Journal on - .
b Artificial Intelligence &« Tech Science Press

D0i:10.32604/jai.2025.065078 .

ARTICLE Check for

updates

An Advantage Actor-Critic Approach for Energy-Conscious Scheduling
in Flexible Job Shops

Saurabh Sanjay Singh’, Rahul Joshi and Deepak Gupta

Department of Industrial, Systems, and Manufacturing Engineering, College of Engineering, Wichita State University,
Wichita, KS 67260, USA

*Corresponding Author: Saurabh Sanjay Singh. Email: sxsingh28@shockers.wichita.edu
Received: 03 March 2025; Accepted: 04 June 2025; Published: 30 June 2025

ABSTRACT: This paper addresses the challenge of energy-conscious scheduling in modern manufacturing by
formulating and solving the Energy-Conscious Flexible Job Shop Scheduling Problem. In this problem, each job has a
fixed sequence of operations to be performed on parallel machines, and each operation can be assigned to any capable
machine. The problem statement aims to schedule every job in a way that minimizes the total energy consumption of
the job shop. The paper’s primary objective is to develop a reinforcement learning-based scheduling framework using
the Advantage Actor-Critic algorithm to generate energy-efficient schedules that are computationally fast and feasible
across diverse job shop scenarios and instance sizes. The scheduling framework captures detailed energy consumption
factors, including processing, setup, transportation, idle periods, and machine turn-on events. Machines are modeled
with multiple slots to enable parallel operations, and the environment accounts for energy-related dynamics such
as machine shutdowns after extended idle time, limited shutdown frequency, and machine-state transitions through
heat-up and cool-down phases. Experiments were conducted on 20 benchmark instances extended with three energy-
conscious penalty levels: the control level, moderate treatment level, and extreme condition. Results show that the
proposed approach consistently produces feasible schedules across all tested benchmark instances. Relative to a MILP
baseline, it achieves 30%-80% lower energy consumption on larger instances, maintains 100% feasibility (vs. MILP’s
75%), and solves each instance in under 0.47 s. This work contributes to sustainable and intelligent manufacturing
practices, supporting the objectives of Industry 4.0.

KEYWORDS: Flexible job shop scheduling; energy-conscious scheduling; resource-constrained manufacturing; intel-
ligent agents; reinforcement learning

1 Introduction

Scheduling plays a fundamental role in manufacturing and production systems, directly influenc-
ing operational efliciency, productivity, and overall performance. Effective scheduling ensures optimal
resource allocation, adherence to production timelines, and operational cost minimization, which collec-
tively enhance resource management, boost production capacity, and improve product quality. In today’s
manufacturing landscape, which is characterized by increasing customization and small-batch production,
mechanisms that adapt swiftly to new orders or disruptions, and maintain stable performance under
uncertainty are essential to meet diverse customer demands while maintaining operational efficiency [1].

At the core of manufacturing efficiency improvements lies the Flexible Job Shop Scheduling Problem
(FJSP), an optimization problem. The FJSP involves assigning a set of jobs to a set of machines, where
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each job consists of a sequence of operations that can be processed on multiple machines with varying
processing times. This inherent flexibility allows for better resource utilization and adaptability to changes in
the production environment, thereby enhancing both energy and charge efficiency [2,3]. Furthermore, FJSP
models could be extended to incorporate various real-world constraints, such as periodic maintenance and
machine outages, ensuring that production schedules remain optimal and resilient [4,5]. In many scenarios,
deterministic setup times and transportation times are also integrated into the models, providing additional
precision in scheduling and further optimizing operational performance [6].

Energy efficiency has become a critical aspect of industrial operations, driven by both economic
and environmental imperatives [7]. Energy consumption not only constitutes a significant portion of
operational charges but also has profound implications for environmental sustainability. Efficient energy
management can lead to substantial cost savings and reduced greenhouse gas emissions, contributing to
broader sustainability goals [8-10]. Integrating energy-efficient practices into scheduling frameworks, such
as the FJSP, enables the creation of production schedules that balance energy consumption with operational
demands, enhancing both economic and environmental performance [11].

Moreover, the evolving industrial landscape, characterized by the Fourth Industrial Revolution and
the advent of Industry 4.0 technologies, has amplified the importance of energy-efficient scheduling. The
incorporation of cyber-physical systems and real-time data analytics into manufacturing processes offers new
avenues for optimizing energy usage and enhancing overall operational efficiency [12]. These advancements
highlight the need for sophisticated scheduling models that can dynamically adapt to changing production
environments while maintaining stringent energy efficiency standards [13].

Consequently, the FJSP is critical for optimizing manufacturing efficiency. By effectively managing
multiple objectives and constraints, adapting to dynamic production environments, and integrating energy-
efficient practices, it significantly improves resource utilization, reduces production costs, and boosts overall
productivity [14]. Our motivation stems from the growing emphasis on energy conservation driven by
both economic and environmental concerns, highlighting the necessity of advanced scheduling models for
sustainable large-scale industrial operations.

The remainder of this paper is organized as follows: the Literature Review surveys current developments;
the Methodology section outlines our proposed approach to address the energy-conscious FJSP; the Results
section presents a comprehensive evaluation of the model’s performance; and the Conclusion summarizes
the research contributions, managerial insights, future research perspectives, and limitations.

2 Literature Review

The Flexible Job Shop Scheduling Problem (FJSP) poses significant challenges in manufacturing due
to its NP-hard complexity, dynamic real-world constraints, and the growing emphasis on sustainability.
Over the years, various methodologies have been developed, from traditional optimization techniques and
heuristic methods to modern reinforcement learning approaches, with each contributing insights toward
more efficient scheduling solutions.

2.1 Traditional, Heuristic, and Energy-Aware Approaches

Traditional approaches to FJSP employed exact algorithms like Mixed Integer Linear Programming
(MILP) to systematically search for optimal solutions. These studies highlight the potential of MILP in
generating precise solutions. Subsequent research has developed refined MILP models that incorporate
complexities such as sequence-dependent setup and transportation times, aiming to balance optimality with
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enhanced energy efficiency [15,16]. However, due to the inherent nature of exact methods, computation times
and resource demands tend to increase significantly as the problem size grows.

Heuristic methods have been widely adopted to address scalability issues, including Genetic Algorithms
(GA), Iterated Greedy Algorithms (IGA), and various metaheuristics. These methods have effectively opti-
mized complex scheduling challenges while maintaining practical computation times [17-19]. Additionally,
integrated approaches that combine MILP with heuristic strategies, such as tabu search, have demonstrated
enhanced robustness in dynamic scheduling environments [20]. For example, a matheuristic approach that
embeds a simplified MILP model within a GA has improved lot-sizing plans and enhanced production
efficiency [21]. Similarly, another study introduced a cooperative co-evolutionary matheuristic algorithm
that employs MILP-based evolution methods to optimize machine and auxiliary module assignments in
flexible assembly job shops [22]. A recent study formulates a sustainable distributed permutation flow-
shop scheduling model with real-time rescheduling, introduces four problem-specific heuristics, employs
Lagrangian relaxation and Benders decomposition reformulations, and applies customized tabu search and
simulated annealing algorithms for large-scale instances [23].

Parallel to these developments, energy-aware scheduling models have emerged. These models leverage
techniques ranging from linear programming and genetic algorithms to iterative greedy approaches and
MILP, all aimed at minimizing energy consumption and operational costs while balancing traditional
performance metrics [24-27].

Although these energy-aware models effectively capture energy-saving objectives, their reliance on
static optimization frameworks can limit computing adaptability as modern job shop complexity increases.

2.2 Reinforcement Learning Approaches for Flexible Job Shop Scheduling

Researchers have increasingly turned to reinforcement learning (RL) as a dynamic, data-driven
alternative to overcome this limitation.

In recent years, RL has emerged as a promising alternative for tackling the complexities of FJSP. Deep RL
techniques such as Proximal Policy Optimization (PPO), Deep Q-Networks (DQN), and Double DQN have
been applied to capture the dynamic relationships between production activities and scheduling objectives,
enabling real-time decision-making [28-30].

Further advances in RL have seen the incorporation of Graph Neural Networks (GNNs) to model
intricate operational relationships, along with Multi-Agent RL (MARL) approaches that handle dual flexi-
bility and variable transportation times in decentralized systems [31-34]. Moreover, attention mechanisms
and dual attention networks have contributed to more effective extraction of deep features from complex
scheduling environments [35-37].

An up-and-coming development is found in actor-critic algorithms. These methods treat scheduling
as a sequential decision-making process where an actor network proposes actions and a critic network
evaluates them, refining the overall scheduling strategy over time [38-40]. Recent enhancements based
on integrating value-based and policy-based methods, attention-based encoders, and hierarchical graph
structures have further boosted the performance of actor-critic frameworks on both static and dynamic
scheduling benchmarks [41-44].

2.3 Drawing Industry 4.0 Parallels

In Industry 4.0 manufacturing, machines, conveyors, and transporters play roles analogous to virtu-
alized network functions and links in cloud/fog systems. Just as Network Function Virtualization (NFV)
instantiates network functions on demand and Software-Defined Networking (SDN) centrally routes flow



180 ] Artif Intell. 2025;7

to balance load and minimize idle power, an Energy-Conscious FJSP can assign operations to machines and
sequence them to reduce standby energy while meeting deadlines. By treating machines as “nodes,” jobs
as “flows,” and energy costs as routing metrics, it becomes possible to draw conceptual parallels between
cloud/fog orchestration and shop-floor scheduling. Recent advances in IoT and Software-Defined IoT (SD-
IoT) further highlight the potential of real-time, adaptive scheduling informed by sensor data, digital twin
models, and AI-driven coordination [45,46]. These developments offer additional context for understanding
the broader landscape of innovative scheduling approaches in flexible manufacturing.

To explore this analogy further, we consider NFV and SDN research contributions in the context of
energy-efficient resource orchestration. NFV and SDN techniques have demonstrated dynamic, energy-
aware resource allocation through integrated optimization models that provision virtual network functions
(VNFs) on demand and route flows using multi-objective formulations, significantly reducing energy con-
sumption while maintaining quality of service (QoS) [47]. The deployment of parallelized service function
chains via integer linear programming (ILP) and heuristic algorithms, which strategically co-locate VNFs to
minimize energy use and resource contention under delay constraints, exemplifies this potential [48]. Digital
twin-assisted VNF migration frameworks leveraging multi-agent deep reinforcement learning have been
shown to predict resource demands and optimize migrations, reducing network energy consumption and
synchronization delays in IoT environments [49]. Similarly, reinforcement learning-based VNF scheduling
algorithms employing hierarchical reward mechanisms have addressed energy-delay trade-offs, reducing
idle energy loss and makespan [50]. These innovations present noteworthy parallels to energy-conscious
flexible job shop scheduling aspects, including dynamic resource allocation, global operation sequencing,
and scenario-based learning models.

Expanding on SDN’s role in cloud and fog environments, SDN-enabled scheduling and load-balancing
algorithms have been studied for their ability to reduce energy consumption by optimizing task placement
and data paths. Techniques such as an adaptive load-balancing approach combining optimal edge server
placement (LB-OESP) with a dynamic greedy heuristic (SDN-GH) have shown improved performance in
latency-sensitive applications like healthcare systems [51]. Other schedulers based on deep reinforcement
learning, such as the Deep-Q-Learning Network for Multi-Objective Task Scheduling (DRLMOTS), have
achieved significant energy reductions by distributing tasks between fog nodes and cloud servers [52]. Fuzzy
logic-based task offloading mechanisms, such as the Binary Linear Weight JAYA (BLWJAYA) algorithm,
have further contributed to energy reduction while maintaining service quality under bandwidth and latency
constraints [53]. Hybrid models incorporating load prediction (e.g., via Markov chains) with arithmetic
optimization strategies have also been proposed to improve energy and delay performance in cloud-fog
task scheduling [54]. Additionally, QoS-aware SD-IoT task scheduling studies offer insights into how
latency-sensitive operations, such as those in multimedia streaming, can be prioritized using resource-aware
techniques to reduce delay and energy use [55,56].

Distributed and decentralized orchestration models further contribute to this discussion. In Fog IoT
environments, decentralized SDN control using gravitational search algorithms has been explored to reduce
task offloading latency and increase assignment rates [57]. Blockchain-integrated SDN architectures have
been proposed to manage services across geographically dispersed fog nodes via smart contracts, enhancing
availability and reducing coordination delay [58]. Healthcare-specific IoT networks have also benefited from
deep learning-based fog node selection under SDN control, achieving low latency and controlled energy
use [59]. Other approaches, such as the Mountain Gazelle Optimization algorithm, use metaheuristics
to balance virtual machine load, response time, and energy consumption in decentralized scheduling
environments [60]. While these models originate from networked and computational systems, they provide a
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broader context for understanding how distributed control and local optimization strategies might be framed
within energy-conscious manufacturing scheduling.

These parallels offer a suggestive conceptual backdrop that inspires, rather than dictates, the direction
of our proposed approach, detailed in the following conclusion.

2.4 Conclusion and Proposed Approach

Despite the progress made with traditional and RL-based methods, several challenges remain, partic-
ularly in generating energy-eflicient schedules that are computed rapidly and optimize resource utilization
under deterministic conditions. Balancing energy constraints with conventional scheduling metrics is
complex, necessitating an approach that combines the robustness of deep reinforcement learning with
effective decision-making.

Motivated by these challenges, our work proposes an Advantage Actor-Critic algorithm that leverages
the actor-critic framework for effective resource management and energy control. Building on current
research in deep reinforcement learning, this method develops scheduling solutions that are robust, scal-
able, and energy-conscious across varying job shop scenarios and instances for modern manufacturing
environments, aiming to ensure they remain computationally fast and feasible.

3 Methodology

This section presents a comprehensive methodology to address the Energy-Conscious Flexible Job
Shop Scheduling Problem with Deterministic Setup and Transportation Times.

3.1 System Description

Flexible Job Shop Scheduling Problem with Deterministic Setup and Transportation Times: FJSP
involves scheduling a set of jobs comprising a sequence of operations on a set of machines. Unlike the classical
Job Shop Scheduling Problem (JSP), FJSP allows each operation to be processed on any machine from a
predefined subset, providing flexibility in machine assignment.

Machine Slots (Positions): Each machine is equipped with multiple slots, each representing a unique
position or resource unit. These slots enable the machine to handle multiple operations concurrently,
increasing its processing capacity and flexibility. Assigning different operations to separate slots on the same
machine allows for parallel processing, optimizing the overall scheduling efficiency.

Setup Times (ST): The setup time required before initiating an operation is influenced by the specific
machine on which the operation will be processed. The preparation time for a machine varies based on the
operation being processed, introducing complexity to the scheduling process. Consequently, optimizing the
assignment of operations to machines and scheduling the setup times is crucial to minimize overall setup
durations and enhance operational efficiency.

Transportation Times (T): Transportation time accounts for the time taken to move a job from one
machine to another. This is particularly relevant when jobs require processing on multiple machines located
in different areas, necessitating physical movement between them.

Energy-Conscious Scheduling: Incorporating energy considerations involves accounting for various
parameters, such as energy consumed during processing, setup, transportation, idle machine time(s), and
turning machines on or off. All energy metrics are measured in British Thermal Units (Btu), while all time-
related parameters are measured in minutes. The goal is to schedule all jobs effectively while being mindful
of the associated energy consumption and ensuring efficient use of resources.
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3.2 Advantage Actor-Critic for Energy-Conscious Scheduling

This study employs the Advantage Actor-Critic (A2C) algorithm from the stable-baselines3 library
for energy-conscious job shop scheduling [61]. A2C is selected based on its documented effectiveness
in comparable environments: (1) In edge-cloud systems, A2C demonstrated superior load balancing and
reduced task rejection rates compared to heuristic methods [62]; (2) For 5G networks, it improved latency
and Quality of Service (QoS) satisfaction over other Deep Reinforcement Learning (DRL) approaches [63];
and (3) In energy management systems, A2C shows particular robustness in isolated or uncertain scenarios,
outperforming other methods in demand coverage during connectivity disruptions [64].

Comparative studies further support this choice: A2C matches Deep Q-Learning’s (DQL) performance
in Network Function Virtualization (NFV) cloud networks with faster execution [65], achieves better
privacy-service tradeoffs than DQN in edge computing [66], and shows versatility in hybrid implemen-
tations like aircraft recovery systems [67]. While techniques combining A2C with graph networks have
demonstrated enhanced scalability for complex scheduling problems [68], the base A2C algorithm remains
particularly suitable for our energy-conscious Energy-Conscious Flexible Job Shop Problem context due to
its proven balance of adaptability and computational efficiency across diverse operational conditions [69].

3.2.1 Advantage Actor-Critic Architecture

The A2C algorithm [70,71] integrates two neural networks: the actor and the critic. The actor 7g(als),
parameterized by 0, proposes actions based on the current state, while the critic V,(s), parameterized by ¢,
evaluates the value of the current state (architecture overview shown in Fig. 1).

—{——
< Policy (Actor) Network ) < Critic (Value) Network )

Y

( Action >
‘_ Advantage )
Calculation
v

Objective Functions
(Actor & Critic)

Figure 1: Advantage actor critic

Policy (Actor) Network

The actor network defines a stochastic policy mg(als), which outputs a probability distribution over
actions for a given state:

exp(fo(s, a))

Lo exp(fo(s,a’)) @

ng(als) =
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where fy(s, a) is a function parameterized by 6 that scores the compatibility of action a with state s.
Value (Critic) Network

The critic network estimates the state-value function V(s):

t=0

Vi (s) = Eqg, [i YRt | so = s] 2)

where R, is the reward received at time step t.
Advantage Function

The advantage function A(s, a) measures the relative value of taking action a in state s compared to the
average value of state s:

A(s,a) = Q(s,a) = V(s) 3)

where Q(s, a) is the action-value function:
Q(s,a) =E,, ZVtRf |so=s,a0=a (4)
=0

Objective Functions

The A2C algorithm optimizes two objective functions corresponding to the actor and the critic: Actor
Objective: The objective for the actor is to maximize the expected advantage:

Lactor(0) = Esopmo, g, [A¢(s, a)log 7T9(a|5)] (5)

where p™ denotes the state distribution under the policy 7.

Critic Objective: The critic minimizes the mean squared error between the predicted value and the
actual return:

‘Ccritic((p) = Es~pﬂ6 [(R + YV¢(S,) - V¢(S))2] ©)

where R represents the immediate reward and s’ is the subsequent state.

3.2.2 Energy-Conscious Scheduling in a Flexible Job Shop Environment
The scheduling operation is modeled as a Markov Decision Process (MDP) defined by the tuple:

(S, AP, R,y)

where:

« Sis the state space, representing the current status of jobs, machines, and energy metrics.

o Aisthe action space, consisting of scheduling decisions such as assigning jobs to machines.
e P:SxAxS - [0,1] denotes the state transition probabilities.

e R:SxA—- Risthe reward function, designed to incentivize energy-conscious scheduling.
e y¢€[0,1) is the discount factor, balancing immediate and future rewards.

The objective of energy-conscious scheduling is to effectively assign jobs to machines in a manner that
conserves energy. This is achieved by embedding energy considerations and operational constraints within
the reinforcement learning framework. The key components are described below.
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The Environment

The environment simulates a job shop scenario in which multiple jobs are processed on a limited

number of machines under various constraints. At each decision point (timestep), the agent selects an

action that either assigns operations to machine slots or leaves them idle. The environment then advances
in simulated time, updates the status of operations and machines, accumulates energy and idle charges, and
provides the next state representation along with a reward signal.

Key elements include:

o Constraints and Charge Factors: The environment incorporates several operational constraints and

charge factors:

- Operational Constraints:

*

*

*

*

Job operations must be executed in their predefined sequence.

Each job operation must be assigned to exactly one machine and slot.

Each machine slot can accommodate only one setup or processing operation at a time.

When switching machines, the sequence must follow: transportation first, then setup, and
finally processing.

If a machine remains continuously idle beyond a predefined break-even duration, it must be
turned off.

There is a strict, fixed limit on the number of turn-off events allowed per machine.

Machines transitioning from an off state to an on state undergo a heat-up phase, while those
transitioning from on to off experience a cool-down phase.

An operation can commence only after the previous operation’s setup and processing have been
completed, and, if switching machines, after any required transportation time has elapsed.

- Energy Consumption Factors:

*

Processing Energy Charge: Energy consumed per unit of time while a machine processes
an operation. Conscious scheduling can help minimize prolonged processing on less effi-
cient machines.

Setup Energy Charge: Energy consumed per unit time during reconfiguration activities (e.g.,
tool changes, fixture adjustments) is required before an operation can begin. Scheduling
strategies that reduce the frequency of retooling or batch similar operations can lower setup
energy consumption across the job shop.

Transportation Energy Charge: Energy consumed per unit of time when transferring opera-
tions between machines. Scheduling decisions (e.g., sequencing) can reduce the frequency of
transfers and create as many machine—job overlaps as possible, thus reducing transportation
needs and the associated energy consumption.

Idle Energy Charge: The energy consumed when a machine is switched on but is not actively
processing or setting up an operation. Careful scheduling, for instance, can minimize machine
idle time by coordinating the start and finish times of consecutive jobs.

Turn-On Energy Charge: A one-time cost is incurred each time a machine is switched on. A
scheduler can decide when (and how often) to power machines off and on, balancing idle-time
savings against restart charges. Repeated turn-ons can also affect machine lifespan, so carefully
planning these actions supports energy efficiency and extended machine life.

Common Energy Charge: A baseline energy overhead consumed per unit of total makespan,
representing the cost of keeping the job shop operational. Because this overhead scales with the
schedule length, efficient sequencing and resource allocation help reduce the associated fee.
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o Assumptions:

- Infinite, identical transkporters are available from time 0, each carrying one job at a time with-
out interruption.

- Operations are non-preemptive: once started, an operation runs to completion on its assigned
machine and slot.

- Alljobs, machines, and transporters are ready and available at ¢ = 0.

- The environment is fully observable and deterministic: no unexpected job arrivals, machine
breakdowns, or stochastic time variations occur.

- The problem instance (jobs, machines, parameters, penalty levels) is static and loaded at t = 0, with
no dynamic changes during scheduling.

Action Space

The enhanced action space, A’, is defined as the Cartesian product of discrete sets encompassing both
operation assignments and machine state decisions. The agent can assign any available operations for each
machine slot or opt for a no-operation (idle) action. Additionally, the agent can decide to change the state of
each machine (e.g., turn it on or off). Formally, the action space is represented as:

Total Slots

M
A= [T {0,12,...,|01} x[]{0,1,2}, (7)
i=1 j=1

where:

o |O| is the total number of operations.
o Total Slots is the sum of all machine slots.
e M is the total number of machines.

For each machine j, exactly one state action is selected at each scheduling timestep:

Y 8(asae,j=k) =1 Vje{l,2,...,M}, (8)
ke{0,1,2}

where J(+) is the Kronecker delta function, ensuring that only one state action (No Change, Turn On, Turn
Off) is chosen per machine.

For illustration, let |O| = 3, Total Slots = 2 across M = 2. Thus, an example slot vector (2,0) means slot
one runs operation 2, slot two idles. An example machine vector (1,0) means machine 1 turns on, machine
2 remains unchanged. The full action A’ is then the pair ((2,0), (1,0)).

State and Observation Space

Each state s € S encapsulates the current status of all jobs and machines, including:

« Pending jobs and their respective operations.
«  Machine statuses (e.g., active, idle, heating, cooling, on, off).
o  Energy metrics such as current energy consumption and historical usage.

The observation space is defined as a subset of R”, where
D = Jobs x Operations per Job + Total Slots + Machines, (9)

and is formally given by:

Sz{se]RD

0 <sj <500 ijl,Z,...,D}. (10)
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Specifically:

o Operation Durations: The first Jobs x Operations per Job elements of s represent the remaining
processing time for each operation across all jobs (a zero value indicates a completed operation).

«  Machine Remaining Times: The next Total Slots elements represent the remaining processing time for
each machine slot.

o Machine Turn-On Counts: The final Machines elements indicate the number of times each machine
has been turned on.

o Machine States: Encoded implicitly within the machine remaining times and turn-on counts, reflecting
whether a machine is active, idle, heating, or cooling.

Reward Function

In reinforcement learning, the reward function provides immediate (per-decision step) and termi-
nal (end-of-scheduling-episode) feedback, rewarding or penalizing actions to steer the learning process.
The reward function R (s, a) is constructed to encourage both energy efficiency and robust operational
performance:

R(s,a) =- (Etotal + A Tinakespan + K - Incomplete_Penalty) , 1)

where:

o Eioral quantifies the total energy expenditure associated with taking action a in state s.

o Thakespan measures the total time required to complete all scheduled jobs.

o A =0.1isthe coeflicient applied to the makespan term, chosen to impose a relatively moderate penalty for
delays compared to the energy cost. Our empirical findings indicate that the model maintains robustness
for A values within the range [0.01,1.0], emphasizing the predominant role of energy consumption.

ok =1000 scales the penalty for incomplete operations, thereby strongly encouraging the completion of
all jobs. Values of x below 500 do not provide sufficient penalization, while overly high values (i.e., x >
2000) can destabilize the system.

The ratio x/A = 10* establishes a clear hierarchy of priorities, with complete job execution being
paramount, followed by minimizing energy usage and, finally, reducing makespan.
Optimization Objective

The ultimate goal is to learn a policy 7y that maximizes the expected cumulative reward, minimizing

energy consumption and makespan while ensuring the complete processing of all jobs. This is formally stated
as:

max E,, [i th(s,,a,)]. (12)
=0

Adapted Scheduling Algorithm

Building upon the A2C framework, we adapt the algorithm to cater to the specific requirements of
energy-conscious scheduling in job shops. The scheduling procedure is detailed in Algorithm 1.

3.2.3 Training Procedure

The Advantage Actor-Critic (A2C) agent is trained within a custom reinforcement learning environ-
ment using the Stable Baselines3 (SB3) library. The training process enables the agent to learn scheduling
policies that balance energy consumption and job completion time through iterative interactions with
the environment.
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Training Setup
The training procedure involves the agent interacting with the environment to collect experiences,

which are then used to update the policy (actor) and value (critic) networks. The key components of the
training setup are as follows:

+ Policy Network (74): Determines the probability distribution over actions given the current state.
+ Value Network (V4): Estimates the expected return from a given state.
« Hyperparameters: Configured to facilitate stable and efficient learning.

Learning Hyperparameters

The selection of hyperparameters is crucial for the agents performance. The following values are
employed to accommodate the complexity of the job shop scheduling environment:

+ Learning Rate (a): Set to 0.001 to balance convergence speed and stability. This value ensures that
gradients remain within a stable regime and prevents divergence during training [72,73]. In our A2C
model, which targets minimizing total energy consumption, a high learning rate destabilizes gradients,
impairing scheduling performance and increasing energy usage. In contrast, a lower learning rate slows
convergence and results in inefficient energy utilization [74].

« Discount Factor (y): Chosen as 0.99 to emphasize long-term rewards, this setting guarantees that future
energy costs and scheduling efficiency are adequately considered over the entire horizon. A discount
below 0.99 favors immediate rewards and increases overall energy consumption.

«  Number of Steps (n_steps): Set to 1024 to accumulate sufficient experience per update, thereby reducing
variance in the advantage estimates in our high-dimensional state space [75]. This parameter supports
consistent scheduling performance and lower total energy consumption, in contrast to lower values yield
higher variance.

« Entropy Coeflicient (ent_coef): Set to 0.005 to balance initial exploration with subsequent exploitation.
This value facilitates the convergence of the policy toward schedules with reduced energy consumption
by avoiding excessive randomness and premature convergence on suboptimal strategies [76,77].

o Value Function Coefficient (vf_coef): Set to 0.5 to allocate appropriate emphasis on accurate value
estimation. This balance is essential for reliably predicting long-term energy costs and underpins the
generation of schedules that minimize total energy consumption [78-80].

+ Maximum Gradient Norm (max_grad_norm): Limited to 0.7 to constrain parameter updates and
maintain training stability. This restriction ensures smooth policy updates and contributes to scheduling
solutions with lower energy consumption [81].

Training Modality

To thoroughly evaluate the agent’s capability in handling complex scheduling scenarios, the A2C
agent is trained under a single, high-penalty scenario, referred to as the Stress Test Level scenario. This
scenario represents the most challenging job shop scheduling problem by maximizing the number of jobs,
machines, and operations, thereby assessing the agent’s ability to generalize and perform effectively under
strenuous conditions. The agent undergoes training for a total of 500,000 timesteps, ensuring extensive
interaction with the environment to develop robust scheduling policies. Adopting a worst-case-aware policy
optimization approach [82], our strategy leverages the idea that mastering this extreme scenario cultivates
robust scheduling strategies and enables improved performance under less extreme testing conditions such
as the Control Level, Moderate Treatment Level, and Extreme Condition (documented in Section 3.3).
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Mathematical Framework

The training process can be formalized as follows:

1. Trajectory Collection:
The agent interacts with the environment to generate a trajectory of experiences:

7 ={(s0,a0,70-51)> ($1, a1, 11, 82) - » (ST—1, AT—1, T 7-1,ST) } (13)

where s; € S is the state at time ¢, a; € A is the action taken, and r; is the reward received.
2. Advantage Estimation:
For each time step t, the advantage function is estimated as:

A(spyar) = Re+yVe(sie1) — Vo (st) (14)

This measure indicates how much better taking action a, in state s; is compared to the policy’s
average performance.

3. Policy and Value Updates:
The actor and critic networks are updated using the following gradients, where T represents the number
of time steps in the collected trajectory:

1 T-1

VoLactor(0) = T > A(si,ar)Vologmo(ays;) (15)
=0
1 T-1

Vg Leritic(9) = T > (Rt +yVs(si1) - V¢(St)) Vg Ve(st) (16)
=0

These gradients are then clipped to a maximum norm to ensure stable updates:

Clip(V) = min (1) max_grad_norm) 1)
Ivi

The parameters are subsequently updated as:

0« 0+a-Volacror(0) (18)

p—¢-a- V¢£critiC(¢) (19)

Algorithm 1: Energy-conscious advantage actor critic—flexible job shop scheduling process

System Initialization:
Load job set ] with operation sequences O; and precedence graphs G; for all j € ]
Initialize machine set M to offline state
Reset simulation clock t « 0, energy consumption vectors E < 0
Initialize policy network 7, with weights 6
while not all operations completed do
Operation Readiness Assessment:
For eachjob j¢ J:
Identify current operation o7 =
Verify Vo' < 07, 0" is completed
Generate ready operation set O* = {0} | j € J}

min{o € O; | o incomplete}

(Continued)



] Artif Intell. 2025;7

189

Algorithm 1 (continued)

Feasibility Verification:
For each o € O*:
Determine capable machine set M, ¢ M
Filter to available machines:
M! ={m e M, | state(m) =ONV turn_on_count(m) < limit}
If 30 € O* with M = &
Terminate with infeasibility
State Observation:
Construct state vector s;:

o Operation status matrix [0, remaining_time] for all 0 € O*
o Machine state matrix [state, slots, activations] for all m € M
o Energy consumption vector E

o  Temporal metrics [t, current_makespan |

Policy-Driven Action Selection:
Policy Evaluation:
m,(s¢) — action probability distribution P(a)
Action space A:
o Assignment: (0,m,s)Vo € O, me M],s e slots(m)
o  Activation: turn_on(m)Vm € M with state(m) = OFF
« Null action: OFF

Action Execution:
Sample a ~ P(a)
Enforce constraints:
If Assignment:
Verify state(m) = ON and slot_available(s)
Else if Activation:
Verify turn_on_count(m) < limit
Environment Transition:
Temporal Update:
At = min{active_timers}
Update all 0 € O: remaining_time —= At
Update machine state timers
State Updates:
Complete operations where remaining_time = 0
Transition machine states upon timer expiration(s)
Resource Management:
For idle machines:
If idle_duration > breakeven_threshold
Initiate shutdown
Reward Computation
end while
if VjeJ,Voe O;: 0.completed = True then
Finalize energy accounting

(Continued)
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Algorithm 1 (continued)

Export:
. Schedule S
. Energy consumption report
. Policy performance metrics
else

Infeasible State:

Log failure state

end if

3.3 Benchmark Instances Extended to Energy-Based Scenarios

To evaluate the performance of our A2C model, we utilized a set of benchmark instances and extended
them to incorporate energy-based scenarios with varying penalty levels. This extension allows for a compre-
hensive analysis of the model’s efficiency under different operational constraints and energy considerations.

3.3.1 Parsing and Extending Benchmark Instances

We developed a parsing mechanism to integrate energy considerations into the benchmark scheduling
instances that extracts the essential scheduling information and augments it with energy-related parameters.
The parsing process involves the following steps:

1. Benchmark Instance Data: Raw data from benchmark instances is parsed to identify jobs, operations,
machines, and their respective processing times. The benchmark instances include MKO01 to MK10 [83]
and MFJS01 to MFJSI10 [84], for 20 instances.

2. Energy Parameter Assignment: Each benchmark instance is extended with energy-related parameters
based on predefined scenarios. These parameters include setup times, machine slots, transportation
times, processing energy consumption, machine idle energy consumption, setup energy consumption,
machine turn-on energy consumption, machine break-even times, heat-up and cool-down times,
transporter energy consumption, common energy consumption, and turn-oft limits.

3.3.2 Energy-Based Scenarios with Varying Penalty Levels

To assess the model’s robustness and adaptability, we defined three distinct energy-based scenarios with
different penalty levels: Control Level, Moderate Treatment Level, and Extreme Condition. Each scenario
adjusts specific energy-related parameters to simulate varying operational conditions and constraints. The
configurations for these scenarios are detailed in Table 1.

Table 1: Energy-based scenario configurations: time and operational parameters

Parameter Control Level Moderate Extreme
Treatment Level Condition
Setup Times (minutes) Randomly selected Randomly selected Randomly selected
from {10, 20} from {30, 40} from {50, 60}
Transportation Times 10 14 20
(minutes)

(Continued)
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Table 1 (continued)

Parameter Control Level Moderate Extreme
Treatment Level Condition
Machine Break-Even Time 10 15 20
(minutes)
Heat-Up Times (minutes) 8 12 16
Cool-Down Times (minutes) 8 12 16
Machine Slots 4 slots per machine 3 slots per machine 2 slots per machine
Processing Energy Random integer Random integer Random integer
Consumption (Btu) between 4 and 5 between 5 and 6 between 7 and 8
Machine Idle Energy 1 2 3

Consumption (Btu)
Setup Energy Consumption 1.2 x Idle Energy 1.2 x Idle Energy 1.2 x Idle Energy

(Btu) Consumption Consumption Consumption

Machine Turn-On Energy 10 30 60
Consumption (Btu)

Transporter Energy 3 3 3
Consumption (Btu)

Common Energy 10 10 10
Consumption (Btu)

Turn-Off Limit 3 times 3 times 3 times

« Control Level: This scenario serves as the baseline, maintaining penalties for tardiness and inefficiencies
at a standard level. It establishes a performance benchmark, allowing comparisons with scenarios that
impose more stringent penalties.

+ Moderate Treatment Level: Representing an intermediate condition, this scenario increases penalties
from the Control Level without reaching extreme levels. It helps in observing the model’s performance
under moderately stringent operational constraints.

« Extreme Condition: This scenario applies significant penalties to simulate challenging operational
conditions that test the model’s ability to maintain efficiency under extreme constraints.

Note: The energy-related attributes, including processing energy consumption, machine idle energy
consumption, setup energy consumption, machine turn-on energy consumption, machine break-even
time(s), heat-up times, cool-down times, transporter energy consumption, common energy consumption,
and turn-off limit(s), are sourced from [15]. To comprehensively evaluate the model under the full range
of operational conditions and to preclude potential bias toward lower-end parameter values that may arise
from random selection, these parameters were deliberately partitioned into three groups corresponding to
the Control Level, Moderate Treatment Level, and Extreme Condition scenarios.

Stress Test Level Scenario

The Stress Test Level scenario introduces the highest level of penalties and operational constraints,
pushing the model to its limits. It includes the longest setup and transportation times, the highest machine
idle and turn-on energy consumption, and reduces machine slots to a minimum. The configuration for is
detailed in Table 2.
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Table 2: Parameters for stress test level scenario

Parameter Value/Description

Number of Jobs 30

Number of Machines 30

Maximum Operations per Job 30

Maximum Processing Time (minutes) 60

Maximum Setup Time (minutes) 20

Maximum Transportation Time (minutes) 22

Maximum Machine Slots 2 per machine

Maximum Processing Energy Consumption (Btu) 8

Maximum Idle Energy Consumption (Btu) 3
Setup Energy Consumption (Btu) 1.2x Idle Energy Consumption (3.6 Btu)

Machine Turn-On Energy Consumption (Btu) 60

Break-Even Time (minutes) 20

Heat-Up and Cool-Down Time (minutes) 16

Transporter Energy Consumption (Btu) 3

Common Energy Consumption (Btu) 10

Turn-Off Limit per Machine 3

4 Results
4.1 Performance across Benchmark Instances

The Energy-Conscious A2C exhibits progressively stronger performance relative to [15]’s MILP (as
shown in Table 3), as problem complexity increases, with a decisive transition at medium-scale job shop
instances (MFJS04/MKO1). While MILP retains energy efficiency benefits (0%-7%) for small-scale job shop
instances (MFJS01-03), A2C consistently outperforms beyond this threshold, demonstrating 30%-80% lower
energy consumption in larger job shop instances while maintaining perfect feasibility (100% success rate
vs. MILP’s 75%) and sub-second solve times (vs. MILP’s 3600s timeouts). Under extreme conditions, A2C’s
robust performance contrasts with MILP’s frequent failures and unsustainable consumption spikes as job
shop instance size grows.

Table 3: Performance of energy advantage actor-critic (A2C) across 20 benchmark instances

Total Energy Consumption Over All Jobs (Btu) CPU(s) - Extreme Meng et al. Meng et al.
Condition (Total Energy) CPU(s)

Instance

Control Level Moderate Extreme

Treatment Level Condition

MFJS01 15,047 19,321 36,740 0.0442 16,234.00 5.71
MFJS02 17,278 22,322 31,957 0.0982 14,787.60 24.24
MFJS03 18,322 29,579 36,782 0.1065 18,386.80 417.99
MFEJS04 20,539 33,821 48,070 0.0890 22,374.20 8705.37
MFJS05 20,581 34,056 53,420 0.1106 21,414.80 3600.00
MFJS06 30,967 45,255 58,259 0.1369 25,610.20 3600.00
MFJS07 41,097 57,854 73,011 0.0972 35,722.60 3600.00
MFJS08 40,231 61,803 82,726 0.1975 41,535.80 3600.00
MEFJS09 49,672 63,004 99,771 0.2492 53,495.60 3600.00

(Continued)
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Table 3 (continued)

Total Energy Consumption Over All Jobs (Btu) CPU(s) - Extreme  Mengetal. Meng et al.
Condition (Total Energy) CPU(s)

Instance

Control Level Moderate Extreme

Treatment Level Condition
MEFJS10 54,920 81,245 111,984 0.2535 60,622.00 3600.00
MKO1 7212 15,558 30,269 0.1378 22,437.20 3600.00
MKO02 6366 14,792 27,065 0.0797 33,068.40 3600.00
MKO03 23,262 46,703 82,502 0.1357 - 3600.00
MKO04 10,292 23,812 43,793 0.0799 49,061.20 3600.00
MKO05 12,852 31,313 58,635 0.1398 132,944.80 3600.00
MKO06 20,296 45,325 78,231 0.1016 178,419.00 3600.00
MKO07 13,336 27,082 54,420 0.1013 - 3600.00
MKO08 39,191 74,610 134,256 0.4618 - 3600.00
MKO09 38,700 71,658 125,675 0.1869 - 3600.00
MK10 36,113 75,489 145,206 0.3245 - 3600.00

4.2 Sensitivity Analysis of Energy Consumption

Fig. 2 illustrates a sensitivity analysis of energy consumption under three treatment levels—Control
level, Moderate treatment level, and Extreme condition—comparing the total job shop energy consumption
against the sum of the processing, setup, and transportation energy components. The results demonstrate that
the A2C agent actively minimizes controllable energy usage (the sum of processing, setup, and transportation
energy consumption). The policy avoids unnecessary machine switches and excessive movement, which
would otherwise increase setup and transportation energy consumption, suggesting a preference for lean
routing and efficient operation sequencing.

Sensitivity Analysis
150000

100000

50000

Energy Consumption (Btu}

Instance

—— Control Level (Total Energy Consumption)

=== Control Level (Processing + Setup + Transportation Energy Consumption)

—— Moderate Treatment Level (Total Energy Consumption)

-=-- Moderate Treatment Level (Processing + Setup + Transportation Energy Consumption)
—— Extreme Condition (Total Energy Consumption)

=== Extreme Condition (Processing + Setup + Transportation Energy Consumption)

Figure 2: Scheduling sensitivity analysis

Notably, the controllable energy trends remain relatively stable even as the overall job shop energy
consumption increases across treatment levels. This indicates that the agent maintains its energy-efficiency
focus under more constrained operational conditions.

Moreover, as the number of jobs and machines scales across instances, the controllable energy compo-
nents do not exhibit abrupt spikes. This implies that the A2C policy generalizes well, consistently optimizing
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energy per job across a spectrum of instance sizes. The policy demonstrates robust energy-conscious
scheduling behavior and effective generalization under increasing complexity and stress.

4.3 Schedule Gantt Charts

To visualize the scheduling performance of the Advantage Actor-Critic (A2C) model across different
scenarios, we present Gantt charts for two benchmark instances: MKO1 under all three energy-based
scenarios and MFJS10.

4.3.1 MKO0I Scheduling under Different Scenarios
Observations on MKOI Scheduling

The MKO1 scheduling results (Fig. 3a—c) show a clear trend across the Control Level, Moderate
Treatment Level, and Extreme Condition scenarios in both energy consumption and operational efficiency.
As energy constraints tighten from the Control Level to the Extreme Condition, total energy consumption
increases significantly due to higher setup and transportation energy requirements. Due to increased setup
and transportation times, these added demands contribute to the makespan (representing the total time
to complete all jobs) doubling from the Control Level to the Extreme Condition. Despite these challenges,
the model still executes relatively efficiently, demonstrating its capability to manage more complex, energy-
aware scheduling without excessive computational overhead. This trade-oft between energy efficiency and
operational speed is further reflected in the allocation of resources: notably, Machine 4 is used in the Control
Level and Moderate Treatment Level scenarios but remains unused in the Extreme Condition scenario,
indicating how machine usage adapts as resource constraints become more stringent.

4.3.2 MFJS10 Scheduling
Observations on MFJSI10 Scheduling

The scheduling performance for the MFJS10 benchmark instance under the Extreme Condition scenario
(as shown in Fig. 4) demonstrates the model’s capability to handle large-scale and complex job shop
environments effectively. The total energy consumption for the scenario amounted to 111,984 Btu, which
includes 62,841 Btu for processing, 9396 Btu for setup, 1800 Btu for transportation, 720 Btu for machine
turn-on, 12,927 Btu for idle energy, and 24,300 Btu as common energy consumption. This breakdown
highlights the model’s ability to allocate energy resources efficiently across various operational activities.

The scheduling resulted in a makespan of 2430 min (40.5 h), reflecting the challenges associated with
scheduling a substantial number of jobs and operations while adhering to stringent energy constraints.
Despite the complexity and high energy demands, the model maintained a highly efficient computation time
of 0.2535 s, showcasing its robustness and computational efficiency.

4.4 Processing Platform Specifications

The computational resources used for the scheduling model were pivotal for efficiently training and
testing the complex model in high-dimensional state and action spaces. The processing platform is based on
the x86_64 architecture and powered by an Intel(R) Xeon(R) Gold 6240 CPU operating at a base frequency
of 2.60 GHz, with a maximum frequency of 3.9 GHz. The system includes 72 total CPU cores, distributed
across 2 sockets, each with 18 cores per socket and 2 threads per core. The cache memory architecture
features L1d: 1.1 MiB and Lli: 1.1 MiB (36 instances each), L2: 36 MiB (36 instances), and L3: 49.5 MiB (2
instances). Additionally, the system is configured with 2 NUMA nodes, ensuring optimized memory access
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for parallel processing tasks. These specifications enabled efficient handling of the demanding computational
requirements of the scheduling model.
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Figure 3: Schedule Gantt Charts for MKO1 under Different Energy-based Scenarios. (a) Control Level (b) Moderate
Treatment Level (c) Extreme Condition. Note: The labels in the Gantt chart follow a format where the initial digits
represent the job number, and the final digit(s) indicate the operation number. For instance, “XY” refers to Job X,
Operation Y, while “XYZ” refers to Job XY, Operation Z. Labels with an asterisk (*) indicate repeated work, as we would
see in practical scenarios, where multiple operations are scheduled consecutively or in shifts from the same job(s)
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Figure 4: Schedule Gantt Chart for MFJS10 - Extreme Condition. Note: The labels in the Gantt chart follow a format
where the initial digits represent the job number, and the final digit(s) indicate the operation number. For instance, “XY”
refers to Job X, Operation Y, while “XYZ” refers to Job XY, Operation Z. Labels with an asterisk (*) indicate repeated
work, as we would see in practical scenarios, where multiple operations are scheduled consecutively or in shifts from
the same job(s)
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5 Conclusion

The A2C framework for Energy-Conscious Flexible Job Shop Scheduling effectively addresses the core
research question posed in this manuscript. It demonstrates strong energy-conscious scheduling capabilities,
computational efficiency, and scalability. Specifically, the proposed A2C model consciously minimizes energy
consumption while maintaining 100% feasibility and sub-second response times across all tested benchmark
instances. It sustains robust, sub-second scheduling for every instance size across all scenarios, from the
Control Level to the Extreme Condition. Moreover, this performance directly realizes the proposed goal
of developing scheduling solutions that are robust, scalable, and energy-conscious across varying job shop
scenarios. Prior research demonstrates that such energy-conscious approaches can advance Industry 4.0
goals:

»  Scheduling optimization capable of reducing energy costs by 6.9% [85]
o Scheduling mechanisms that significantly lower CO, emissions [86]

The proposed A2C implementation extends these principles through distinct state representation and
reward shaping for energy-conscious, flexible job shop environments.

5.1 Industrial Relevance and Potential Impact

o  What-if Simulation: Fast schedule generation enables rapid scenario analysis to compare multiple
predetermined production strategies before execution [87].

« Digital Twin Orchestration: High-speed scheduling supports virtual replicas of production systems,
allowing continuous optimization of energy-management policies before deployment [88].

« Surrogate Modeling: Deep learning-based surrogate predictors accelerate the evaluation of candidate
schedules, supporting fast decision-making in complex, heterogeneous environments [89-91].

5.2 Managerial Insights for Decision Makers

o Enhanced Efficiency and Sustainable Resource Management: The A2C model empowers decision
makers by enabling proactive energy management and reliable scheduling, which minimizes downtime
and drives productivity while reducing operational costs.

+ Scalability and Competitive Edge: Its robust adaptability across diverse industrial scenarios ensures
effective performance even under stringent conditions, providing a sustainable competitive advantage
in growing markets.

5.3 Research Perspectives

Future work can be expanded on further refinements of the A2C model:

« A2C in Dynamic Environments: Enhance the A2C framework by integrating dynamic programming
approaches to manage scheduling under highly volatile and uncertain production conditions, thereby
boosting adaptability. Possible extensions can include:

- New Job Arrivals: New jobs might arrive on the shop floor while existing jobs are being processed.

- Machine Breakdowns: Machines might fail or require maintenance, making them temporar-
ily unavailable.

- Processing Time Changes: Actual processing times may vary from initial estimates due to factors
like worker proficiency or equipment issues.

- Urgent Orders: New high-priority jobs may be introduced, requiring immediate scheduling.

- Other Dynamic Events: Changes in due dates, order cancellations, material shortages, etc., can
also occur.
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o A2C with Local Search Enhancements: Explore the synergy between the Actor-Critic (A2C) model
and local search methodologies, such as Large Neighborhood Search (LNS) or Tabu Swap, to enhance
solution quality in complex scheduling problems. A promising research direction could involve a two-
stage pipeline in which the A2C agent generates an initial schedule, followed by LNS, which then refines
the schedule to address higher energy-consuming jobs, operations, and machines.

5.4 Research Limitations

« Simplified energy model: The current formulation uses fixed, linear per-event energy consumption
and does not capture dynamic behaviors such as variable power draws during processing peaks and
nonlinear machine heat-up/cool-down energy consumption, which may lead to optimistic estimates of
actual energy savings.

« High computational and tuning demands: Achieving stable A2C convergence requires hundreds
of thousands of interaction steps and extensive hyperparameter exploration, creating a barrier for
deployment in environments with limited computing resources or expertise.

« Static, offline policy: Once trained, the policy cannot respond to unanticipated changes, such as new
job types, machine breakdowns, or shifting production priorities, without integrating continual-learning
methods, potentially affecting validity in some operational scenarios.
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