is used to iteratively obtain the optimal model solution, making the model
more robust to the sampling noise. The calculation process is performed as follows:

1. Initialize {vk } , {wk }, γ , n = 0.
2. Enter the cycle process and constantly iterating by n = n + 1.
3. According to the modal component formula (3), constantly updated.

vk,n+1 (w) =
f̂ (w) − ∑

i �=k

v̂i (w) + γ̂ (w)/2

1 + 2α (w − wk)
2 (3)
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where, the Fourier transform f̂ (w), v̂k,n+1 (w), γ̂ (w) are corresponding to f(w), vk,n+1(w), γ (w).
4. According to the central frequency formula (4), constantly updated.

wk,n+1 =
∫ ∞

0
w

∣∣vk,n+1 (w)
∣∣2

dw∫ ∞
0

∣∣vk,n+1 (w)
∣∣2

dw
(4)

5. According to the Lagrange multiplier formula (5), constantly updated.

γ̂n+1 (w) = γ̂n (w) + γ

(
f̂ (w) −

K∑
k=1

v̂k,n+1 (w)

)
(5)

6. Steps 2 to 5 are repeated until a satisfactory minimum broadband sum and K modal compo-
nents found.

K∑
k=1

∥∥v̂k,n+1 − v̂k,n

∥∥2∥∥v̂k,n

∥∥2 < ε (6)

The passenger flow sequence is considered as the information flow of traffic signals across various
dimensions. In short-term passenger flow prediction, the VMD algorithm is utilized to decompose the
passenger flow information into K modal components with different time dimensions centered around
the central frequency. These time dimensions include monthly mode, weekly mode, daily mode, hourly
mode, and more. This time granularity is chosen for 15 min, the K is 7, to obtain the final IMFs, as
shown in Fig. 3. To avoid modal crossing, K-means is used for modal screening, and finally retained
the modal data of the three dimensions.

Figure 3: (Continued)
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Figure 3: The decomposition results

3.1.2 Objective Environmental Characteristics

From Figs. 1 and 2, it is evident that traffic flow is associated with the presence of weekends and
commuting peaks. Scholars have also verified that weather conditions significantly impact commuting
choices. Extreme weather conditions like heavy rain and haze tend to reduce the likelihood of
people attending work or other activities, whereas clear weather tends to encourage more travel
and movement [32]. Scholars have conducted studies to verify the influence of various weather
factors on passenger flow. They have used Pearson’s correlation coefficient to assess the impact of
temperature, humidity, visibility, and cloud volume on passenger flow [10]. Additionally, researchers
have introduced 11 external factors, including temperature, climate, and Air Quality Index (AQI), to
explore the correlation between weather and subway traffic flow [24,33].

This paper utilizes crawler technology to gather environmental data for Hangzhou in January
2019. The collected data includes various parameters such as maximum temperature, minimum
temperature, weather conditions, wind direction, and air quality. At the same time, text data (such
as cloudy, light rain) is transformed into numerical data types that the model can identify. Table 1
shows the weather characteristic word pouch cases.

Table 1: Model of Hangzhou weather characteristics from January 01 to 05, 2019

Date Weather Cloudy Rain and
snow mixed

Dull Shower Light
rain

Fine Moderate
rain

2019-01-01
Tuesday

Cloudy∼light rain 1 0 0 0 1 0 0

2019-01-02
Wednesday

Light rain∼dull 0 0 1 0 1 0 0

2019-01-03
Thursday

Dull∼light rain 0 0 1 0 1 0 0

2019-01-04
Friday

Moderate rain 0 0 0 0 0 0 1

2019-01-05
Saturday

Light rain∼dull 0 0 1 0 1 0 0
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3.1.3 K-Nearest Neighbor (KNN)

The fundamental principle of the KNN algorithm is that “similar objects tend to cluster together”.
In other words, objects with similar characteristics are closer to each other. In a classification task, the
KNN algorithm utilizes this principle by analyzing a training dataset, where each sample is labeled.
To predict the category of a new instance sample, it finds the similarity between the new instance and
the K nearest samples based on a similarity metric. The algorithm then assigns the prediction category
of the new instance based on the labels of these nearest neighbors. Moreover, the proximity of samples
in the feature space reflects their degree of similarity. Thus, KNN is capable of clustering samples and
identifying those with similar characteristics.

In subway traffic prediction, besides considering the historical records of a specific station
(e.g., the previous traffic values) and weather conditions (such as current climate information), it
is also beneficial to incorporate the historical data from other stations that exhibit similar trends.
By considering the overall spatial layout of the entire traffic network, this approach can provide
valuable insights and complement the feature information specific to the target station. To establish
the relationship between the historical characteristics of a target station and other stations, and to
gather valuable information for predicting the passenger flow, this research employs a methodology
that explores the most similar K stations exhibiting similar trends within a specified time range. The
historical data from these similar stations is then utilized as supplementary information for training
the prediction model.

Setting K = 3, as depicted in Fig. 4, the historical data of the three most similar stations at 8:45 on
January 9th is shown. An observation from the figure reveals that these most similar stations exhibit
traffic flow trends that are relatively consistent with the target station. This valuable information can
serve as a reference for training the prediction model.

Figure 4: The similar station’s passengers flow of 0 station
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3.2 Model Theory

3.2.1 Long and Short-Term Memory (LSTM)

While inheriting the strengths of the recurrent neural network (RNN) model, LSTM overcomes
its memory limitations in a relatively short time. It also possesses the capability to selectively retain
information based on the current situation, enabling it to be applicable to training sets with intervals
or delays. When dealing with large datasets, the effectiveness of LSTM in handling time-related
characteristics becomes especially pronounced. LSTM excels in capturing both linear and non-linear
time features, allowing it to outperform conventional linear methods. Its ability to capture time series-
dependent features has led to widespread utilization and remarkable success in various fields today.

The structure of LSTM is shown in Fig. 5. It is not difficult to find that LSTM updates the hidden
state h(t) and cell state c(t) at the current moment by the output values h(t−1), c(t−1) at the previous time.
In Fig. 5, Sigmoid and Tanh activation functions are represented as σ and τ , respectively. Notably, the
dashed line represents that the LSTM cell cycle update such that the cell state (c(t)) and hidden state
(h(t)) as current state input, calculating the next moment cell (c(t+1)) and hidden state (h(t+1)).

Figure 5: Structure illustration of LSTM cells

The LSTM unit calculation process is as follows:

Step1: The forgetting gate and the input gate consume the information from the input units (h(t−1)

and x), to identify which information comes from the output of the previous state, and to determine
which information need to be forgotten.

i(t) = σ
(
W ix · x(t) + W ih · h(t−1) + bi

)
(7)

f (t) = σ
(
W fx · x(t) + W fh · h(t−1) + bf

)
(8)

o(t) = σ
(
W ox · x(t) + W oh · h(t−1) + bo

)
(9)

where, σ represents the Sigmoid activation function, W ix and W ih indicate the weight of the input gate,
and bi indicates the bias of the input gate. Similarly, W jx, W jh and bf represent the weights and bias of
the forgetting gate, and W ox, W oh and bo indicate the weights and bias of the output gate.
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Step2: Each LSTM unit also contains a separate nonlinear Tanh activation function that is called
c̃ neural network that determines which part of the input information will be stored in the unit state.

c̃(t) = tanh
(
W c̃x · x(t) + W c̃h · h(t−1) + bc̃

)
(10)

where, W c̃x, W c̃h, bc̃ and represent weights and biases of the neural network.

Step3: Formulas (11) and (12) update the current cell state c(t) and hidden state h(t), respectively.

c(t) = f (t) ∗ c(t−1) + i(t) ∗ c̃(t) (11)

h(t) = tanh
(
c(t)

) ∗ o(t) (12)

Therefore, deep learning can effectively utilize the inherent strengths of LSTM in handling time
series data, thus enabling the extraction of valuable time series features.

3.2.2 Convolutional Neural Network (CNN)

CNN is capable of efficiently extracting feature information using convolution layers and pooling
layers. Through the convolution process, neurons in the convolutional kernel move based on specified
strides, allowing them to capture local information from the data tensor. By integrating this local
information, CNN can derive global spatial features at a higher level. In the case of passenger flow data
between similar stations, it contains layout information about urban stations, which encompasses their
spatial characteristics to some extent. By utilizing CNN, valuable spatial features can be extracted for
predicting passenger flow. Specifically, the convolutional layer distributes global information linearly
by extracting it from local data tensors.

CNN incorporates two fundamental ideas: local receptive field and weight sharing. The local
receptive field is embodied in the convolutional kernel, where only relevant information from a specific
local region is extracted at each step. This allows for stability in terms of displacement, nonlinearity,
and deformation. Weight sharing, on the other hand, enables the sharing of parameters among
different neurons. By updating the weights just once, all calculations for each stride can be completed.
Consequently, the number of parameters is significantly reduced. Moreover, local linear calculations
lead to global nonlinear transformations.

Given these characteristics, CNN is well-suited for extracting multidimensional feature informa-
tion, which can be employed to capture additional spatial features.

4 Hybrid Model of Short-Term Passenger Flow Prediction
4.1 Building Prediction Model

Rail transit passenger flow is a representative example of time series data, where the flow sequence
is influenced by historical flows, current objective environmental factors, and the layout of the transit
system as a whole. In light of this, this research paper sequentially applies VMD to decompose the
passenger flow data, LSTM to model the temporal dependencies in the data, and CNN to extract
spatial features. As a result, a hybrid deep learning model called VMD-CLSTM is proposed for short-
term passenger flow prediction in rail transit.

The network structure, as depicted in Fig. 6, consists of two distinct stages:

Stage 1: Data input and feature engineering. The data used for training the model is divided into
three components. The first component comprises the original passenger flow sequence after applying
the VMD technique. The second component consists of objective environmental characteristics
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factors. The third component is derived from similar passenger flow patterns identified through the
KNN algorithm. In this stage, the preprocessed passenger flow data is decomposed using variational
mode decomposition, retaining three-dimensional sequences. The external objective environmental
data is then added to the decomposed modal components. Lastly, the KNN algorithm is utilized to
identify reference sites with passenger flow trends similar to the target site over a short duration, acting
as additional input features.

Stage 2: Feature extraction and passenger flow prediction. In this stage, the data obtained in
Stage 1 are utilized in the network for the extraction of features and prediction of passenger flow.
The main sequences consist of higher-dimensional sequences obtained by combining the data after
applying VMD with the objective environmental data. These sequences are inputted into the LSTM1
layers, where regular information related to temporal features is extracted. Since the similar spatial
supplementary features encompass both temporal and spatial characteristics, this subset of data is
fed into the LSTM2 and CNN2 layers to extract relevant features. Subsequently, these features are
integrated into the main sequences. This integration results in the main data sequences containing
more specific temporal and spatial features, enriching the subsequent information processing. To
prevent overfitting of the model during training, Drop layers are incorporated to randomly reduce the
number of neurons. The FC1 (FC denotes the fully connected layer in deep learning representing the
backward propagation model) and FC2 layers serve as information processing networks, transforming
concrete features into abstract features. These layers utilize information from the last n time steps
to reason about the passenger flow for the next time step, enhancing prediction accuracy through
reverse derivation mechanism. The training labels encompass the historical passenger counts, while
the objective of the prediction is the passenger flow for the next time step.

Figure 6: The structure diagram of the VMD-CLSTM network
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4.2 Residual Network (ResNet)

Fig. 7 illustrates the residual module, which comprises multiple network layers (e.g., CNN or
other arbitrary network layers). The output F(X) is obtained by feeding the data X through the
activation function (e.g., ReLU) of the multi-layer network. Simultaneously, the original input X is
passed through multiple network layers without any changes and then added directly to F(X) as a
residual connection. This combined result is then passed through the next activation function in the
subsequent stage for further computation. Essentially, the output result of the residual network, F(X)
+ X, not only contains the processed information from the intermediate network layers but also retains
the original data, which compensates for any information loss that may occur during the computation
in the intermediate layers. This technique addresses the problem of information loss in the intermediate
layers and overcomes the issue of gradient vanishing or exploding due to increased network depth.

Figure 7: Residual structure

4.3 Model Optimization Is Based on the Residual Network

The residual learning approach has been applied to short-term passenger flow prediction in rail
transit research. The model is divided into two levels: the first-order prediction model and the second-
order prediction model, as shown in Fig. 8.

The first-order prediction model focuses on feature extraction and predicting the number of
passengers, as described in Section 4.1. The prediction result of the first-order model is the number of
passenger flows at the next moment.

The second-order prediction model focuses on improving the accuracy of the overall model. It is
designed to further enhance the accuracy of the predictions. The input for the second-order model is
the same as the first-order model, with the only difference being the predicted targets. In the first-order
model, the prediction labels are the number of passengers at the next time step, while in the second-
order model, the prediction labels represent the deviation between the first-order prediction result and
the real passenger flow data. The objective of the second-order model is to correct the predictions
made by the first-order model.
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Figure 8: The structure of hybird model VMD-CLSTM with two orders

5 Example Analysis
5.1 Basic Setting

The research utilizes the Intel Core i7 CPU platform along with the third-party libraries scikit-
learn, vmdpy, and TensorFlow within the Jupyter environment based on Python 3.8. The hyperpa-
rameters of the VMD-CLSTM model are configured as follows: the model utilizes 128 LSTM units
with a time step of 4. Additionally, the model employs a CNN with 32 convolution kernels of size
2 × 2. The fully connected layers consist of 128 and 32 neurons, respectively. The activation function
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used throughout the entire network is ReLU. The loss function used is MSE, and the Adam optimizer
is utilized. To mitigate over-fitting, early stop monitoring is implemented during the training phase,
with a min_delta value of 0.01 and a tolerance of 5.

To validate the effectiveness of the supplementary features and the hybrid model, reference models
including the Backward Propagation Network (BP), CNN, and LSTM are employed. Table 2 provides
the parameters for these reference models. Additionally, Table 3 illustrates three feature input schemes
used in the study.

Table 2: Table of the basic model parameters

Model BP LSTM CNN Pooling layer

The number of
neurons in FC1

The number of
neurons in FC1

The number
of unit

Kenel
size

The number
of kenel

Stride Kenel
size

Stride

BP 128 32 / / / / / /
CNN 128 32 / 2 ∗ 2 32 2 2 ∗ 2 2
LSTM 128 32 128 / / / / /
VMD-
CLSTM

128 32 128 2 ∗ 2 32 2 2 ∗ 2 2

Table 3: Table of the input programme setting

Programme Input data

1 Only the data after VMD
2 Data of programme 1 and the objective environment characteristics
3 Data of programme 2 and the similarity spatial features after KNN

This paper utilizes several performance metrics to evaluate the prediction models: mean absolute
error (MAE), root mean square error (RMSE), mean square error (MSE), and determination
coefficient (R2). The R2 is a measure that ranges from 0 to 1. A value closer to 1 indicates a better
fitting effect. In particular, a value greater than 0.8 suggests a highly accurate fit. On the other hand,
MAE, RMSE, and MSE are used as error metrics. Larger values of MAE, RMSE, and MSE indicate
poorer prediction performance, implying a larger deviation between the predicted values and the actual
values.

5.2 Comparative Analysis with Basic Models

Table 4 presents the evaluation metrics for VMD-CLSTM and the basic models. In comparison
to the BP, CNN, and LSTM models, the VMD-CLSTM model demonstrates lower values for MSE,
RMSE, and MAE, calculated at 1413.14, 37.59, and 25.87, respectively.

Additionally, Fig. 9 illustrates that VMD-CLSTM achieves the best performance with an R2 value
of 94.08%, surpassing the BP, CNN, and LSTM models by 9.79%, 2.82%, and 1.72%, respectively.
This highlights the advantage of the VMD-CLSTM model, which combines the strengths of LSTM
and CNN.
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Table 4: Comparison of the forecast models

Model MSE RMSE R2 MAE

BP 3748.18 61.22 84.29% 42.48
CNN 2083.93 45.65 91.26% 31.12
LSTM 1823.05 42.70 92.36% 29.22
VMD-CLSTM 1413.14 37.59 94.08% 25.87
[1] 28669.43 169.32 - 82.24
[30] - 95.21 - -
[8] - 44.0 - 31.3
[26] - 65.13 - -

Figure 9: Comparison of the forecast results of VMD-CLSTM and base models

Table 4 not only presents the evaluation results of the VMD-CLSTM model, but also includes
the performance of existing models on 15-min granularity prediction. It is observed that the existing
research [1,30,8], and reference [26] achieved RMSE values of 169.32, 95.21, 65.13, and 44.0, respec-
tively, which are higher than the RMSE value of 37.54 obtained by the hybrid model VMD-CLSTM.
Furthermore, the MSE value of 28669.43 in [1] is significantly larger than the VMD-CLSTM value
of 1413.14. Additionally, the MAE value of 25.87 in VMD-CLSTM is lower than the 31.3 reported
in reference [8]. The comprehensive analysis indicates that the VMD-CLSTM model surpasses the
existing models in terms of prediction accuracy. In conclusion, the VMD-CLSTM model is suitable
for short-term passenger flow prediction in rail transit applications and achieves higher accuracy
compared to both the basic models and existing models.

5.3 Comparative Analysis of the Ablation Experiments

To examine the importance of objective environment factors and supplementary similarity
features, the three different feature input schemes are tested using the control variable method. A
total of 12 experiments are conducted, and the prediction results are presented in Table 5 and Fig. 10.
It is evident from the results that the VMD-CLSTM model consistently achieves the smallest values
for MSE, RMSE, and MAE across all three feature input schemes. Furthermore, the VMD-CLSTM
model achieves the highest R2 values of 90.25%, 92.16%, and 94.08% respectively for each scheme.
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These findings highlight the superiority of the VMD-CLSTM model over the BP, CNN, and LSTM
models in passenger flow prediction for rail transit. This confirms that the VMD-CLSTM model
exhibits higher accuracy compared to the other basic models.

Table 5: Comparison table of the ablation experiment results

Model MSE RMSE

Programme 1 Programme 2 Programme 3 Programme 1 Programme 2 Programme 3

BP 4301.00 3732.32 3748.18 65.58 61.09 61.22
CNN 3185.19 2213.73 2083.93 56.44 47.05 45.65
LSTM 3271.39 1986.73 1823.05 57.20 44.57 42.70
VMD-
CLSTM

2326.75 1869.67 1413.14 48.24 43.24 37.59

Model MAE R2

Programme 1 Programme 2 Programme 3 Programme 1 Programme 2 Programme 3

BP 41.39 38.34 42.48 81.97% 84.35% 84.29%
CNN 44.33 36.11 31.12 86.65% 90.72% 91.26%
LSTM 47.69 32.74 29.22 86.29% 91.67% 92.36%
VMD-
CLSTM

36.90 28.06 25.87 90.25% 92.16% 94.08%

In the comparison between Programme 1 and Programme 2, it is observed that the MSE, RMSE,
and MAE indices of each model in Programme 2 are lower than those in Programme 1. For example,
the RMSE value of VMD-CLSTM is 43.24 in Programme 2, which is smaller than the RMSE value of
48.24 in Programme 1. This demonstrates that the prediction results in Programme 2 are better than
those in Programme 1. These findings indicate that objective environment features can enhance the
accuracy of prediction, affirming the positive impact of considering objective environment factors in
feature engineering.

Comparing Programme 3 to Programme 2, it is observed that all four models achieve improved
prediction results in Programme 3. For instance, the VMD-CLSTM model achieves the highest R2

value of 94.08% in Programme 3, which is 3.83% and 1.92% higher than that in Programme 1 and
Programme 2, respectively. Additionally, the three basic models (BP, CNN, and LSTM) in Programme
2 do not match the accuracy attained in Programme 3. The comparison between Programme 2
and Programme 3 demonstrates that incorporating similar stations’ supplementary characteristics
improves the accuracy of short-term passenger flow prediction and enhances the model’s robustness.

In summary, mining objective environment features and incorporating similar stations’ supple-
mentary features aligns with the passenger flow sequence pattern, enabling the model to achieve better
training results. This highlights that the model trained using both objective environment features and
similar stations’ supplementary features yields the best prediction performance.
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Figure 10: Comparison of each mode’s effect under the three schemes

5.4 Comparative Analysis of the Residual Networks

To enhance the prediction accuracy of short-term passenger flow in rail transit, the concept
of residuals is introduced into the prediction model. The effectiveness of the residual network is
then verified. The first and second-order prediction performance of the four models under the three
aforementioned schemes is presented in Figs. 11 to 13.
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Figure 11: Comparison of the first and second order results of the four models in Programme 1

Figure 12: Comparison of the first and second order results of the four models in Programme 2
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Figure 13: Comparison of the first and second order results of the four models in Programme 3

Observing the figures, it is evident that the second-order R2 values of each model are higher
than the corresponding first-order values. Furthermore, the BP network exhibits the most significant
improvement under Programme 2, with a difference in R2 of 11.93%. These results demonstrate the
capability of the residual network to enhance the accuracy of the model.

6 Conclusion

Based on the principles and characteristics of deep learning models, the VMD-CLSTM hybrid
model was proposed for short-term passenger flow prediction in rail transit. Through reference
experiments and different programs, the following conclusions were drawn:

(1) The VMD-CLSTM hybrid model, combining CNN and LSTM, demonstrated higher reliabil-
ity compared to the BP, CNN, and LSTM basic models for short-term passenger flow prediction.

(2) Ablation experiments with three different programs confirmed that incorporating objec-
tive environment factors and supplementary spatial features improved the model’s accuracy and
robustness.

(3) Comparing first-order and second-order prediction results from 12 sets of experiments revealed
that all models achieved higher prediction accuracy in the second order, affirming the reliability of the
residual network in short-term passenger flow prediction.

However, it is important to note that there are several factors influencing rail transit passenger
flow that were not considered in this research, such as holidays and special events. In the future,
expanding the dataset to include a larger time span and collecting passenger flow data during holidays
and special activities could further enhance the model’s accuracy. Additionally, the time granularity of
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the data could be optimized, and the model could be developed to predict passenger flow for different
time granularities.
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