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Abstract: Several methods, including the azimuthally-averaged angular distribution of the 

scattered light intensity, two bi-parameter scatter plots and three image texture analysis 

algorithms of the Haralick features, Laws energy measures, and Gabor filters, are compared for 

their effectiveness in correlating changes in light scattering patterns from biological cells to 

variations in their morphological features. A series of analytic cell models with variations in main 

cell structure and mitochondrial characteristics are created to imitate biological cells of different 

structural attributes. Numerical simulations of light scattering are performed using the discrete 

dipole approximation (DDA). Our results show that Gabor filter analysis combined with the bi-

parameter scatter plots can provide significant insight into cellular morphology. 
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1. Introduction 

The light scattering pattern from biological cells contains rich information regarding the cell 

structure and its optical properties.  Due to the complexity of the internal structure of the cell, the 

light scattering pattern formed through the interference of the scattering wavefields from various 

components in the cell is rather complicated, and no simple relation can be established between 

individual speckles in the scattering pattern and particular components of the cell[1]. Most of the 

previous cell light scattering pattern analysis focuses on the azimuthally-averaged angular 

distribution of the scattered light intensity, where only the cell size and some limited information 

regarding the internal structure of the cell can be obtained[2–6]. The other often-employed method 

is the bi-parameter scatter plot of forward-scatter intensity versus side-scatter intensity, a 

technique regularly used in flow cytometry to distinguish between various subpopulations of 

cells[7]. More recent studies have attempted to analyze the diffraction images of cells to extract 

additional intracellular information utilizing a variety of methods. The Haralick features, Laws 

energy measures, and speckle analysis methods have been used to differentiate between 

perinuclear, diffuse, peripheral, and/or aggregate mitochondrial distributions within a cell[8,9]. 

While these results have shown promise of quantitative discrimination of cells based on various 

morphological characteristics, these methods have only been applied to simplified cell models 

with spherically-shaped cells and mitochondria. In addition, the above-mentioned methods were 

not capable of detecting variations in a range of cell properties such as the number and volume 

density of mitochondria[9]. 

In this study, we compare the effectiveness of several analysis methods in analyzing light 

scattering patterns from realistic biological cell models. In addition to the above-mentioned 

Haralick features, Laws energy measures, the angular distribution of the scattered light intensity, 

and the bi-parameter scatter plot, we introduce the Gabor filter technique to the application of 

analyzing light scattering patterns. Gabor filters have proved very useful for texture classification 

and image recognition and have recently been utilized to quantify dynamic changes in the 

mitochondrial structure of apoptotic cells[10–12]. To evaluate the capabilities of these methods, we 
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systematically alter the structure of a cell model to determine how well each method can detect 

the corresponding changes in the light scattering patterns. The cell structural variations 

introduced comprise of cell shape and surface fluctuation, nucleus size, and mitochondrial 

characteristics (shape, spatial distribution, and volume density).  Our results suggest that two bi-

parameter plots combined with the Gabor filter approach provide substantial information 

regarding the major structural features and mitochondrial properties of the cell. 

2. Methods 

2.1. Realistic analytic cell modeling and light scattering simulation 

Analytic cell models are used in this report for a controlled study relating cell components to 

features in light scattering patterns. The analytic cell model consists of two parts: the main cell 

structure, which consists of the nucleus and cell membrane, and the mitochondria. The shapes of 

real biological cells and their nuclei are nonspherical in general with various degrees of surface 

fluctuations. We have recently developed a procedure[13] to model a realistic cell structure by 

taking these factors into consideration. In this method, each of the cell and nucleus shapes is 

modeled as a smooth base shape, and the random surface fluctuations are implemented though a 

Gaussian Random Sphere (G-sphere) method[14]. In the G-sphere method adopted here, the 

surface fluctuations are specified by two parameters: the relative standard deviation (and the 

exponent ( of a power law expansion of the log-radius covariance function of the surface. The 

former describes the degree of deformation of the surface from a perfect sphere while the latter is 

associated with the number of hills and valleys per solid angle. The code developed by 

Nousiainen and McFarquhar is used to generate the G-spheres[14]. For the realistic cell models 

used in this report, the base shapes of the cell and nucleus are both assumed to be ellipsoids and 

all of the parameters for the base shapes and surface fluctuations are extracted from z-stacks of 

confocal microscopic images of NALM-6 pre-B cells[15].  

The characteristics of mitochondria in a cell, such as spatial distribution, volume density, shape 

and size, are reported to be closely related to the metabolic activity in the cell[16–19].  Changes in 

spatial distribution and density have been linked to a number of cell physiological processes and 

diseases; for example, a perinuclear aggregation of mitochondria has been associated with normal 

cells, while a diffuse distribution has been found in cancer cells[19,20]. To simulate realistic cells, 

the mitochondria in the cell models used in this study vary in shape and size, ranging from equal-

sized spheres to smooth ellipsoids of various sizes and axis ratios, and are distributed randomly in 

the cytoplasm according to specific configurations. The detailed information for each case studied 

is presented in the results section below.   

Light scattering patterns from the cell models are calculated using the Discrete Dipole 

Approximation (DDA) method, a sophisticated numerical method to solve for the scattered field 

from an arbitrarily-shaped scatterer[21].  This method approximates the scatterer as a finite array of 

points, which acquire dipole moments in response to the incident electric field and their mutual 

interactions. The C implementation of the DDA method developed by Yurkin and Hoekstra[21], 

ADDA, is adapted for this study. Here the scatterer is divided into a 3D grid of small cells with 

resolution specified by the number of dipoles per wavelength (dpl), and the structure of the cell is 

realized numerically by assigning proper values of the index of refraction to each grid point. The 

desired output is the Mueller matrix as a function of the scattering angle s and the azimuthal 

angle s  and the scattering or diffraction images can be obtained by projecting the S11 element of 

the Mueller matrix in designated directions. 

2.2. Image analysis methods 

As discussed in the introduction, three image texture analysis methods, the Haralick features, 

Laws energy measures, and Gabor filters are applied to analyze the projected images.  
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The Haralick texture features provide information such as homogeneity, contrast, and structure of 

the image[1]. Fourteen features can be derived from co-occurrence matrices, which describe the 

frequencies of certain gray tones appearing in a specified spatial relationship in an image. For an 

image of n gray tone values, the co-occurrence matrix is a nxn matrix whose values Pij stand for 

the number of times a pixel with value i is found within a certain distance d to a pixel with value j.  

The distance between pixels can be defined horizontally, vertically, or diagonally (in two 

directions), resulting in four co-occurrence matrices that can be computed for a specified distance 

between pixels[22]. To examine the small-scale texture features and avoid averaging over several 

textures in an image, the co-occurrence matrix is often computed using a moving window around 

each pixel.  In this study, a moving window of size 15x15 pixels is chosen and the gray levels of 

the images are quantized to eight values, as common in the literature[23]. Results presented in the 

section below are obtained from the co-occurrence matrix calculated for nearest neighbors (d=1) 

and averaged over the four orientations. Furthermore, only 11 out of the 14 Haralick features are 

calculated due to computational difficulties in features #12-13 and instability in #14.   

The Laws energy measures have various functions, such as detecting edges, spots, and ripples in 

an image. These measures are derived from a set of independent, two-dimensional filter masks 

obtained by convolutions of specific vectors of order 3, 5, or 7. For example, the “Edge” vector of 

order 5, E5, convoluted with the “Spot” vector of the same order, S5, produces the so-called E5S5 

mask, which is sensitive to textures with low correlation[24].  Convoluting the vectors of order 5 

with each other yields a set of 25 masks, which are often normalized by the first mask, resulting 

in a set of 24 masks. In this study, an image is filtered using each mask, and the absolute value in 

local neighborhoods (15x15 pixels) around each pixel of the filtered image is summed to yield a 

set of 24 texture energy images. The arithmetic mean of these images yields a set of 24 energy 

measures for each original image.  

A Gabor filter is a sinusoidal mask of a specific frequency and orientation modulated by a 

Gaussian envelope. The general practice is to apply a set of filters with different frequencies and 

orientations to a given image to examine its texture features[25]. Based on the characteristics of the 

scattering images from the cell models used in this study, three frequencies (0.1, 0.2 and 0.4 per 

pixel) and four orientations evenly spaced from 0° to 135° are chosen to construct a set of 3x4 

Gabor filters. The size of the filter is set to be 21x21 pixels. By applying this set of filters to the 

projected scattering images of the cell models, a set of 3x4 Gabor-filtered images is produced for 

each image. The code developed by Manjunath[11] is used here for the calculations. For 

quantitative comparison purposes, the arithmetic mean of each Gabor-filtered image is computed, 

and as a result, each scattering image is represented by a set of twelve numbers when analyzed in 

this manner. The notation Gmn represents the arithmetic mean of the Gabor-filtered image 

produced by applying the filter with the mth frequency and nth orientation to an image. For 

example, G33 represents the arithmetic mean of the Gabor-filtered image produced by applying 

the filter with frequency 0.4 cycles per pixel and orientation 90° to an image.  

Each of the three texture analysis methods described above yields a feature vector consisting of a 

set of values that represents a scattering image. To find an accurate and efficient way to 

differentiate images using these vectors, we explored the combinations of the vector components 

that would best characterize each scattering image when plotted in a scatter plot. For the various 

cases studied in the section below, the best combinations were found to be Difference Variance vs. 

Sum Average for the Haralick features, S5R5 vs. E5W5, a convolution of the Spot and Ripple 

vectors versus that of the Edge and Wave vectors, for Laws measures, and G33 vs. G13 for the 

Gabor measures. These combinations are displayed in scatter plots which are referred to as 

Haralick, Laws, or Gabor scatter plots below. 

3. Results and discussion 

In this section, we compare the capabilities of the analysis techniques discussed earlier in 
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differentiating light scattering patterns obtained from cell models with various cell and 

mitochondrial characteristics.  

To this end, we created a series of analytic cell models with the desired structure features. These 

cell models are divided into five groups based on their basic structure, ranging from the simplest 

to the more realistic one, by gradually introducing realistic features into the cell structure. Group 

#1 consists of the simplest cell models where the basic cell structure is approximated by a 

concentric spherical nucleus and cell. In group #2, the basic cell structure is modeled by an off-

centered, ellipsoid-shaped nucleus and cell. The cell structure in group #2 is improved upon with 

the introduction of surface fluctuation for both the nucleus and cell in group #3. In these three 

groups, the mitochondria population is approximated by equal-sized spheres. Further 

improvement of the cell structure results in group #4 with the introduction of size variation 

among the spherical mitochondria. In group #5, the spherically-shaped mitochondria in group #4 

are replaced by ellipsoidal mitochondria with various sizes and axis ratios. 

The radii of the spherical nucleus and cell of the models in group #1 measure 2.55 and 5.03m to 

match the nucleus and cell volumes of the models in other groups. The axial lengths of the 

ellipsoidal base shapes of the cell models in group #2 to #5 are taken to be 5.13, 4.58 and 5.33m 

for the cell and 2.83, 2.10, and 2.63m for the nucleus. This size configuration produces a volume 

ratio of nucleus to cell of approximately 12.5%. The parameters for the surface fluctuations are 

set to be = 4.2 and = 0.0814 for the cell and = 3.1 and = 0.0963 for the nucleus. An extra 

small-scale fluctuation is also added to the cell base shape to provide finer surface roughness with 

= 2.0 and = 0.03.  

Within each of the cell groups described above, the mitochondria are placed in the cytoplasm 

according to a specific combination of spatial distribution and volume density.  Three 

distributions are selected for this study: the diffuse (homogeneously spread out in the cytoplasm), 

the peripheral (close to the membrane), and the perinuclear (close to the nucleus)[9].  The 

dimensions of the peripheral and perinuclear zones, limited by the size range and density of the 

mitochondria, are set to be 0.8m along the radius direction. The mitochondrial density, defined 

as ratio of the total volume of the mitochondria to that of the cell, is chosen to be 1.0, 4.0 and 

7.0%.  Here the number of mitochondria is allowed to vary among the three densities since the 

individual mitochondrial size range is fixed. The radii of the spherical mitochondria in cell groups 

#1 to #3 vary slightly among cell models with different densities and distributions in the range of 

0.29m – 0.31m in order to keep the number of mitochondria similar among different 

distributions. The radius range of the spherical mitochondria of various sizes in model #4 is 

0.19m - 0.42m.  The axial lengths for the ellipsoidal mitochondria in model #5 are adopted 

from the literature[18,19] with the major axis in the range 0.3m - 0.8m and the minor axes in the 

range 0.15m - 0.3m. The size variation introduced in cell groups #4 and #5 generate some 

relatively larger mitochondria. These larger mitochondria, few in numbers, pose some degree of 

difficulty in fitting a similar number of mitochondria in all distributions. In particular, due to the 

limited zone size in the perinuclear distribution, a larger number of smaller mitochondria are 

needed to reach the required density for the cases of 4.0 and 7.0%.  

With three spatial distributions and three densities for mitochondria in each of the five basic 

structure groups, a total of forty-five analytic cell models are created. The Mueller matrix as a 

function of the scattering angle (s) and the azimuthal angle (s) is calculated using the DDA 

method for each of the cell models for eight incident orientations spanning evenly in space. For 

all of the calculations, the dpl in the DDA method is set at 10 and the wavelength at 1.0m. The 

index of refraction of the cytoplasm is assumed to be 1.3675, and that of the nucleus and 

mitochondria to be 1.4 and 1.42, respectively, at this wavelength.  The cell is assumed to be 

immersed inside a host medium of index of refraction 1.35.  

For image texture analysis purposes, the scattering patterns of the cell models are obtained by 

projecting the S11 element of the Mueller matrix onto a plane at a distance of 500m with 
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 and  to mimic experimental flow cytometer acquisition of the scattering 

signal[26,27]. With angular resolution of 1° along each direction, this produces a projected 

scattering image of size 61x61 pixels.  Examples of the cell models in groups #1 and #5 with 

perinuclear, diffuse, and peripheral mitochondrial distributions and their corresponding projected 

scattering images are shown in Fig. 1. The mitochondrial density is 4.0% for these cell models. It 

is clear that the projected images are very different among cell models with different structure 

characteristics; the intensity evens out more in the field of view as the cell models become more 

complicated and the speckle size decreases as the mitochondrial distribution moves closer to the 

membrane. 

 

 

Fig. 1. Examples of cell models and their corresponding projected scattering images. Top: 

concentric spherical cell model with equal-sized spherical mitochondria in cell group #1; Bottom: 

realistic cell model with ellipsoidal base shape, surface fluctuation, and varying-sized ellipsoidal 

mitochondria in cell group #5. Models are shown with (a) perinuclear, (b) diffuse, and (c) 

peripheral mitochondrial distributions.  

 

For an initial analysis of the light scattering data, we first plot the azimuthally-averaged angular 

distribution of the scattered light intensity, the S11 element of the Mueller matrix, averaged over 

the eight incident orientations for the entire scattering angle range of 0° - 180°. Results for cell 

groups #1 - #3 and #4 - #5 are displayed in Fig. 2(a) and (b), respectively, with each of the forty-

five cell models presented by one curve. In this figure and the ones following (Figs. 3-6), the 

results for cell models with different mitochondrial spatial distributions are represented by blue 

(diffuse), red (peripheral), and green (perinuclear) symbols, and the mitochondrial densities are 

indicated by the shade of the color, from light (1%) to dark (7%). 

The curves with the large oscillations in Fig. 2(a) are those of the cell models in group #1 due to 

spherical symmetry in the main cell structure. Since all of the models have the same cell and 

nucleus volume, all of the curves overlap very well in the first 10° when plotted together, 

demonstrating the well-known fact that the forward scattering is closely related to the cell volume 

and cell scattering power, and it also shows that the forward scattering is not very sensitive to cell 

structure variation. Beyond 10°, the curves group differently in separate regions of the scattering 

angle. From 10° to 50°, the curves appear to group according to mitochondrial spatial distribution 

with the perinuclear distribution well separated from the other two distributions. From 40° to 

100°, the curves group according to mitochondrial density, and the curves for cell models with 

density 1% are better separated from the others. This density-based grouping extends to the rest 

of the plot in Fig. 2(b) and reappears in the larger scattering angle region in Fig. 2(a). In the 

region from 80° to 140°, the curves group according to their basic structure. The curves in Fig. 

2(a) are significantly lower in this region with a dip at 110° while those in Fig. 2(b) are relatively 

leveled in this region. Closer examination of Fig. 2(b) shows that the curves for cell models in 

90 30s   90 30s  
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structure groups #4 and #5 are well separated in this region.     
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Fig. 2. The azimuthally-averaged angular distribution of the scattered light intensity averaged 

over the eight incident orientations. (a) Results of cell models in groups #1 - #3; (b) Results of 

cell models in groups #4 - #5. Mitochondrial density is indicated by the shade of the color, from 

light (1%) to dark (7%). 

 

With these observations in mind, we explore different ways of differentiating the cell models 

utilizing data from various scattering angle regions in Fig. 2. It is found that the bi-parameter 

scatter plot of the forward scatter (S11(0°)) versus the integral of S11 over the range s= 25° - 45° 

or s= 90° - 110° is very effective in detecting most of the changes in cell structure, and the 

results are presented in Figs. 3(a) and (b), respectively. Note that, instead of the orientation-

averaged data in Fig. 2, data for the eight individual orientations of each cell model are displayed 

here, with each orientation represented by a data point. Data for cell models of the five different 

basic structure groups are plotted in ascending order from group #1 to group #5 in both Fig. 3(a) 

and (b) for detailed analysis.  

The bi-parameter scatter plot of S11(0°) vs.  in Fig. 3(a) clearly shows that data 

points for each cell model respond strongly to changes in the structure.  The plot for cell group #1 

contains three distinct sub-groups corresponding to the three mitochondrial densities (increasing 

from left to right) and within each sub-group, the spatial distributions of the mitochondria can be 

separated by the forward scatter intensity.  As the complexity of the cell base shape increases in 

cell groups #2 and #3, the gaps between the sub-groups decrease and the data points spread out 

vertically. The scatter plot undergoes more dramatic changes when mitochondria size variations 

are introduced from cell group #3 to #4 and alters even more when mitochondria shapes are 

modeled as ellipsoids in group #5, manifested by the visible horizontal shift to the right of the 

mitochondria density sub-groups from cell groups #3 to #5 and the larger and better-defined 

separation between sub-groups of different densities. These results indicate that this type of 

scatter plot is very sensitive to the changes in the individual mitochondrion.  It is noteworthy that 

the data points in the plot  of  cell  group  #4 
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Fig. 3. Bi-parameter scatter plots of the forward intensity versus the azimuthally-averaged 

intensity integrated over the scattering angle range of (a) 90°–110° (left panel) and (b) 25°–45° 

(right panel). Results of all eight incident orientations for each cell model are present. Data of cell 

models in groups #1–#5 are plotted separately from top to bottom. Mitochondrial density is 

indicated by the shade of the color, from light (1%) to dark (7%). The inserts are examples of the 

cell models in each cell group. 

 

Corresponding to the two cell models with larger mitochondrial densities and a perinuclear 

distribution shifted far more to the right than the data points of other cell models in the 

corresponding density sub-groups.  Further tests show that this out-of-group behavior is caused 

by the aforementioned, relatively larger number of smaller mitochondria used for these cell 

models, a consequence of space limitation in the perinuclear zone for spherically-shaped 

mitochondria. The space limitation issue is not as severe in the case of cell group #5 when the 
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shape is replaced by ellipsoids, thus no such effects are observed in the plot for cell group #5. 

This effect, though undesired, further demonstrates the capability of this type of bi-parameter 

scatter plot in detecting variation within the mitochondrial population for fixed mitochondrial 

density. 

A different grouping pattern of data points and different response to cell structural changes are 

observed in Fig. 3(b), the bi-parameter scatter plot of S11(0°) vs. . While clear 

subgroups of different mitochondrial densities and spatial distributions can be recognized in the 

plot for cell group #1, the gaps between those subgroups quickly disappear when the base shape 

of the cell models changes from cell group #1 to #3, especially in cell group #3 where the surface 

fluctuations are introduced. As modifications are made to the size and shape of the mitochondria 

in cell groups #4 and 5, however, no significant changes are observed.  On the other hand, even 

though the signal in this region seems not sensitive to the characteristics of individual 

mitochondrion, one can recognize to a certain extent the perinuclear distribution in each of the 

five models. This implies that the signal in this angular range is most sensitive to changes in the 

overall structure rather than individual mitochondrial changes.  

In summary, the azimuthally-averaged angular distribution of the scattered light intensity 

provides valuable insight into the structure of the cell model. Signals in different angular regions 

provide information about different aspects of the cell structure: the forward scattering region for 

the cell size, 25° - 45° for the main cell structure, and 90° - 110° for individual mitochondrial 

characteristics. Although it has been suggested that the forward scatter can differentiate between 

mitochondrial spatial distributions[28], as reaffirmed in the scatter plot of group #1 in Fig. 3, the 

distinction between distributions is less evident in the plots of groups #2 - #5.  This also 

demonstrates the necessity of using realistic cell models for quantitative studies of optical cell 

structure using light scattering signals. 

Next, we analyze the projected scattering images using the image analysis methods described in 

the previous section. The images are first analyzed by the Gabor filter method, and the arithmetic 

means G33 and G13 of the Gabor-filtered images are computed for each orientation of the cell 

models to create the Gabor scatter plots of G33 vs. G13. Unlike the data in Fig. 3, the Gabor scatter 

plot does not seem to be sensitive to main cell structure changes, with the data points spread out 

in a similar range for all five basic structure groups, although slightly more packed in cell groups 

#4 and #5.  Due to the lack of significant differences between the results of the groups, the data 

for all forty-five models is shown together in one plot in Fig. 4.  We note that the data points of 

the cell models with the same mitochondrial 
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Fig. 4. Gabor scatter plot with data from all cell models in groups #1 - #5. (a) Results with all 

eight incident orientations for each cell model; (b) Results averaged over the eight incident 

orientations (±1 standard deviation). Mitochondrial spatial distributions are distinguished by 
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different lines of best fit. Mitochondrial density is indicated by the shade of the color, from light 

(1%) to dark (7%). 

distribution but different in other structure characterization lie approximately along a line, and 

that the slope of the line is different for different distribution types. This pattern is much clearer in 

Fig. 4(b), where the data are averaged over the eight individual orientations for each cell model. 

The best-fit line of each distribution type has a significantly different slope, with 63.1, 32.0, and 

22.9 for perinuclear, diffuse, and peripheral, respectively. This feature indicates that the Gabor 

scatter plot may provide a quantitative way of differentiating cells with different mitochondrial 

distributions. In additional to the distribution separation, Fig. 4, especially Fig. 4(b), also 

separates very well the data points for cell models with different mitochondrial densities. 

 We then analyze the same set of images using Haralick and Laws methods. Similar to the case of 

Gabor scatter plots, there are no significant changes between the scatter plots of cell models 

associated with different structure groups. For this reason, only results for cell group #5 are 

shown in Fig. 5 with the corresponding scatter plots for Haralick and Laws in Fig. 5(a) and (b), 

respectively. The data points are closely packed in both cases, and there is a significant amount of 

overlapping among groups corresponding to different mitochondrial distributions and densities, 

especially in the Haralick plot. However, the perinuclear distribution in the Laws plot is well 

separated, agreeing with the results from previous studies[5]. It is evident that these two methods 

are not as effective as the bi-parameter S11 scatter plot in Fig. 3 and Gabor scatter plot in Fig. 4 in 

distinguishing between mitochondrial characteristics in realistic models. 
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Fig. 5. (a) Haralick and (b) Laws scatter plots for cell models in group #5. Mitochondrial density 

is indicated by the shade of the color, from light (1%) to dark (7%). 

 

We would like to point out that scatter plots using several other pairs of Law energy measures, 

such as R5E5 and W5E5, can separate the data points of cell models with a perinuclear 

mitochondrial distribution from those with the other distributions when the simplest basic 

structure model #1 is used. However, such advantage disappears once the basic structure of the 

cell becomes more complicated as the structure changes from group #1 to #5. This information 

further indicates the need for a realistic cell model for the development of accurate cell scattering 

image analysis techniques. 

In the last part of this study, we compare the ability of the methods in detecting differences in 

nuclear size in the cell models, a parameter that varies greatly among cell types. Here the nucleus 

volume of cell group #5 is increased from 12.5% of the total cell volume to 25.0% and 50.0%. A 

larger nucleus reduces the available space for the mitochondria in the cytoplasm; consequently, 

the cell models are limited to diffuse mitochondrial distribution only for the 50.0% case. Results 

for cell models in group #5 are presented in the form of the bi-parameter scatter plot of the 



JOURNAL OF ADVANCED OPTICS AND PHOTONICS                                                Vol.1, No.1, 2018 

Copyright© Tech Science Press                                                                                             32 

forward scatter versus the integral of S11 over the range s=90° - 110° in Fig. 6(a) and the Gabor 

scatter plot in Fig. 6(b). The results in both plots in Fig. 6 are orientation-averaged. The effect of 

nucleus size is most evident in Fig. 6(a) as greater nucleus volume increases forward scatter.  The 

points are well grouped vertically according to nuclear size and horizontally according to density, 

and the points are closely packed within each group.  The Gabor scatter plot in Fig. 6(b), similar 

to Fig. 4, is responsive to mitochondrial distribution, but is less dependent on nucleus volume size, 

with only a slight shift to the right with increase in nucleus size. The latter behavior further 

confirms the observation discussed earlier that the Gabor scatter plot for images at this scattering 

angle is not very sensitive to changes in the cell’s main structure. 

 

0 5 10 15 20 25 30

S
1
1
(0

°)
 (

a
rb

. 
u

.)

4.0e+5

8.0e+5

1.2e+6

1.6e+6

G
33

0.0000 0.0002 0.0004 0.0006 0.0008

G
1
3

0.000

0.005

0.010

0.015

0.020

0.025

12.5 %

25.0 %

50.0 %

 
110

11
90

s sS d 


 (arb. u.)

(b)(a)

 

Fig. 6. Comparison of cell models with different nucleus-to-cell volume ratios. Only the realistic 

cell models from group #5 are used. (a) The forward intensity versus the azimuthally-averaged 

intensity integrated over the scattering angle range of 90°–110°; (b) Gabor scatter plot. The data 

in each plot is averaged over the eight incident orientations (±1 standard deviation). 

Mitochondrial spatial distributions are represented by blue (diffuse), red (peripheral), and green 

(perinuclear) color, and the shade of each color indicates mitochondrial densities, from light (1%) 

to dark (7%). 

4. Conclusion 

In this work we investigated the capabilities of various analysis methods in correlating 

alternations in cell models to changes alternations in the light scattering patterns. We gradually 

increased the complexity of the cell model, starting from the standard spherical cell model with 

spherical mitochondria to an off-centered ellipsoidal base shape with surface fluctuation and 

ellipsoidal mitochondria of various sizes. The influence of these structural variations on light 

scattering patterns was examined through analysis with the bi-parameter plots, and the Gabor, 

Haralick, and Laws image texture analysis methods.  It was found that the bi-parameter plots 

responded strongly to an increase in the complexity of the cell model, and they have the ability to 

identify changes in the cell’s main structure as well as in individual mitochondrial 

characterization in the population. In particular, the bi-parameter plot of S11 with an angular range 

of 90° - 110° is well suited for characterization of mitochondrial density and nucleus size. This 

level of sensitivity to intracellular structure in the bi-parameter scatter plots of S11 demonstrates 

the need for realistic cell modeling in light scattering studies. The results of texture analysis on 

diffraction images show that the Laws and Haralick texture measures are not very efficient in 

discriminating structure variations in realistic cell models, while the Gabor scatter plot, however, 

has the potential to provide a new and quantitative approach to distinguish different 

mitochondrial distributions. Improvement of a quantitative approach for analysis of diffraction 

images is underway to extend these methods to the study of human blood cells for clinical 

applications. 
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