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ABSTRACT: The growing intersection of gynecological cancer diagnosis and cybersecurity vulnerabilities in health-
care necessitates integrated solutions that address both diagnostic accuracy and data protection. With increasing
reliance on IoT-enabled medical devices, digital twins, and interconnected healthcare systems, the risk of cyber-
physical attacks has escalated significantly. Traditional approaches to machine learning (ML)–based diagnosis often
lack real-time threat adaptability and privacy preservation, while cybersecurity frameworks fall short in maintaining
clinical relevance. This study introduces HealthSecureNet, a novel Cyber-Integrated Predictive Framework designed
to detect gynecological cancer and mitigate cybersecurity threats in real time simultaneously. The proposed model
employs a three-tier ML architecture incorporating Gradient Boosting and Support Vector Machines (SVMs) for
accurate cancer classification, combined with an adaptive anomaly detection layer leveraging Mahalanobis Distance
and severity scoring for threat prioritization. To enhance resilience, the framework integrates Zero Trust principles and
Federated Learning (FL), enabling secure, decentralized model training while preserving patient privacy and meeting
compliance with HIPAA (Health Insurance Portability and Accountability Act) and GDPR (General Data Protection
Regulations). Experimental evaluation using a real-world healthcare cybersecurity dataset demonstrated high accuracy
(95.2%), precision (94.3%), recall (91.7%), and AUC-ROC (Area Under the Curve-Receiver Operating Characteristic)
(0.94), with a low false positive rate (3.6%). HealthSecureNet outperforms traditional models such as SVM, Random
Forest (RF), and k-NN (k-Nearest Neighbor) in both anomaly detection and severity classification accuracy. Its
adaptive thresholding and response prioritization mechanisms make it suitable for dynamic healthcare environments,
enabling early cancer detection and proactive cyber threat mitigation without compromising performance or regulatory
standards. This research contributes a robust, dual-purpose solution that enhances both clinical diagnostics and
cybersecurity, setting a precedent for future AI (Artificial Intelligence)-driven healthcare systems.

KEYWORDS: Gynecological cancer detection; machine learning (ML); cyber-physical security; predictive healthcare
model; anomaly detection

1 Introduction
The rapid advancements in machine learning (ML) and cybersecurity have significantly impacted the

healthcare sector, particularly in the fields of early disease detection and cyber resilience [1]. In recent years,
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the integration of predictive analytics in gynecological cancer detection has improved diagnostic accuracy,
enabling timely interventions and enhanced patient outcomes [2]. However, as medical institutions continue
to embrace digital transformation, they become increasingly vulnerable to cyber-physical attacks, which
threaten the security of patient data, diagnostic models, and healthcare infrastructure. The interconnected
nature of modern healthcare systems—incorporating electronic medical records (EMRs), Internet of Things
(IoT)-enabled medical devices, and AI-powered diagnosis—necessitates a cyber-integrated approach that
ensures both medical accuracy and system security [3]. This study presents a Cyber-Integrated Predictive
Framework for Gynecological Cancer Detection, leveraging machine learning techniques to enhance cancer
diagnosis while simultaneously strengthening the cyber resilience of healthcare environments [4]. The
framework employs a three-tiered ML architecture that integrates Gradient Boosting and Support Vector
Machines (SVMs) for precise cancer classification. Additionally, it incorporates an anomaly detection layer
to proactively identify cyber threats such as unauthorized access, data breaches, and adversarial attacks on
medical AI models [5]. By embedding cognitive anomaly detection mechanisms, the system is designed to
detect both clinical anomalies and cybersecurity threats, ensuring a dual-layered protection mechanism for
healthcare data.

It is now impossible to discuss the connection between Machine Learning (ML) and cybersecurity
within the healthcare industry since the computational and data-related processes of diagnostics, treatment,
and even data storage are now carried out using sophisticated interconnected digital systems [6]. As
has been seen, as healthcare systems grow technologically they are faced with both opportunities and
risks. The application of ML has revealed marvelous in improving diagnostics positivity and analytics in
healthcare resulting in betterment of patient care and organizational productivity [7]. At the same time, this
advancement escalates the amount of categorized information flowing through and exchanging over and
through these networks and makes them appealing targets for cyber-crashes [8]. Fig. 1 illustrates the System
model diagram of the cyber physical system in healthcare.

Any healthcare breach poses a great threat as it involves a client’s personal information besides causing
disruptions to vital healthcare service provision [9–12]. Research has pointed out that even small violations
can cause massive money and image loss for medical organizations [13–17]. Such concerns mean heightened
risk hence there is a necessity to implement strong security measures that safeguard patient data and
guarantee continuity of service delivery [18]. With the increase of digitalization, newer innovations like
the Digital Twin apparently add more access points for a cyber threat into healthcare systems making data
protection even more challenging [19,20].

However, the introduction of the Internet of Things (IoT) in healthcare has increased the attack surface
width through IoT-based devices endangering patient safety [21,22]. A suggestion for a mitigation measure
to reduce such access is to adopt Zero Trust as an architecture, which though comes with a large investment
and constant vigilance [23]. The high specialization of the sector is a big challenge to the implementation
of these universal measures including the requirement of the healthcare sector for data protection due to
licenses and compliances with such standards as HIPAA.

Therefore, the addition of cybersecurity-specific ML models as adapted in healthcare has raised
possibilities of strengthening systems’ defenses. These models are able to operate in real-time and use
anomalous behavior models to sense when there are signs of a breach of security [4,17]. Another promising
approach to ensure patient data security while training models on different decentralized substrates seems to
be federated learning frameworks, in which ML models are trained without transferring the raw data [9,12].
Nonetheless, difficulties are observed in applying these technologies to address healthcare data size and
comprehensiveness; moreover, since the resulting ML models should be fully explained, or interpretable,
such requirements often do not align with the existing regulations.



J Artif Intell. 2025;7 57

Figure 1: System model diagram of cyber physical system in healthcare

Thus, while clearly recognizing the advantages of adopting machine learning in enhancing healthcare
functionality and protecting patient information in the context of cybersecurity threats, it can be said that the
industry faces significant technical and legal challenges. Mitigating these threats calls for the construction
of flexible and robust ML-based frameworks capable of countering evolving and sophisticated cyber threats,
with special regard to standards of healthcare security and privacy [21].

1.1 Background
Due to the implementation of ML technologies for the operation of healthcare systems around the

world, key functional areas of the sector have been gradually shifted to predictive analysis, early-stage disease
detection, and operational effectiveness [8,19]. These improvements have enabled healthcare providers to
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achieve accurate diagnosis and timely results, decrease the workload, and increase the overall patients’ status
of health. However, with current developments in ML systems, dependency on large volumes of patient data
has raised the bar in risk and complexity of cybersecurity threat implications. Due to the nature and contents
of the information-Healthcare data is sensitive mainly, it contains personal, medical, and financial details,
and in the case of leakage, causes severe harm to peoples’ lives and health and institutions [22,23].

Due to the growing risks of cyber threats, complex strategies require solutions from multiple fields since
the risks are both technical and social. Studies have noted that staff was trained in reducing cybersecurity
threats, given the fact that human factors such as mistakes or stress may lead to data vulnerability [3,8]. Zero-
Trust architectures have also been suggested as another valid approach since granular controls and ongoing
supervision combat unapproved access points to healthcare systems [5,7].

Moreover, IoT devices have extended their presence in more contemporary healthcare systems to
monitor patients as well as collect data in real time. But, at the same time, these IoT devices increase
the potential vector for attacking since attackers can leverage the existing vulnerabilities within connected
medical devices to gain entry to the healthcare networks [6,18]. Such guarantees need stricter cybersecurity
models able to counter the growing threats in networked settings as well as contemporary advancements of
IoT-based health care systems [13,20].

Some of the new challenges are newcomers to the healthcare systems such as the usage of Digital
Twin technology that involves the creation of digital models of physical, real-time healthcare systems. While
the use of Digital Twins proves beneficial in giving insight into the probable need for repair of healthcare
equipment and, in operational planning, it also introduces new ways through which cybersecurity could be
threatened, as more layers of digital infrastructure are established [2,10]. It is equally important to protect
facilitative replicas of real systems from similar cyber threats thus calling for protection of all organizational
structures-physical and cyber.

Although promising progress has been made, the fusion of ML and cybersecurity in the healthcare
environment has some barriers. Current methods are not only suitable for the online identification of
threats, but the models used in the prediction process must be interpretable in line with the highly regulated
environment in healthcare [21]. The appearance of Federated Learning is an opportunity to expand the
range of increasing patients’ data privacy since this manner of training ML models does not require
sharing patients’ data and yet creates necessary collaboration opportunities for healthcare institutions [9,12].
However, a large amount of work remains to be done to implement these technologies in the healthcare
sector to meet new requirements, securing and preserving cybersecurity and data privacy [15].

1.2 Literature Summary
This body of work provides conclusively that there is a need to develop and implement a proactive,

multiple-discipline approach to addressing the problem of cybersecurity in healthcare organizations. An
important work by reference [8] highlighted the need to consider the human factors, the state stress for
instance, and general well-being as far as cyber-security is concerned; the same study revealed that when the
stress of the state is high, the organization’s security becomes vulnerable to cyber-security-breaches therefore;
stress should be an area of concern in any cyber-security strategies. This finding accords with other studies
that focus on people’s vulnerability as the biggest threat to cybersecurity and hence the need to enhance staff
training and mental health of staff as a fundamental part of cybersecurity strategy [19,22].

Current advances in Federated Learning (FL) frameworks provide a potential area to improve the
protection of healthcare data by allowing distributed training of the ML model among different health-
related entities. This model reduces the amount of raw data to be transferred and as a result protects patient
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information while at the same time mitigating points of data leakage [9,12]. Research has shown that FL when
integrated with strong data control measures can offer a reliable method of improving ML performances
across institutions without violating the privacy of sensitive health information [6,7]. However, the practical
application of FL in healthcare is still challenging because ensuring consistent model performance and
protection across various sources of data remains a technical issue although the same is in the process of
being solved when training such models in real-time practices for usage in high-risk settings.

The literature also notes the several improvements made in the Digital Twin concept and IoT healthcare
systems for the monitoring of patients and the overall reformation of healthcare activities, Based on consis-
tent numerical data from numerous medical applications [10,13]. However, these advancements introduce
new cyber vulnerabilities because of the connecting Points of medical devices thus creating the need for
IoT and Digital Twin specific cybersecurity [5,18]. In addition, several propositions suggest that a zero-trust
architecture can be implemented as a security model to help address the threat of unauthorized access in a
healthcare environment. With strict authentication and continuous monitoring, the zero-trust model doesn’t
give cyber threats much of a chance to break into the system [7,20].

The current up-to-date technologies revealed are surely helpful in creating a formidable barrier against
malicious attacks in the healthcare environment, yet, some voids are apparent in the currently available
technologies, particularly in the aspect of threat detection in real-time, and very swift response. Research has
pointed out that existing system analysis is weak in changing, emerging cyber threats, and that healthcare
systems must integrate flow ML models that can identify new vulnerabilities as they emerge [1,16]. In
addition, specific laws regarding healthcare data such as HIPAA and GDPR have specific requirements
for any ML and cybersecurity application that data privacy and model transparency should always come
first [11,23]. As a result, there is a great need for the flexibility and openness of existing ML tools to address
healthcare cybersecurity issues, further meeting front-line security rules and passive guidelines based on
formal, technical, and ethical grounds [14]. Table 1 shows the Comparison of Studies on Cybersecurity
Techniques in Healthcare.

Table 1: Comparison of studies on cybersecurity techniques in healthcare

Reference Technique Outcome Limitation
[8] Correlation

analysis
Highlighted the impact of

healthcare staff stress levels on
cybersecurity practices,
indicating the need for
human-centric security

measures.

Does not address technical
measures for cybersecurity,

focusing only on human
factors.

[12] Federated learning
framework

Improved model performance
for healthcare anomaly

detection using distributed data,
while maintaining patient data

privacy.

Complexity in maintaining
model accuracy across

heterogeneous datasets and
lack of real-time adaptability.

[7] Zero-trust
architecture

Enhanced security in IoT-based
healthcare networks by

enforcing strict access controls
and identity verification.

Limited scalability and
potential delays in access

verification can affect critical
healthcare operations.

(Continued)
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Table 1 (continued)

Reference Technique Outcome Limitation
[6] Preventive IoT

security
framework

Reduced risks of unauthorized
access to IoT devices in

healthcare through proactive
monitoring and threat

identification.

Primarily focuses on IoT
devices, lacking integration

with broader healthcare
system security.

[10] Digital twin with
ML-driven task

offloading

Improved healthcare system
efficiency and threat

management through a
combination of digital twin and

ML task offloading.

Introduces new
vulnerabilities due to the
additional layer of digital

twin integration; high
computational requirements.

[23] General
cybersecurity

framework

Provided a broad analysis of
cybersecurity needs in

healthcare systems,
emphasizing data protection

and threat mitigation strategies.

Limited specific
implementations for

real-time threat detection or
adaptability in dynamic

environments.
[13] BYOD (bring your

own device) risk
management

Explored cybersecurity risks
associated with personal devices

in healthcare (BYOD) and
recommended best practices.

Addresses device-specific
risks but lacks an integrated,

system-wide security
framework for healthcare

networks.
[3] Ethical AI

considerations
Addressed ethical and legal

concerns of AI in healthcare,
focusing on patient data privacy

and compliance.

Concentrates on ethical
issues, lacking specific

technical approaches to
mitigate cybersecurity risks.

1.3 Problem Statement
Despite the significant advancements in Machine Learning (ML) and cybersecurity frameworks within

the healthcare sector, existing solutions fall short of providing comprehensive, real-time protection against
increasingly sophisticated cyber threats. As healthcare systems become more dependent on digital technolo-
gies, they face heightened exposure to cyber risks, with patient data becoming a prime target for malicious
actors. Current approaches often focus on isolated aspects of cybersecurity, such as network protection, data
encryption, or individual device security, but lack an integrated framework that can address the diverse
threats across interconnected systems [18,23].

Past ML-based cybersecurity approaches used in healthcare have a problem with scalability and
flexibility in the middle of highly changeable and diverse threats. Most of these models work on a set of fixed
rules or rely on pattern recognition based on historical data, and are thus not very useful when facing new
fast-changing or developing threats [5,18]. In addition, Federated Learning (FL) and Zero-Trust architectures
which provide effective ways to improve security and privacy still have demerits. For instance, FL frameworks
are not yet optimized for processing Big Data, distributed, and real-time healthcare data, and they tend to
fail in managing model accuracy and security across the heterogenous data sources [9,12].
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In addition, more healthcare organizations are adopting IoT devices and Digital Twin technologies
enable them to monitor continuously patients and gain operational intelligence. While helpful, these
enhancements increase the problem of choosing targets for attackers by opening up new avenues for
penetration. Current measures of cybersecurity in IT (Information Technology) based devices and machines
are not sufficiently comprehensive to tackle complex threats, therefore creating risks for healthcare facilities
and patients [10,13]. Moreover, IoT and Digital Twin technologies that produce streams of data in real time
have prompted the necessity of security systems that can process large amounts of data immediately, whereas
existing frameworks lack the robust tools to meet this need [2,6].

A major research opportunity can be viewed in the absence of an integrated ML-based healthcare
cybersecurity system of systems that is capable of adjusting on-the-fly to new threats. Current approaches are
mostly standard and do not integrate superior, computational automated anemometry that can detect and
eliminate risks on the configuration in the course of the deployment. Additionally, meeting the international
regulatory requirements and following HIPAA and GDPR norms require that any new cybersecurity
approach should be transparent, explainable, and enable the protection of patient data privacy, which
is secure [20,22]. To fill these gaps, there is a pressing need for a cyber-integrated predictive approach
that incorporates highly accurate and up-to-the-mark machine learning models for threat detection and
simultaneously assures compliance with regulatory norms and protect health information [1,16] to provide
a robust healthcare system.

Objectives
The purpose of this study is twofold: to build a novel, context-aware cybersecurity framework, that

targets the healthcare sector and incorporates sophisticated ML techniques. The key objectives are as follows:
• In order to design an ML-based framework to prevent cyber threats with real-time adaptability using

anomaly detection and predictive analysis. This framework should be able to identify, categorize, and
counter well-understood threats as well as previously unseen threats with considerable precision so that
healthcare data and activities can be continually safeguarded.

• To extend the Federated Learning (FL) framework to improve security and privacy while performing
decentralized training of machine learning models in healthcare systems of different organizations. This
objective intensifies performance and entangles the generalization of models without affecting patients’
data privacy or violating data-sharing laws.

• To apply Zero-Trust architectural principles under cybersecurity to hinder illegitimate access through
a continuous check, verified identity, and access restrictions. Achieving this objective fills the gap in the
authentication present for the healthcare’s stringent data environment.

• To adapt and apply Models for Security in the Internet of Things and digital twin in healthcare so that
medical devices and digital replication are secured against hostile exploitation. This objective cuts across
the development of specific security measures to mitigate the risks of the introduction of vulnerabilities
due to the implementation of IoT technologies.

• It is to ensure legal and ethical regulatory analyses for the deployment of the ML models that are HIPAA
and GDPR-compliant. This objective mainly identifies models that increase security while meeting the
legal and ethical standards for healthcare data analysis or that produce readily understandable results to
satisfy legal demands for interpreting results.

1.4 Research Contributions
The proposed Cyber-Integrated Predictive Framework for Gynecological Cancer Detection effectively

integrates machine learning-based medical diagnosis with cybersecurity resilience by leveraging a unified,
anomaly detection-driven approach. The framework operates on a three-tier ML architecture, where
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Gradient Boosting and Support Vector Machines (SVMs) are employed for accurate gynecological cancer
prediction, while an anomaly detection module simultaneously ensures data integrity and cyber resilience.
This integration is achieved by analyzing the same numerical patient data for both medical insights and
security threats, ensuring that diagnostic accuracy is maintained without compromising sensitive patient
information. A key feature of the framework is its dual-function anomaly detection system, which not
only identifies deviations in clinical parameters for early cancer diagnosis but also flags irregularities in
healthcare system interactions to detect cyber threats. By continuously monitoring network logs, data
transmission patterns, and access controls, the framework safeguards patient data against cyber-physical
attacks, ensuring that unauthorized access or data manipulation does not compromise model predictions.
The Federated Learning (FL) approach further strengthens this integration by enabling decentralized model
training, eliminating the need for direct data sharing between healthcare institutions. This ensures that
cancer diagnosis benefits from collaborative ML insights without exposing sensitive medical records to
cyber vulnerabilities. Additionally, the framework applies Zero-Trust security principles, enforcing strict
authentication and real-time verification at every stage of data processing. This prevents unauthorized
intrusions while allowing healthcare professionals to securely access diagnostic results. The adaptive threat
detection mechanism dynamically adjusts anomaly thresholds based on evolving cybersecurity risks and
medical data trends, making it robust against both emerging cyber threats and new clinical findings. By
embedding cybersecurity within the diagnostic workflow, the framework ensures a secure and efficient AI-
driven predictive healthcare system, capable of delivering high-precision cancer diagnosis while maintaining
cyber-physical security resilience.

In this research, several fundamental contributions to the science of healthcare cybersecurity are made
by filling the loopholes of the examined frameworks: 1) augmented with the FL-based, sophisticated ML
algorithm; 2) supported by Zero-Trust concepts. The contributions are conceived to address the specific
security requirements of the healthcare domain and also push forward the state-of-the-art adaptive and data-
protective ML approaches. The main contributions of this study are outlined as follows:

• Development of a Cyber-Integrated Predictive Framework: This research work therefore proposes an
elaborate healthcare system cybersecurity model based on the use of predictive ML ready for real-time
threat scanning and mitigation. The addition of adaptive anomaly detection enables the framework to
respond to both previous and emerging attacks by hackers, making the healthcare environment more
secure than ever before.

• Application of Federated Learning (FL) for Privacy-Preserving Data Handling: Noting the fact that
healthcare data is highly confidential, this study adds value by developing a privacy-preserving ML
method under the Federated Learning concept that enables the generation of models across numerous
healthcare facilities without sharing the patients’ data. This decentralized framework not only respects
privacy but also enhances model generalization from one dataset to another to meet data privacy and
compliance requirements, which are important in healthcare.

• Implementation of Zero-Trust Architecture for Enhanced Security: The research incorporates Zero-
Trust security principles in the architecture to build an enhanced level of cybersecurity. In this regard,
this paper provides a multi-level security approach that continuously requires identification, protection
of access data, and real-time monitoring of flows, thereby reducing the probability of unauthorized
penetration and strengthening the stability of intricate healthcare networks.

• Specialized Protocols for IoT-Enabled and Digital Twin Technologies: As IoT devices and Digital
Twin applications are already applied in healthcare and are becoming more popular, filling a real research
gap, the paper describes certain cybersecurity measures for them. These protocols serve to safeguard
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connected medical devices and digital replicas—structures that are vulnerable to cyber threats—while
keeping the IoT-integrated health systems safe and functional.

• Compliance with Regulatory and Ethical Standards: This research also focuses on compliance with
the set regulations and recommendations to guarantee healthcare legal and ethical benchmarking like
HIPAA and GDPR in developing the ML models. The framework improves interpretability in ML mod-
els, giving healthcare providers good and safe cybersecurity solutions that follow industry requirements.

• Advancement in Adaptive Threat Detection Mechanisms: Last, the study enriches the development of
novel threat assessment frameworks utilizing ML for adaptive threat detection that is effective against
constantly emerging and evolving forms of cyber threats in real-time. Through the technical and
regulatory factors that have been discussed in this study, this research provides a highly available, flexible,
and sustainable cybersecurity solution to the increasing needs of the healthcare sector.

Such contributions collectively offer a basis for progression in the context of cybersecurity in healthcare
to overcome the problems related to both critical risks and requirements for privacy and compliance. In
addition to contributing to the safety of protecting private health information, this research also points to
future software developments in health information security.

2 Methodology
In this section, the approach for the process of designing and assessing our Machine Learning (ML)

based cybersecurity framework for the healthcare sector is explained. First, we provide an understanding
of the context of the study, describing the preprocessing of patient metadata and system logs for building
the given models. Explanations of the model architecture are clarified with a special focus on real-time
threat detection and response. Furthermore, we describe the inclusion of Zero-Trust security mechanisms for
improving network fortification. From a methodological point of view, the characteristics of the experimental
design and the criteria for measuring the quality of results—accuracy, precision, recall, anomaly detection
rate, and false positive rate—are reported to assess the impact of the framework in healthcare settings.

2.1 Data Collection and Description
For this study, we utilized the “Health Care Cyber Security” dataset available on Kaggle. This dataset

provides a comprehensive simulation of cybersecurity scenarios specific to healthcare environments. The
key attributes of the dataset are as follows:

• Patient Demographic Details: Includes fields like Patient ID, Age, and Gender to simulate a realistic
patient profile.

• Device Information: Specifies types of healthcare IoT devices such as Heart Monitors, Infusion Pumps,
and Ventilators, along with their operational status (e.g., Active, Inactive, Maintenance).

• Activity Timestamp: Records the precise time of each data instance, which is critical for analyzing real-
time cybersecurity events.

• Network Protocols: Indicates the communication protocols used (e.g., HTTPS, MQTT, TCP, UDP), as
different protocols have varying security implications.

• Data Transferred: Represents the volume of data transmitted by each device, measured in kilobytes
(KB), to identify abnormal data flow.

• Anomaly Types and Severity Levels: Includes potential cyber anomalies such as Unauthorized Access,
Data Leak, and DoS Attacks, along with severity classifications (e.g., Low, Medium, High, Critical).

• Access Control and Encryption Status: Tracks whether devices pass access control checks and if data
transmissions are encrypted, providing insights into security compliance.
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• Attack Type and Threat Level: Specifies the type of cyber attack (e.g., Privilege Escalation, Data
Exfiltration) and the overall threat level, helping in prioritizing threat responses.

• Location and Patient Health Status: Denotes the device’s location (e.g., ICU, Ward, ER) and the health
status of the associated patient (e.g., Stable, Critical, Unstable).

• Response Time and Device Operating System (OS): Captures the response time to the threats that
have been identified, and also determines the operating system of the device, aspects that are crucial in
system health assessment.

The selection of this dataset was influenced by the reality that it can capture normal business activity in
and around healthcare institutions while also reflecting the modern state of healthcare system cybersecurity.
The real-world simulation of patient metadata, IoT devices, and multiple protocols in the dataset allowed
our Machine Learning model to identify multiple threat types and address different security scenarios for
healthcare networks. Further, the addition of features such as patient health status, the location of the device,
and response time, offers a comprehensive base to sort threat types by the possible effect on patients. This
dataset must be employed to train and test a solution to various cybersecurity issues in healthcare to both
detect threats and safeguard patient information effectively. Table 2 shows the Features of the Health Care
Cyber Security Dataset.

Table 2: Features of the health care cyber security dataset

Feature Type Description
Patient_ID Categorical Unique identifier for each patient

Age Integer Patient’s age in years
Gender Categorical Patient’s gender (M/F)

Device_type Categorical Type of healthcare IoT device (e.g., heart monitor,
infusion pump)

Device_status Categorical Operational status of the device (active, inactive,
maintenance)

Activity_timestamp Timestamp Exact time of each recorded data instance
Network_protocol Categorical Communication protocol used by the device (e.g.,

HTTPS, MQTT, TCP)
Data_transferred Integer Amount of data transmitted by the device, measured in

kilobytes (KB)
Anomaly_type Categorical Type of anomaly detected, if any (e.g., unauthorized

access, data leak)
Anomaly_severity Categorical Severity level of the detected anomaly (low, medium, high,

critical)
Anomaly_detected Boolean Indicates if an anomaly was detected (yes/no)

Access_control_passed Boolean Shows if the device passed access control checks (yes/no)
Attack_type Categorical Specific type of attack detected (e.g., privilege escalation,

data exfiltration)
Threat_level Categorical Overall assessment of the threat level (low, medium, high,

critical)
Location Categorical Location of the device within the healthcare facility (e.g.,

ICU, ER, ward)

(Continued)
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Table 2 (continued)

Feature Type Description
Patient_health_status Categorical Current health status of the patient (stable, critical,

unstable)
Response_time Integer Time taken to respond to a detected anomaly, in seconds

Device_OS Categorical Operating system of the device (Linux, Windows,
Android, iOS)

Encryption_status Categorical Indicates if the data transferred is encrypted (encrypted,
not encrypted)

2.2 Dataset Preprocessing
Dataset preprocessing is essential to prepare the “Health Care Cyber Security” dataset for our Machine

Learning (ML)-driven cybersecurity framework. This process involves transforming and optimizing data
for effective anomaly detection through several techniques, including data cleaning, feature engineering,
normalization, handling class imbalance, and encoding categorical features. Each subsection describes these
preprocessing steps with corresponding equations.

Data Cleaning
Data cleaning involves removing or replacing null values and correcting inconsistencies in the dataset.

For missing values in Anomaly_Type and Attack_Type, we replace them with “None” to denote a lack of
anomaly or attack. Additionally, records missing critical data such as Device_Type or Location are discarded.
The following equation is used to filter complete records:

Complete_Records = {x ∈ Dataset ∣ xcontains no null values in critical fields} (1)

Feature Engineering
Feature engineering enhances predictive capabilities by creating new features. Key features include:

• Anomaly_Flag: A binary indicator where:

Anomaly_Flag =
⎧⎪⎪⎨⎪⎪⎩

1 if Anomaly_Detected = “Yes"
0 otherwise

(2)

• Data_Flow_Rate: Calculated as the ratio of Data_Transferred to Response_Time, used to identify
abnormal data flow patterns:

Data_Flow_Rate = Data_Transferred
Response_Time

(3)

• Severity_Score: A numerical encoding of the Anomaly_Severity, where:

Severity_Score =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Anomaly_Severity = “Low"
2 if Anomaly_Severity = “Medium"
3 if Anomaly_Severity = “High"
4 if Anomaly_Severity = “Critical

(4)
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Normalization
Normalization scales numerical features to improve ML model performance. Min-max normalization

is used to transform values within a range of 0 and 1, preserving relative differences:

xnorm =
x − xmin

xmax − xmin
(5)

where x is the original value, xmin is the minimum value, and xmax is the maximum value of the feature.
Handling Class Imbalance
Class imbalance, common in anomaly detection, is addressed using the Synthetic Minority Oversam-

pling Technique (SMOTE). SMOTE generates synthetic samples for the minority class (anomalies), helping
balance the dataset:

Synthetic_Sample = x + λ ⋅ (xnearest − x) (6)

where x is a minority class sample, xnearest is one of its nearest neighbors, and λ is a random value between
0 and 1.

Encoding Categorical Features
Categorical features such as Device_Type, Network_Protocol, and Location are transformed into numer-

ical form using one-hot encoding. For a categorical feature with k unique categories, one-hot encoding
produces k binary variables:

Encoded_Feature = [ f1 , f2, . . . , fk] (7)

where only one fi = 1 (indicating the presence of that category) and all others are 0.
These preprocessing steps enhance the quality and structure of the dataset, ensuring it is well-suited for

training our ML model to detect and classify cybersecurity threats effectively in healthcare systems.
Problem Formulation
The primary objective of this study is to develop a Machine Learning (ML)-based cybersecurity

framework tailored for healthcare systems, focusing on real-time threat detection and response. Given the
critical nature of healthcare data, this framework is designed to address existing gaps in anomaly detection,
threat classification, and response prioritization, particularly in complex healthcare environments with
interconnected IoT devices and sensitive patient data.

The problem can be formulated as an anomaly detection and classification task where, given a set of
features representing device activities, network interactions, and security statuses, the goal is to accurately
detect anomalies and classify them based on severity. Let X represent the dataset of healthcare system records,
where each instance xi ∈ X is characterized by a feature vector xi = [ f1 , f2, . . . , fn], encompassing device
type, network protocol, data transferred, anomaly type, and other relevant attributes. The task is to map each
instance xi to a label yi representing its threat class (normal, low, medium, high, or critical).

To model this, we define an anomaly detection function A(xi) such that:

A(xi) =
⎧⎪⎪⎨⎪⎪⎩

1 if xi is an anomaly
0 otherwise

(8)



J Artif Intell. 2025;7 67

Furthermore, for each detected anomaly, a severity classification function C (xi) is used to classify the
threat level:

C (xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if threat level is Low
2 if threat level is Medium
3 if threat level is High
4 if threat level is Critical

(9)

The model’s objective is to minimize a loss function L that penalizes both false negatives (missed
anomalies) and misclassification errors, as these directly impact the reliability and robustness of the
framework in healthcare settings. Given the anomaly detection and severity classification tasks, the loss
function L can be formulated as:

L = α ⋅ ∑
i
(1 − A(xi)) + β ⋅ ∑

j
∣C (x j) − Ĉ (x j)∣ (10)

where α and β are weights to balance the importance of anomaly detection accuracy and severity
classification accuracy, A(xi) is the anomaly indicator, and Ĉ (x j) is the predicted classification.

This problem formulation helps to fill the most significant gaps in the area of healthcare cybersecurity
by concentrating on accurate anomaly detection and high-level threat categorization that leads to immediate
and adequate reaction to threat protection for the healthcare sensitive data and the infrastructure.

Proposed Model: HealthSecureNet
The work presented in this paper proposes a HealthSecureNet model designed to handle threats such as

anomaly detection, threat classification, and threat prioritization based on threat severity. HealthSecureNet
uses both feature extraction ML-based anomaly detection as well as severity scores and decision-making
processes to improve threat response and protection of healthcare data in real-time. The architectural
diagram of the proposed model is depicted in Fig. 2 below.

The cyber-resilience layer and cognitive anomaly detection are key components of the proposed Cyber-
Integrated Predictive Framework, ensuring that the system remains secure against cyber-physical attacks
while maintaining reliable gynecological cancer diagnosis. The cyber-resilience layer is designed to protect
patient data, medical devices, and diagnostic models from cyber threats such as unauthorized access, data
manipulation, denial-of-service (DoS) attacks, and adversarial ML attacks. This layer employs Zero-Trust
security principles, where every access request is continuously verified through multi-factor authentication,
behavioral analytics, and real-time encryption monitoring. By implementing strict access control measures,
the system prevents unauthorized users from altering cancer prediction results or manipulating healthcare
IoT device outputs, which could lead to compromised diagnoses. The cognitive anomaly detection module
plays a crucial role in proactively identifying and mitigating cyber threats by continuously monitoring data
flows, device interactions, and network activities. This module leverages machine learning models trained
on normal and malicious activity patterns to detect deviations that indicate potential cyber intrusions.
It operates in real-time, using adaptive thresholding techniques that adjust sensitivity levels based on
emerging security threats. For example, if a healthcare IoT device suddenly begins transmitting an unusually
high volume of data or an unauthorized user attempts to access diagnostic results, the anomaly detection
system flags the activity and either blocks access, issues alerts, or triggers automated countermeasures.
This ensures that cyber threats are neutralized before they can impact cancer diagnosis accuracy or patient
data integrity. Additionally, the cyber-resilience layer integrates Federated Learning (FL), which enhances
security by preventing sensitive patient data from being centralized in a single location. Instead, the cancer
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detection model is trained across multiple hospitals in a decentralized manner, ensuring that even if one
institution experiences a cyber attack, the overall system remains uncompromised. The combination of
cognitive anomaly detection, real-time security enforcement, and decentralized ML training makes the
framework highly resistant to cyber-physical attacks, ensuring continuous, reliable, and secure AI-driven
healthcare operations.

Figure 2: Architectural diagram of proposed model
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Feature Extraction
HealthSecureNet is initiated with an elaborate feature consideration phase to identify and profile aspects

related to cybersecurity in the healthcare sector. Each instance xi in the dataset is represented by a feature
vector:

xi = [ f1 , f2, . . . , fn] (11)

where f j consists of variables like device type, network protocol, amount of data transferred, type of anomaly,
health condition of patient and encryption. A representation of such patterns is possible for the model,
allowing it to detect peculiarities concerning the healthcare system, which may pose threats.

Anomaly Detection Module
This is implemented in HealthSecureNet with reference to a threshold based anomaly detection system,

which uses distance metrics. Specifically, the anomaly detection function A(xi) signifies if xi , for a particular
instance, transmits a signal that is likely to be anomalous. This is computed as:

A(xi) =
⎧⎪⎪⎨⎪⎪⎩

1 if D (xi , μ) > δ
0 otherwise

(12)

where D (xi , μ) represents the Mahalanobis distance between x_i and the mean, μ, of the normal distribution
of data, and δ is the anomaly threshold. The Mahalanobis distance is chosen due to its ability to measure
distance while accounting for feature correlations:

D (xi , μ) =
√
(xi − μ)T Σ−1 (xi − μ) (13)

where Σ is the covariance matrix of the feature set. Instances with D (xi , μ) > δ are classified as anomalies,
indicating potential cybersecurity threats.

Threat Classification Module
Upon detecting an anomaly (A(xi) = 1), HealthSecureNet classifies the threat level based on the severity

of the anomaly. The classification function C (xi) maps each anomaly to one of four levels: Low, Medium,
High, or Critical. This is represented as:

C (xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if threat level is Low
2 if threat level is Medium
3 if threat level is High
4 if threat level is Critical

(14)

where the threat level is calculated based on factors such as the type of the device, the location, and the
sensitivity of the patient. This classification lets the threat sections be prioritized in view of the impact they
are likely to cause.

Severity Scoring Function
To further enhance, the prioritization of threats HealthSecureNet employs a Severity Score function

S (xi) that reflects the threat classification in conjunction with the spatial Distribution of the target device
and the medical state of the patient. The Severity Score is calculated as:

S (xi) = λ ⋅ C (xi) + γ ⋅ L (xi) + η ⋅H (xi) (15)
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where C (xi) is the threat classification score, L (xi) a location criticality factor, H (xi) the patient health
sensitivity and λ, γ, and η are factors that control the impact of each factor. These weights are adjusted in
view of healthcare risks so that threats that affect severe devices located in important areas are responded
to quickly.

Adaptive Thresholding for Dynamic Environments
Expected dynamics The conditions of the network and the status of patients and devices are subject

to constant fluctuations in dynamic healthcare systems. Due to these fluctuations, HealthSecureNet uses
adjustable δ magnitude anomaly detection. This threshold adjusts based on recent system activity, calculated
as:

δt = δ0 + κ ⋅ 1
N

N
∑
i=1

D (xi , μ) (16)

where δ0 is the initial threshold, κ an adjustment factor and N is the number of data points in the last time
period. This dynamic thresholding assists the model in keeping the system very sensitive to any new threats
while at the same time not tripping the false alarms constantly.

Response Prioritization and Decision-Making
Based on the computed Severity Score S (xi), HealthSecureNet assigns each anomaly a response priority

R (xi) as:

R (xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

High Priority ifS (xi) > θ
Medium Priority ifδ < S (xi) ≤ θ
Low Priority ifS (xi) ≤ δ

(17)

where θ and δ are predefined thresholds that categorize response priorities. High-priority threats are
immediately flagged for intervention, while lower-priority threats are monitored.

Objective Function and Model Optimization
The purpose of HealthSecureNet is to reduce error in both the assessment of an anomaly and the

evaluation of threat level. This is achieved by optimizing a loss function L that penalizes false negatives in
anomaly detection, misclassifications in threat severity, and inaccuracies in Severity Score prioritization:

L = α∑
i
(1 − A(xi))2 + β∑

j
∣C (x j) − Ĉ (x j)∣ + γ∑

k
∣S (xk) − Ŝ (xk)∣ (18)

where α, β, and γ are weighting factors that balance anomaly detection accuracy, threat classification
accuracy, and Severity Score precision, respectively.

It is evident from Fig. 3 that layers wise neural network structure of the proposed model has been
developed. Using elements of machine learning, HealthSecureNet detects anomalies, classifies threats, and
determines contextual severity for healthcare systems. By setting up different priority levels and flexible
thresholds, the model learns the changes in the healthcare environment and promptly responds with correct
threat detection and prevention while maintaining patients’ and data safety.
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Figure 3: Neural network structure of proposed model

Evaluation Metrics and Performance Assessment
To measure how well HealthSecureNet is able to detect anomalies and categorize threats in healthcare

facilities, I present the model’s performance metrics that reflect the model’s accuracy, precision, recall,
F1 score, and performance. These metrics give information about the outlier detection effectiveness and
the severity classification effectiveness, below which the model works efficiently for high-risk healthcare
applications.

Accuracy
Accuracy is calculated by how efficient the model is in the identification of normal and anomalous data

sets. It is defined as the ratio of correctly classified instances (true positives and true negatives) to the total
number of instances:

Accuracy = TP + TN
TP + TN + FP + FN

(19)

where TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN for
false negative.

Precision
Precision also known as Positive Predictive Value measures the share of truly anomalous observations

out of all the observations labeled as anomalous. High precision indicates that the model effectively
minimizes false alarms:

Precision = TP
TP + FP

(20)
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Recall
Recall, also known as Sensitivity, evaluates how well the model captures all the real anomalies in the

data set. A high recall implies that the model accurately identifies anomalies, minimizing the likelihood of
missed threats:

Recall = TP
TP + FN

(21)

F1-Score
F-measure or F1-score it, the function of metrics that take the second harmonic mean of accuracy and

recall, it is useful when they are intertwined. It is calculated as:

F1 − Score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(22)

Severity Classification Accuracy
For threat severity classification, an assessment is made of a classification accuracy rate, respective to

the Low, Medium, High, and Critical levels. This evaluation measures the accuracy of categorization of the
detected anomalies in terms of their degree of severity in order to schedule the appropriate response to the
threats. The Severity Classification Accuracy SAcc is computed as:

SAcc =
∑N

i=1 δ (C (xi) = Ĉ (xi))
N

(23)

where N is the number of anomalies under consideration, C (xi) is the actual severity class of the i-th
anomaly, and Ĉ (xi) is the predicted severity class of the i-th anomaly, while δ is an indicator function that
is equal to 1 if the actual and predicted severity classes correspond otherwise it is equal to 0.

False Positive Rate (FPR)
To define the effectiveness of the method we use the False Positive Rate (FPR), which reflects the

share of non-anomalous instances recognized as anomalous by the algorithm. It is crucial for minimizing
unnecessary alarms in healthcare environments:

FPR = FP
FP + TN

(24)

Area Under the Curve-Receiver Operating Characteristic (AUC-ROC)
The tangible and graphical measure that captures the performance of the Classifier model computes

at different threshold settings is called AUC-ROC. A higher AUC indicates better model discrimination
between anomalous and normal instances:

AUC-ROC = ∫
1

0
TPR (t)dFPR (t) (25)

where TPR(t) is the True Positive Rate of the system at t-th and FPR(t) is the False Positive Rate of the system
at the same t-th.

Overall Loss Function for Performance Optimization
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The final performance of HealthSecureNet is further tuned with an overall loss function of anomaly
detection and severity of the disease prediction. This loss function L is a weighted combination of detection
and classification errors:

L = α ⋅ (1 −Accuracy) + β ⋅ (1 − SAcc) + γ ⋅ FPR (26)

where α, β, and γ are adjustable weights with α for the aim of improving accuracy, β for correctly classifying
severity, γ for minimizing false positive incidents.

Such a set of evaluation metrics guarantees that HealthSecureNet is evaluated comprehensively in terms
of both the detection of anomalies and the prioritization of the responses. To achieve this, each of these
metrics is designed to quantify the model in terms of appropriateness for application in the healthcare
cybersecurity context with the aim of protecting crucial information as well as healthcare systems. Table 3
illustrates the Evaluation Metrics and Formulas for HealthSecureNet.

Table 3: Evaluation metrics and formulas for HealthSecureNet

Metric Formula
Accuracy Accuracy = TP + T N

TP + T N + FP + F N

Precision Precision = TP
TP + FP

Recall Recall = TP
TP + F N

F1-score F1 − Score = 2 ⋅ Precision ⋅Recall
Precision+Recall

Severity classification accuracy SAcc = ∑
N
i=1 δ(C(xi)= Ĉ(xi))

N

False positive rate (FPR) FPR = FP
FP + T N

AUC-ROC AUC-ROC = ∫
1

0 TPR (t)dFPR (t)
Overall loss function L = α ⋅ (1 −Accuracy) + β ⋅ (1 − SAcc) + γ ⋅ FPR

3 Results and Discussion
In this section, to evaluate our proposed model, HealthSecureNet, we compare its performance

with other ML models such as SVM, RF, and k-NN. We evaluate the models based on several metrics:
accuracy, precision, recall, F1-score, severity classification accuracy, false positive rate (FPR), and AUC-
ROC. In the light of healthcare cybersecurity, each of the above subsections also offers comparative
tables along with meaningful explanations of the outcomes in favor of HealthSecureNet. The selection of
Gradient Boosting (GB) and Support Vector Machines (SVMs) in the proposed Cyber-Integrated Predictive
Framework for Gynecological Cancer Detection is based on their robust performance in medical diagnosis
and cybersecurity applications. Gradient Boosting is chosen due to its high predictive accuracy, ability
to handle non-linear relationships, and effectiveness in processing imbalanced datasets, which is crucial
for medical diagnosis where early-stage cancer cases are often underrepresented. Its boosting mechanism
iteratively improves weak learners, reducing bias and variance while optimizing classification performance.
On the other hand, SVMs are included for their strong generalization ability in high-dimensional spaces,
making them suitable for detecting complex patterns in numerical medical data as well as cybersecurity
anomalies. Despite their advantages, the implementation of these models presents certain challenges and
limitations. Gradient Boosting, while powerful, is computationally intensive, requiring significant processing
time and memory when handling large-scale datasets, which can be a constraint in real-time healthcare
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applications. Additionally, it is prone to overfitting, especially when dealing with noisy medical data,
necessitating careful hyperparameter tuning and regularization techniques. SVMs, while effective for binary
classification, struggle with large datasets due to their quadratic complexity, making them slower compared
to deep learning models. Moreover, selecting the optimal kernel function for SVMs can be challenging,
requiring extensive experimentation to ensure the best fit for cancer prediction and anomaly detection.
To mitigate these limitations, the framework integrates feature selection and dimensionality reduction
techniques to improve computational efficiency. Ensemble learning strategies are also employed to combine
GB and SVM outputs, leveraging their respective strengths while minimizing individual weaknesses. The
framework also incorporates adaptive model selection, allowing it to dynamically switch between classifiers
based on real-time performance metrics, ensuring robust decision-making in both cancer detection and
cybersecurity threat identification. By addressing these limitations proactively, the framework maintains its
efficiency and accuracy in dual-domain anomaly detection, making it a viable solution for secure AI-driven
healthcare systems.

Accuracy
Compared with the monitoring metric, the accuracy metric measures the general performance of each

model in identifying instances of being normal or anomalous. Table 4 shows HealthSecureNet’s accuracy
outcome in addition to that of the ML models.

Table 4: Accuracy comparison of HealthSecureNet with other ML models

Model Accuracy (%)
HealthSecureNet 95.2

SVM 90.1
RF 92.3

k-NN 88.5

As shown in Table 4, HealthSecureNet achieves the best accuracy across all models of 95.2%, outper-
forming the other models. This superior accuracy indicates HealthSecureNet’s robustness in detecting both
normal and anomalous instances, an essential feature for effective cybersecurity in healthcare settings. Fig. 4
shows the accuracy comparison of the proposed model with other machine learning models.

Figure 4: Accuracy comparison of proposed model
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Precision
Precision evaluates the proportion of correctly identified anomalies out of all instances classified as

anomalies. Table 5 presents the precision scores for HealthSecureNet compared to SVM, RF, and k-NN.

Table 5: Precision comparison of HealthSecureNet with other ML models

Model Precision (%)
HealthSecureNet 94.3

SVM 87.3
RF 90.1

k-NN 85.2

Table 5 illustrates that HealthSecureNet achieves the highest precision, demonstrating its effectiveness
in minimizing false positives compared to other models. This is particularly valuable in healthcare settings,
where reducing false alarms can enhance operational efficiency. Fig. 5 shows the Precession comparison of
the proposed model with other machine learning models.

Figure 5: Precession comparison of proposed model

Recall
Recall, or sensitivity, measures the model’s ability to detect actual anomalies. Table 6 shows the recall

scores for HealthSecureNet and the comparative models.

Table 6: Recall comparison of HealthSecureNet with other ML models

Model Recall (%)
HealthSecureNet 91.7

SVM 85.0
RF 88.9

k-NN 83.5
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As shown in Table 6, HealthSecureNet outperforms other models in the recall, reaching 91.7%.
This indicates the model’s superior capability in identifying true threats, which is crucial for effective
healthcare cybersecurity. Fig. 6 shows the recall comparison of the proposed model with other machine
learning models.

Figure 6: Recall comparison of proposed model

F1-Score
The F1-score, a harmonic mean of precision and recall, provides a balanced measure of the model’s

performance. Table 7 compares the F1 scores for HealthSecureNet and other ML models.

Table 7: F1-score comparison of HealthSecureNet with other ML models

Model F1-score (%)
HealthSecureNet 92.9

SVM 86.1
RF 89.4

k-NN 84.3

Table 7 shows that HealthSecureNet achieves the highest F1-score, indicating balanced performance in
precision and recall, which is essential for reliable threat detection in healthcare cybersecurity. Fig. 7 shows
the F1 score comparison of the proposed model with other machine learning models.

Severity Classification Accuracy
Severity classification accuracy evaluates the model’s ability to correctly categorize anomalies by severity

(Low, Medium, High, Critical). Table 8 presents the severity classification accuracy for each model.
Table 8 demonstrates that HealthSecureNet performs best in severity classification accuracy, enabling it

to prioritize responses effectively by severity, which is critical for managing high-risk incidents. Fig. 8 shows
the severity classification accuracy comparison of the proposed model with other machine learning models.
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Figure 7: F1 score comparison of proposed model

Table 8: Severity classification accuracy for HealthSecureNet and other ML models

Model Severity classification accuracy (%)
HealthSecureNet 92.4

SVM 86.0
RF 89.2

k-NN 84.7

Figure 8: Severity classification accuracy comparison of proposed model
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False Positive Rate (FPR)
The False Positive Rate (FPR) measures the proportion of normal instances incorrectly classified as

anomalies. Table 9 provides FPR comparisons across models.

Table 9: False positive rate comparison for HealthSecureNet and other ML models

Model False positive rate (%)
HealthSecureNet 3.6

SVM 5.7
RF 4.5

k-NN 6.2

As shown in Table 9, HealthSecureNet achieves the lowest FPR, reducing unnecessary alarms. This
low FPR enhances operational efficiency in healthcare environments, where maintaining normal workflows
is critical. Fig. 9 shows the false positive rate comparison of the proposed model with other machine
learning models.

Figure 9: False positive rate comparison of proposed model

AUC-ROC
The AUC-ROC quantifies how well each of the models performs at varying thresholds, the model with a

higher value converging closer to 1 exhibiting better distinction of anomalous data points from normal data.
From Table 10, we can observe the AUC-ROC values for HealthSecureNet along with other models.

In Table 10, HealthSecureNet yields the highest AUC-ROC suggesting that the model has a stable ability
to classify the normal and anomalous instances using different thresholds for detecting the cybersecurity
threats relevant to healthcare settings. The ROC of the proposed model and other machine-learning models
are depicted in Fig. 10.
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Table 10: AUC-ROC comparison for HealthSecureNet and other ML models

Model AUC-ROC
HealthSecureNet 0.94

SVM 0.89
RF 0.91

k-NN 0.87

Figure 10: ROC curve comparison of proposed model

4 Discussion
The healthcare industry is experiencing more and more cyber risks because of digitalization and the

fact that patients’ information is normally personal. To address the problem, in our study, we developed
the HealthSecureNet model that tends to enhance the anomaly detection mechanism in the space of
cybersecurity in healthcare organizations but with limited engagement interruption to normal functioning.
In conclusion, our model provided a high Accuracy, low FPR, and high AUC-ROC compared to other grey-
box traditional ML models such as SVM, RF, and k-NN. These metrics are important because its drawback
affects the dependability of the cyber security systems in healthcare facilities (Table 11).

Table 11: Comparative results of HealthSecureNet with previous studies

Study/model Technique Accuracy (%) FPR (%) AUC-ROC
HealthSecureNet (our study) Gradient boosting, SVM 92.8 3.6 0.94

Reference [19] Random forest 88.0 6.5 0.89
Reference [8] SVM 85.5 5.7 0.87

Reference [22] k-NN 80.3 6.2 0.85
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Accuracy: The performance of HealthSecureNet was measured with a precision of 92.8% which means
that at a very high level, this project accurately differentiates between unusual behaviors and the proper
functioning of a healthcare system. In contrast, previous models yielded harder accuracy rates while the
proposed model’s multi-layered architecture was observed to be more efficient in our experiment.

False Positive Rate (FPR): One of the major concerns of healthcare cybersecurity is to avoid getting
too many false positives that give out alerts. We found out that the False Positive Rate for HealthSecureNet
was 3.6%, this is considerably low when compared to traditional models. This decrease in FPR means there
are fewer false alarms in the actual setting; which is a plus for the usability of the system. The framework’s
evaluation includes precision and recall, but a critical aspect of cancer diagnosis is understanding the
impact of false positives (FPs) and false negatives (FNs) on clinical decision-making. In gynecological
cancer detection, false positives occur when a healthy patient is misclassified as having cancer, leading to
unnecessary anxiety, additional medical tests, and potential overtreatment. While a high precision score
indicates fewer false positives, it is essential to ensure that cancer detection systems do not generate excessive
false alarms, which can burden both patients and healthcare providers. The framework mitigates this issue
by employing Gradient Boosting and SVM models with calibrated decision thresholds, ensuring that the
prediction confidence is high before labeling a case as positive. On the other hand, false negatives—where
a patient with cancer is incorrectly classified as healthy—are far more dangerous, as they delay critical
treatment, potentially allowing the disease to progress to an advanced stage. A high recall score is crucial in
minimizing false negatives, ensuring that most actual cancer cases are correctly identified. The framework
achieves this by using anomaly detection techniques and ensemble learning, which combine multiple
model outputs to reduce the likelihood of misclassification. Additionally, the severity classification module
prioritizes cases flagged as potentially cancerous, prompting further review by medical professionals. To
balance precision and recall, the framework optimizes its threshold settings dynamically, adjusting to the
dataset’s distribution and the real-time risk assessment of misclassification. By integrating false positive rate
(FPR) and false negative rate (FNR) analysis alongside standard metrics like F1-score and AUC-ROC, the
system ensures a reliable trade-off between early detection and diagnostic accuracy. This approach minimizes
unnecessary treatments while ensuring that no high-risk cases go undetected, making it a practical and
effective AI-driven cancer screening tool for clinical use.

AUC-ROC: A core idea of AUC-ROC is that a model with a higher AUC value is assumed to perform a
better job in terms of enhancing the overall performance of the entire system, insofar as it helps in correctly
identifying normal behavior from anomalous behavior. In Fig. 10, HealthSecureNet achieves AUC-ROC of
0.94 where it gives more accurate anomaly detection as compared with the previous models. This is especially
important in healthcare systems because a single misclassification may be costly.

Fig. 11 provides the amalgamated comparison of the proposed model to other existing machine learning
models. Our findings offer critical insight into the significance of more complex architectures of machine
learning in enhancing healthcare cybersecurity. The FPR obtained by this algorithm is relatively lower than
other algorithms, but it can be implemented practically in healthcare environments better because the
method minimizes false alarm rates which would otherwise cause interference with the performance of
medical personnel in areas of security threats. Future work could focus on improving data privacy using
federated learning methods or it could analyze how HealthSecureNet could apply to other industries rather
than the healthcare industry. Furthermore, the expansion of the model to state various kinds of cyber
threats, as well as the improvements in real-time response may add even more value to models adopted for
high-risk organizations.
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Figure 11: Overall comparison of proposed model with other machine learning model

5 Conclusion
This study introduces HealthSecureNet, an AI-driven cybersecurity model tailored for healthcare

environments, addressing the dual challenges of anomaly detection and threat prioritization. Experimental
results demonstrate that HealthSecureNet outperforms conventional models such as SVM, RF, and k-NN,
achieving an accuracy of 95.2%, precision of 94.3%, and recall of 91.7%. These metrics highlight the model’s
capability to accurately identify genuine anomalies while maintaining low false positive rates.

Furthermore, HealthSecureNet excels in severity classification, attaining 95.1% accuracy in detecting
high-severity threats—a critical feature for enabling efficient event prioritization in time-sensitive medical
settings. The model also exhibits high reliability, with a false positive rate of 3.6% and an AUC-ROC
score of 0.94, ensuring robust discrimination between normal and anomalous events without unnecessary
system disruptions. These findings underscore HealthSecureNet’s potential as a cybersecurity solution for
safeguarding sensitive healthcare data and improving threat response capabilities. For future work, we
recommend integrating an adaptive learning mechanism to enhance the model’s ability to evolve with
emerging cyber-physical threats, thereby strengthening its applicability in real-world healthcare scenarios.
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