
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/jai.2024.050563

ARTICLE

Deep Learning: A Theoretical Framework with Applications
in Cyberattack Detection

Kaveh Heidary*

Department of Electrical Engineering and Computer Science, Alabama A&M University, Huntsville, AL 35803, USA

*Corresponding Author: Kaveh Heidary. Email: kaveh.heidary@aamu.edu

Received: 10 February 2024 Accepted: 28 May 2024 Published: 18 July 2024

ABSTRACT

This paper provides a detailed mathematical model governing the operation of feedforward neural networks
(FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems
must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding
of stored information, and data integrity while in transit across networks. The paper reports on the application of
neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including
network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber
threats are R2L, U2L, probe, and distributed denial of service (DDoS), which disrupt normal network operations
and interrupt vital services. Robust detection of the early stage of cyberattack phenomena and the consistent
blockade of attack traffic including DDoS network packets comprise preventive measures that constitute effective
means for cyber defense. The proposed system is an NN that utilizes a set of thirty-eight packet features for the
real-time binary classification of network traffic. The NN system is trained with a dataset containing the packet
attributes of a mix of normal and attack traffic. In this study, the KDD99 dataset, which was prepared by the MIT
Lincoln Lab for the 1998 DARPA Intrusion Detection Evaluation Program, was used to train the NN and test its
performance. It has been shown that an NN comprised of one or two hidden layers, with each layer containing a
few neural nodes, can be trained to detect attack packets with concurrently high precision and recall.

KEYWORDS
Neural networks; backpropagation; classifier training; cybersecurity; packet classification; performance metrics

1 Introduction

Communication and control systems, including computers, sensor networks, and data centers,
constitute the fundamental undergirding of modern society. The increasingly integrated global net-
works of sensors, actuators, computers, data centers, communication networks, software applications,
and control systems, which are collectively labeled as information technology (IT) systems, handle
the acquisition, production, storage, processing, and flow of sensitive and critical data related to
personal, commercial, industrial, and government entities [1–3]. Among the myriad applications of
IT systems are the control and monitoring of physical and industrial processes, including the electric
power grid and virtually all other essential services. The industrial supervisory control and data

https://www.techscience.com/journal/jai
https://www.techscience.com/
http://dx.doi.org/10.32604/jai.2024.050563
https://www.techscience.com/doi/10.32604/jai.2024.050563
mailto:kaveh.heidary@aamu.edu


154 JAI, 2024, vol.6

acquisition (SCADA) systems govern the operation of public and industrial systems that directly affect
people’s daily lives and the normal functioning of contemporary information-centric society [4]. The
pervasive and growing interconnectivity of ubiquitous devices and systems, including sensors, data
acquisition, storage, processing and communication modules, and actuators, amplify the complexity
of IT systems [5–8]. Industrial control systems, including SCADA and other complex real-time sensing,
communication, actuation, and control of web and application servers, databases, interfaces, switches,
and routers, are distributed over wide geographic areas, and operate under incongruent standards,
administrative regulations, and disparate jurisdictions [9].

The consistent availability, confidentiality, and integrity of the information that is generated,
stored, accessed, processed, and transmitted through IT systems are fundamental and functional
perquisites of modern society. As the world becomes increasingly interconnected and the industrial
Internet of Things (IoT) proliferates globally, the production volume and flow speed of mission-
critical data will accelerate. To deliver the expected value and services to their customers, clients,
and constituents, commercial organizations, civil society, and governments will generate, store, access,
transmit, update, and process vast quantities of data.

Bad actors, including criminal organizations and hostile governments, are constantly probing
networks and exploiting the vulnerabilities of IT systems as a means to mount cyberattacks for finan-
cial gains, theft of intellectual property, espionage, and obtaining tactical and strategic advantages.
Cyberattacks may involve theft, destruction, alteration, and encryption of data and processes, or
disruption of normal services by unauthorized entities [10]. The increasing frequency, sophistication,
and severity of cyberattacks demand the development of robust, agile, rapidly deployable, scalable,
economical, low-power, and adaptive network intrusion detection systems.

A straightforward and effective cyber defense mechanism may involve arming the standard net-
work packet capture and packet sniffer systems, which are routinely utilized for system administration
and traffic analysis functions, with packet classifiers for the detection of malicious activity [11–13].
A binary packet classifier that is capable of real-time assignment of labels, namely benign (normal)
or attack, to each packet constitutes an economical yet powerful first line of defense against various
cyberattack modalities including DDoS and malware.

Packet classification is a standard process deployed on various network devices, including high-
speed Internet routers and firewalls. Owing to the increasing diversity of network services, including
data, voice, television, web hosting, live streaming, gaming, etc., packet classification to form proper
packet flows, provide firewalls, and quality of service have become essential components of Internet
routers. They are routinely used for packet filtering, traffic accounting, and other network services,
including traffic shaping and service-aware routing, where packets are classified into differentiated
traffic flows for providing application-specific quality of service [14,15]. The NN-based attack detector
described in this paper is an additional packet classification layer that can be added to the existing
routers’ packet classification algorithms. The fundamental difference between the NN classifier
described in this paper and the rule-base packet classifiers in [14,15] is their underlying approach to
making classification decisions. The rule-based classifiers rely mainly on the predefined procedures and
instructions which are crafted by domain experts to make classification decisions. The NN classifiers,
on the other hand, automatically discover the intricate patterns and hidden features of the data without
explicit external guidelines provided by the user. The NN classifier described in this paper is capable
of learning complex patterns and nonlinear relationships from data which makes it more effective and
flexible. The proposed NN detector has low storage requirements and can be readily deployed in static
random-access memory (SRAM), which provides the detector with flexibility and scalability.



JAI, 2024, vol.6 155

2 Background

The development and implementation of cyberattack detection tools and mitigation strategies
have been active areas of research for several decades [9,11] and [14–17]. Classical cybersecurity
solutions include the utilization of access control methods such as identity and access management
(IAM) tools; multifactor authentication techniques such as passwords, token-based authentication,
and biometrics; data encryption; antimalware detection; endpoint protection; and firewalls [17–19].

Motivated by the biological brain’s remarkable ability to handle complex problems and informa-
tion processing, researchers have dedicated several decades to developing artificial neural networks
(ANNs) inspired by the structure and function of the brain [20–22]. Fundamentally, an NN is
a massively parallel computational engine that is comprised of interconnected elementary analog
processing nodes called neurons. The function of each node (neuron) is simply to compute the weighted
sum of its various inputs and pass on the result through a non-linear activation function such as
sigmoid [20–22]. The number of neural layers and nodes, the manner of interconnections among
the nodes, and the weight coefficients assigned to the various connections in the network are the
parameters that determine the network functionality. Although the initial inspirations responsible for
the development of NN were primarily biological systems, they have proven their value for complex
non-linear mapping as well as their practical applications to various problems in pattern recognition,
signal processing, natural language processing, time-series prediction, and forecasting [19–23] and [24–
26]. Because of their VLSI implementation, NN solutions are economical and can be deployed at
scale [27]. Over the years, efficient learning algorithms have been devised to determine the NN weight
coefficients [28].

In Section 3, the general framework of the feedforward multilayered perceptron is described.
The computational complexity of the feedforward network is presented in Section 4. The process
for computing the weights and biases of the feedforward multilayered network is explained in
Section 5, where Sections 5.1 and 5.2 present, respectively, the input-output mapping function and
the backpropagation algorithm. The training process used for the NN packet classifier is presented in
Section 6. Section 7 describes the dataset used for training and testing the performance of the packet
classifier. Test results are presented in Section 8. Conclusions and future research are presented in
Section 9.

3 Feedforward Multilayered Perceptron Architecture

The binary classifier utilized here comprises a multi-layered perceptron (MLP), which is also called
a feedforward neural network (FFNN), as shown in Fig. 1. In this section, we will briefly discuss the
NN architecture and dynamics. The process of NN learning is achieved through gradient descent and
backpropagation learning algorithms. The data processing progression from the network input to the
output and the learning algorithm are succinctly reviewed in Section 4. The derivations and detailed
formulations of the backpropagation algorithm are given in Section 5.

A typical FFNN is comprised of an input layer, an output layer, and one or more hidden layers.
The input and output layers are the visible layers of the network, and all the other layers are called
hidden layers. The reason for employing the term “hidden” for the layers sandwiched between the
input and the output layers is that in an NN classifier, during the training phase, for each training
vector at the input, the desired responses of the output layer neurons are known, whereas the desired
outputs of the neurons in the hidden layers are not known a priori. Each layer is comprised of several
neurons, which are also called nodes. In a fully connected network, each of the nodes (neurons) in a
typical layer is connected to all the nodes in the next layer.



156 JAI, 2024, vol.6

Figure 1: Fully connected feedforward neural network

The data processing steps progress from the input layer on the left to the output layer on the right,
as shown in Fig. 1. The number of nodes in the input layer is dictated by the dimensionality of the input
feature vectors, which the network is designed to process. The number of nodes in the output layer is
determined by the functionality of the network. For example, a network that is intended for binary
classification of input data has only one node at the output layer. Likewise, the number of nodes in the
output layer of a NN classifier with K distinct classes is K . The number of hidden layers in the NN
and the number of nodes in each of the hidden layers are application-dependent and are determined
by standard optimization techniques or trial and error.

Fig. 1 shows an FFNN, where the nodes in the left column and the rightmost node comprise the
visible layers of the network and denote, respectively, the input layer and the output layer. All the other
layers between the input layer and the output layer are hidden layers. Two operations are performed
at each node: (i) the weighted sum of the outputs of all the nodes in the preceding layer is computed at
the node input and a bias is added to form the input signal; (ii) the node applies a nonlinear activation
function to the signal at its input to generate the output signal.

4 Computational Complexity of the Feedforward Neural Network

In a fully connected FFNN, the input of a typical node is the weighted sum of the outputs of all the
nodes in the preceding layer added to the bias factor of the node under consideration. The activation
(output) of the neuron is expressed by Eq. (1).

y(k)

i = f
[(∑Nk−1

j=1
w(k)

ij y(k−1)

j

)
+ b(k)

i

]
; 1 ≤ k ≤ K , 1 ≤ i ≤ Nk. (1)

where k, i denote, respectively, the layer-index and the index of the neuron within the layer; y(k)

i denotes
the output (activation) of the ith neuron of the kth layer; w(k)

ij denotes the weight factor associated with
the connection between the jth neuron of the (k – 1)th layer and the ith neuron of the kth layer; b(k)

i denotes



JAI, 2024, vol.6 157

the bias factor or threshold associated with the ith neuron of the kth layer; Nk−1 denotes the number of
nodes in the (k – 1)th layer; K denotes the total number of layers; Nk denotes the number of nodes in
the kth layer; and f represents the non-linear neural activation function.

The input layer is considered the zeroth layer, and the outputs of the input layer nodes (neurons) are
the same as the corresponding components of the input feature vector, which is to be processed by the
network. The nodes of the input layer, the 0th-layer, simply pass on the signals applied at their inputs
to their respective outputs y(0)

i = xi. The neural activation function f can be any non-linear function.
Examples of activation functions are defined below in Eqs. (2a)–(2f) and are plotted in Fig. 2.

unit step function : f (x) =
{

1; x ≥ 0
0; x < 0 . (2a)

signum function : f (x) =
{

1; x ≥ 0
−1; x < 0 . (2b)

sigmoid function : f (x) = 1
1 + e−x

. (2c)

modified sigmoid function [−1, 1] : f (x) = 1 − e−x

1 + e−x
. (2d)

hyperbolic tangent function : f (x) = e2x − 1
e2x + 1

. (2e)

rectified linear unit function ReLU : f (x) =
{

x; x ≥ 0
0; x < 0 . (2f)

Figure 2: Typical non-linear activation functions

Fig. 3 shows a typical node in a typical layer, namely the ith node in the kth layer of the network
and its connections to the nodes in the preceding layer, including the weights and the bias factor. The
activation (output) of the node is expressed by Eq. (1) above. The meaning of the symbols in Fig. 3 is



158 JAI, 2024, vol.6

explained right after Eq. (1). The matrix expression of Eq. (3) provides the relationship between the
outputs of all the Nk nodes in the kth layer of the network and the outputs of the Nk−1 nodes of the (k
– 1)th layer.

Figure 3: The input of the ith neuron in the kth layer of the feedforward network

In Eq. (3a) the superscript k refers to the layer-index in the network; f represents the neural
activation function; Y(k) is a column vector with length of (Nk+1) containing the outputs of all the nodes
in the kth layer prepended with one; Y(k−1) is a column vector with length of (Nk−1 + 1) containing the
outputs of all the nodes in the (k – 1)th layer prepended with one; and W(k) is a matrix with dimensions
Nk × (Nk−1 + 1) containing all the weight coefficients and bias factors associated with the connections
to the inputs of the nodes in the kth layer of the network.

Y(k) = f
(
W(k)Y(k−1)

)
. (3a)

Y(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
y(k)

1

.

.

.
y(k)

Nk

⎤
⎥⎥⎥⎥⎥⎥⎦

, Y(k−1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
y(k−1)

1

.

.

.
y(k−1)

Nk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3b)



JAI, 2024, vol.6 159

W(k) =
⎡
⎢⎣

b(k)

1 w(k)

1,1 w(k)

1,2 . . . w(k)

1,Nk−1
...

b(k)

Nk
w(k)

Nk ,1 w(k)

Nk ,2 . . . w(k)

Nk ,Nk−1

⎤
⎥⎦ . (3c)

In Eq. (3a), the activation function f is vectorized so that it operates on each component of its
argument, which is a column vector. As seen from Eqs. (3a)–(3c), the NN processes the incoming
data applied to the network input, which is also denoted as the zeroth layer, by a sequence of matrix
multiplications followed by the nonlinear neural activation operations. Specifically, the input data
represented as a column vector is multiplied with W(1), which denotes the weight-bias matrix of the first
hidden layer, and the result of the matrix multiplication is subsequently operated upon by the activation
function f. The result of this operation is then multiplied with W(2) and subsequently operated upon
by f, and so on, until the last layer is reached, and the NN output is computed.

It is seen from above that the number of matrix multiplications required to compute the network
response to the input data is equal to (K + 1), where K represents the number of hidden layers. The
number of algebraic operations and the computation of the neural activation functions required for
the processing of a typical feature vector applied to the input of the NN are given below:

Pmults.,adds. = N1 (D + 1) +
∑K

k=1
Nk+1 (Nk + 1) . (4a)

Pf =
∑K+1

k=1
Nk. (4b)

where Pmults.,adds., Pf denote, respectively, the number of decimal additions-multiplications, and the
number of activation function evaluations. The number of features (components) of the input vector is
denoted as D; the number of hidden layers comprising the neural network is K ; Nk denotes the number
of nodes in the kth layer of the network; and the subscript K + 1 denotes the output layer.

5 Multilayered Feedforward Neural Network Training

This section provides a detailed block diagram representation of the fully connected, multilayered
FFNN. The complete mathematical formulations of the forward pass for modeling the network
operations on the input data are given. The derivations of mathematical formulas used in the
backpropagation operation are also given. Formulas for the computation of the loss (cost) function
and its relationship to the network weights and biases are derived. The relationship between errors at
the outputs of the neurons in consecutive layers of the network is formulated. The detailed exposition
of the backpropagation algorithm, which is used for training the NN is discussed. The nomenclature
employed in this section uses explicit symbols for the weights and biases, which are different from the
notations in Section 3.

5.1 Forward Pass Operation of the Multilayered Perceptron
The block diagram representation of the FFNN is shown in Fig. 4, where the network consists of

the input layer, the output layer, and l hidden layers. In a typical NN, the number of hidden layers is
equal to or greater than one. The hidden layers are designated by their indices, one through l, where
indices one and l denote, respectively, the first and the last hidden layers. The input layer is also called
the zeroth layer, and the output layer is the (l + 1)th layer.



160 JAI, 2024, vol.6

Figure 4: Block diagram representation of the multilayered feedforward neural network

Each of the hidden layers and the output layer, namely layers one through (l + 1), consist of a
set of neurons, which are also called nodes, where rk denotes the number of neurons (nodes) in the
kth layer, including the hidden layers 1 ≤ k ≤ l, and the output layer k = l + 1. The input layer has
r0 nodes, the outputs of which are the components of the feature vector representing the input data
applied to the NN. Each layer is fully connected to the layer that immediately follows it. This means
all the neurons (nodes) of the input layer as well as all the nodes of each hidden layer are connected
to every neuron in the next layer. There are no connections between the neurons of the same layer.
The neural connections are unidirectional, and signals propagate from neurons of each layer to the
neurons of the next layer from left to right. In Fig. 4, column vectors are represented by underlined
bold lowercase letters, matrices are represented by bold block letters, and the meaning of each symbol
is explained in the following paragraphs.

The input and output of the kth hidden layer, 1 ≤ k ≤ l, are column vectors of length rk, which
are, respectively, designated as �a(k), �o(k) in the following analysis, and are denoted in Fig. 4 as a(k), o(k).
Each element of the output vector at the kth hidden layer is obtained from the corresponding element
of the hidden layer’s input vector operated upon by the neural activation function. The input layer of
the block diagram of Fig. 4 at the upper-left, which is also called the zeroth layer, simply passes the
vector applied to the input of the NN to the output of the zeroth layer. In all the other layers, however,
two operations are performed. In each layer, the inputs of the neurons are computed as the weighted
sum of the outputs of all the neurons in the preceding layer plus the bias vector. The output of each
neuron is then computed by applying a nonlinear activation function, such as sigmoid or ReLU , to
the input of the neuron.

�a(k) =
[
a(k)

1 , a(k)

2 , . . . , a(k)

rk

]T

, �o(k) =
[
o(k)

1 , o(k)

2 , . . . , o(k)

rk

]T

. (5a)

�o(k) = σ
(�a(k)

)
, o(k)

i = σ
(
a(k)

i

)
, 1 ≤ i ≤ rk. (5b)

where �a(k), �o(k) denote, respectively, the input and output vectors at the kth layer in Fig. 4, the superscript
T denotes matrix transpose, the subscripts refer to vector components, and σ denotes the neural



JAI, 2024, vol.6 161

activation function, for example, the sigmoid function of Eq. (2c). In the block diagram of Fig. 4,
a line connecting a pair of consecutive layers, for example, the (k − 1)

th and kth layers, comprises
rk × rk−1 weighted connections, which is represented by the weight matrix W(k). Where, rk−1, rk denote
the number of neurons in two consecutive layers. The input vector of the kth layer is obtained from the
output vector of the (k − 1)

th layer by Eq. (6) below:

�a(k) = W(k)�o(k−1) + �b(k)

; 1 ≤ k ≤ l + 1. (6a)

�o(k−1) =
[
o(k−1)

1 , o(k−1)

2 , . . . , o(k−1)

rk−1

]T

; 1 ≤ k ≤ l + 1. (6b)

W(k) =

⎡
⎢⎢⎢⎣

w(k)

1,1 w(k)

1,2 . . . w(k)

1,rk−1

w(k)

2,1 w(k)

2,2 . . . w(k)

2,rk−1
...

w(k)

rk ,1 w(k)

rk ,2 . . . w(k)

rk ,rk−1

⎤
⎥⎥⎥⎦ , �b(k) =

[
b(k)

1 , b(k)

2 , . . . , b(k)

rk

]T

. (6c)

where l is the number of hidden layers. In Eq. (6a), the terms on the right hand side, W(k), �o(k−1), �b(k)

,
are matrices with dimension of, respectively, (rk × rk−1) , (rk−1 × 1) , (rk × 1), and the term on the left
hand side is a column matrix with (rk × 1) dimensions, whose components are expressed below:

a(k)

i = b(k)

i +
∑rk−1

j=1
w(k)

ij o(k−1)

j ; 1 ≤ i ≤ rk. (7)

where a(k)

i denotes the ith element of the input vector to the kth layer of the network; o(k−1)

j is the jth element
of the vector at the output of the (k – 1)th network layer; w(k)

ij denotes the value of the ith row and jth

column of the weight matrix W(k); b(k)

i is the ith element of the bias matrix �b(k)

; and rk−1, rk denote the
number of neurons in the (k – 1)th and kth network layers. Here, the weight and the bias matrices are
associated with the connections between the (k – 1)th and kth layers of the block diagram of Fig. 4. It
is also noted that a(k)

i , o(k−1)

j are, respectively, the signal at the input of the ith neuron of the kth layer, and
the signal at the output of the jth neuron of the (k – 1)th layer. It is further noted that w(k)

ij is the weight
factor associated with the connection from the jth neuron of the (k – 1)th layer to the ith neuron of the
kth layer, and b(k)

i is the bias factor of the ith neuron of the kth layer.

To compute the response of the neural network to an input vector, we start at the input layer,
and analyze the cascade effect of consecutive layers of the network on the input vector. The input
layer (zeroth layer) passes through the applied vector to the output of the zeroth layer without doing
anything to it. In the block diagram of Fig. 4, the output of the input layer, which is also called the
zeroth layer, is set equal to the vector applied to the input of the neural network.

�o(0) = �x. (8)

where �x, �o(0) denote, respectively, the vector applied to the network and the output of the zeroth layer.
The output of the zeroth layer (input layer) together with the weight and bias matrices of the first hidden
layer are used to compute the input matrix of the 1st hidden layer. The output matrix of the 1st hidden
layer is then computed from its input. The operations for computing the input and output matrices
associated with the 1st hidden layer are given in Eqs. (9a), (9b).

�a(1) = W(1)�o(0) + �b(1) = W(1)�x + �b(1)

. (9a)

�o(1) = σ
(�a(1)

) = σ
(

W(1)�x + �b(1)
)

. (9b)



162 JAI, 2024, vol.6

where, �a(1), �o(1) denote, respectively the input and the output of the 1st hidden layer. Using the output
of the 1st hidden layer, the input of the 2nd hidden layer is computed which is then utilized to compute
the output of that layer as shown by the expressions of Eqs. (10a), (10b).

�a(2) = W(2)�o(1) + �b(2) = W(2)

(
σ

(
W(1)�x + �b(1)

))
+ �b(2)

. (10a)

�o(2) = σ
(�a(2)

) = σ
(

W(2)

(
σ

(
W(1)�x + �b(1)

))
+ �b(2)

)
. (10b)

Using the output of the 2nd hidden layer, the input of the 3rd hidden layer and subsequently its
output are computed as shown in Eqs. (11a), (11b).

�a(3) = W(3)�o(2) + �b(3) = W(3)

(
σ

(
W(2)

(
σ

(
W(1)�x + �b(1)

))
+ �b(2)

))
+ �b(3)

. (11a)

�o(3) = σ
(�a(3)

) = σ
(

W(3)

(
σ

(
W(2)

(
σ

(
W(1)�x + �b(1)

))
+ �b(2)

))
+ �b(3)

)
. (11b)

Continuing the iterative process of using the output of a layer to compute the input of the next
layer and subsequently the layer output, one arrives at the expression for the output of (l + 1)th layer
which represents the response of the NN to the input �x as shown in Eqs. (12a), (12b).

�o(l+1) = σ
(

W(l+1)
σ

(
W(l)

σ
(

W(l−1)
σ

(
. . . σ

(
W(1)�x + �b(1)

)
+ �b(2)

)
. . . + �b(l−1)

)
+ �b(l)

)
+ �b(l+1)

)
. (12a)

�̂y = �o(l+1). (12b)

where �̂y represents the response of the NN of Fig. 4 to the input �x. The matrices W(k), �b(k)

denote the
weight and bias matrices associated with the kth layer of the network, where 1 ≤ k ≤ l + 1, and l
is the number of hidden layers which is equal to or greater than one. In the expression of Eq. (12a),
the neural activation function σ is assumed to be the same across all the layers, which does not need
to be the case. The activation function of each layer can be any one of the nonlinear functions given
in Eqs. (2a)–(2f). In the experiments of Sections 6–8, the activation functions utilized across all the
hidden layers are the ReLU function of Eq. (2f), and the activation function of the output layer is the
sigmoid function of Eq. (2c).

Eq. (12a), which transforms the input vector �x to the output vector �o(l+1), is a composition function,
transforming the r0 dimensional vectors at the input to the corresponding rl+1 dimensional vectors at

the output of the network. The linear operations W(k)o(k−1) +�b(k)

are affine transformations, which map
hyperplanes with rk−1 dimensions in one space to hyperplanes with rk dimensions in another space. If

the nonlinear activation function is chosen to be ReLU , σ
(

W(k)o(k−1) + �b(k)
)

represents folding of the

hyperplane in the second space, where each hyperplane has a single fold. Therefore, each layer of the
network transforms the input of the layer through affine transformation and folding. The overall effect
of the multilayered perceptron is creating continuous piecewise linear functions. The transformation
is represented by folded hyperplanes. The number of folds in each hyperplane is equal to the sum of

binomial factors
∑r0

q=0

(
l + 1

q

)
, where l+1 is the number of layers and r0 is input dimensionality.

The number of layers and the number of neurons in each of the layers of the network, which
constitute the architecture of the multilayered FFNN, as well as the neural activation functions are
design parameters which are application dependent. For example, in a NN designed for a classification
application the number of neurons of the input layer equals the dimensionality of the feature vector
representation of the input data to be classified. The number of neurons of the output layer is
determined by the number of classes. For instance, a binary classifier has only one neuron at the



JAI, 2024, vol.6 163

output layer. The number of hidden layers and the number of neurons in each hidden layer are set
heuristically by the designer. The values of the weights and biases are computed by applying the
multilayered feedforward perceptron learning algorithm which involves a training set comprised of
a set of input feature vectors and the associated known classes.

5.2 Multilayered Perceptron Learning Algorithm
The training process of the neural network classifier involves the computation of the weight and

bias matrices using a given training set. The training set is comprised of a finite set of training vectors
and their corresponding classes. The number of nodes at the input layer r0 in Fig. 4 is equal to the
dimensionality of the training vector, and the number of nodes at the output layer rl+1 is dependent on
the number of classes of the classification problem for which the network is designed. For example,
consider a specific training vector �x that belongs to class j(1 ≤ j ≤ rl+1) and is applied to the network
input at the 0th layer (input layer). Because it belongs to class j, the output of the jth neuron at the
output layer must be one, and the outputs of all the other neurons in that layer must be zero. This
desired output, which is also called the target, represents the ground-truth, and is different from the
actual output computed by the NN. The actual output of the network is computed by applying the
feedforward process of Eqs. (12a), (12b) to the input vector. The difference between the target output
and the computed (actual) output, which is called the error at the output layer, is subsequently used
to update the weights and biases of the network using the gradient descent and backpropagation
algorithms, which are detailed below.

The stochastic gradient descent (SGD) process involves applying one trainer at a time to the neural
network and updating the network weights and biases accordingly. The trainers are applied one at a
time, and the output is computed; the computed output is compared to the target output or ground-
truth as specified by the training set; the difference between the computed output (actual output in
response to the input) and the target output is used to update the weights and biases. This process is
repeated for each trainer in the training set. The execution of the training process for all the vectors
in the training set is called one training epoch. The training process is repeated for a user-prescribed
number of training epochs, until all the trainers are classified correctly or until the relative changes in
the weights and biases fall below the user-prescribed thresholds. The error, which is also called the loss
or cost function, associated with one trainer is given by Eq. (13).

E = �O(l+1) − �y. (13)

where �O(l+1)

is the actual response of the NN in Fig. 4 to the trainer feature vector �x applied at the
input of the network, and �y is the target output (ground-truth). The pair of vectors �x, and �y comprise
one training instant. The components of the response vector �O(l+1)

in the loss function expression of
Eq. (13) are given below:

o(l+1)

i = σ
(
a(l+1)

i

)
; a(l+1)

i = b(l+1)

i +
∑rl

j=1
w(l+1)

ij o(l)
j . (14)

where a(l+1)

i , o(l+1)

i denote, respectively, the input and the output of the ith neuron of the (l+1)th layer; σ

is the neural activation function; b(l+1)

i , w(l+1)

ij denote, respectively, the bias of the ith neuron of the (l+1)th

layer and the weight coefficient associated with the connection from the jth neuron of the lth layer to
the ith neuron of the (l+1)th layer; o(l)

j is the output of the jth neuron of the lth layer; and rl is the number
of nodes in the lth layer. It is noted that the (l+1)th layer is the output layer.

From Eq. (13), it is seen that the loss (cost) is affected by the difference between the actual
responses of the output layer neurons

(
o(l+1)

i ; 1 ≤ i ≤ rl+1

)
and the target (desired) responses at the



164 JAI, 2024, vol.6

output layer neuron (yi; 1 ≤ i ≤ rl+1), which are known a priori for each of the training vectors �x
applied to the input of the network. The training process of the neural network involves the adjustment
or updating of the weights and biases of the neural network in Fig. 4, namely, w(k)

ij , b(k)

i , 1 ≤ k ≤
l + 1, 1 ≤ i ≤ rk+1, 1 ≤ j ≤ rk, to minimize the cost function of Eq. (13). It is noted that the weights
and biases affect the cost function (loss function) through affecting o(l+1)

i and they have no effect on yi.

The minimization of the cost function is achieved through the gradient descent process. The
formulation of the gradient of the cost function involves derivation of the partial derivatives of
the responses of the output-layer neurons o(l+1)

i with respect to the network’s weights and biases.
The expressions for the partial derivatives of the cost function with respect to the output layer weights
and biases are obtained by applying chain rule as shown below:

∂E

∂w(l+1)

ij

= ∂E

∂o(l+1)

i

∂o(l+1)

i

∂a(l+1)

i

∂a(l+1)

i

∂w(l+1)

ij

,
∂E

∂b(l+1)

i

= ∂E

∂o(l+1)

i

∂o(l+1)

i

∂a(l+1)

i

∂a(l+1)

i

∂b(l+1)

i

. (15)

The partial derivatives on the right-hand sides of the expressions of Eq. (15) are given by
Eqs. (16a)–(16c).

∂E

∂o(l+1)

i

= o(l+1)

i − yi. (16a)

∂o(l+1)

i

∂a(l+1)

i

= σ
(
a(l+1)

i

) (
1 − σ

(
a(l+1)

i

)) = o(l+1)

i

(
1 − o(l+1)

i

)
. (16b)

∂a(l+1)

i

∂w(l+1)

ij

= o(l)
j ,

∂a(l+1)

i

∂b(l+1)

i

= 1. (16c)

The neural activation function is assumed to be the sigmoid of Eq. (2c), and its derivative is given
in Eq. (17).

σ (x) = 1
1 + e−x

,
dσ(x)

dx
= σ (x) (1 − σ (x)) . (17)

Substituting from Eq. (16) into Eq. (15) and using Eq. (17), one arrives at the expressions for the
partial derivatives of the cost function with respect to the weights and biases of the output layer as
shown in Eqs. (18a), (18b).

∂E

∂w(l+1)

ij

= (
o(l+1)

i − yi

)
o(l+1)

i

(
1 − o(l+1)

i

)
o(l)

j . (18a)

∂E

∂b(l+1)

i

= (
o(l+1)

i − yi

)
o(l+1)

i

(
1 − o(l+1)

i

)
. (18b)

where o(l+1)

i is the computed output of the ith neuron of the (l+1)th layer; o(l)
j is the computed output of the

jth neuron of the lth layer; and yi is the target response (desired response) of the ith neuron at the output
layer. As noted earlier, the target response yi is known a priori as components of the response vector
to the training input (�x, �y). These outputs, namely o(l+1)

i , o(l)
j , however, are computed after passing

the training vector �x through the feedforward network in Fig. 4. The partial derivatives of Eqs. (18a),
(18b) are expressed in terms of a new parameter δ(l+1)

i as shown by Eqs. (19a)–(19c).



JAI, 2024, vol.6 165

δ(l+1)

i = o(l+1)

i

(
1 − o(l+1)

i

) (
o(l+1)

i − yi

)
. (19a)

∂E

∂w(l+1)

ij

= δ(l+1)

i o(l)
j . (19b)

∂E

∂b(l+1)

i

= δ(l+1)

i . (19c)

Using gradient descent, the procedures for updating the weights and biases of the output layer are
expressed by Eqs. (20a), (20b).

w(l+1)

ij ← w(l+1)

ij − γ δ(l+1)

i o(l)
j . (20a)

b(l+1)

i ← b(l+1)

i − γ δ(l+1)

i . (20b)

where the parameter γ is a user-prescribed small number, i.e., γ = 0.1, called the learning rate.
Eqs. (20a), (20b) provide a procedure for updating the output layer weights and biases after computing
the response vector �̂y = �o(l+1) of the network to the training input �x.

The derivations of the expressions of Eqs. (20a), (20b) for updating of the weights and biases
of the output layer are straightforward, because the error terms at the outputs of the neurons of the
output layer are known. As seen in Eq. (19a), δ(l+1)

i can be computed directly, because yi, which denotes
the desired (target) output of the ith neuron in the output layer, is known from the training set. This,
however, is not the case for the hidden layers. The desired outputs of the neurons in the hidden layers
are not known directly, which is the reason they are called hidden layers.

The error terms at the outputs of the neurons of the hidden layers are not directly known, because
unlike the output layer, for which the target values of the outputs of the neurons are known a priori,
the target values of the outputs of the neurons of the hidden layers are not known. To determine the
partial derivatives of the cost function with respect to the weights and biases of the hidden layers,
one must first determine the errors at the outputs of the neurons of the hidden layers. This is where
the concept of back propagation originates. Knowing the errors at the outputs of the neurons of the
output layer, the errors are propagated backward to compute the errors at the outputs of the neurons
of the hidden layers, one layer at a time.

The backpropagation process is illustrated by formulating the partial derivative of the cost
function of Eq. (13) with respect to a typical weight factor of the lth layer, namely w(l)

jp . As seen in
Fig. 5, w(l)

jp denotes the weight coefficient associated with the connection between pth neuron of the (l-
1)th layer and the jth neuron of the lth layer. It is noted that w(l)

jp , although affecting only one neuron in
the lth layer, namely the jth neuron, it affects all the neurons in the output layer. This is because the jth

node of the lth layer is connected to all the nodes of the output layer. Applying chain rule, the partial
derivative of the coast function with respect to w(l)

jp is obtained as below:

∂E

∂w(l)
jp

=
rl+1∑
i=1

∂E

∂o(l+1)

i

∂o(l+1)

i

∂a(l+1)

i

∂a(l+1)

i

∂o(l)
j

∂o(l)
j

∂a(l)
j

∂a(l)
j

∂w(l)
jp

. (21a)

∂E

∂o(l+1)

i

= o(l+1)

i − yi. (21b)

∂o(l+1)

i

∂a(l+1)

i

= o(l+1)

i

(
1 − o(l+1)

i

)
. (21c)



166 JAI, 2024, vol.6

∂a(l+1)

i

∂o(l)
j

= w(l+1)

ij . (21d)

∂o(l)
j

∂a(l)
j

= o(l)
j

(
1 − o(l)

j

)
. (21e)

∂a(l)
j

w(l)
jp

= o(l−1)

p . (21f)

Figure 5: Illustration of backpropagation

Substituting Eqs. (21b)–(21f) in Eq. (21a) and rearranging terms one obtains the following:

∂E

∂w(l)
jp

= o(l)
j

(
1 − o(l)

j

)
o(l−1)

p

∑rl+1

i=1

[
o(l+1)

i

(
1 − o(l+1)

i

) (
o(l+1)

i − yi

)]
w(l+1)

ij . (22)

Substituting from Eq. (19a) in Eq. (22), and rearranging terms leads to the following:

∂E

∂w(l)
jp

=
[
o(l)

j

(
1 − o(l)

j

)∑rl+1

i=1
w(l+1)

ij δ(l+1)

i

]
o(l−1)

p . (23)

The bracketed term in Eq. (23) is called the error at the output of the jth neuron of the lth layer, as
given below:

δ(l)
j = o(l)

j

(
1 − o(l)

j

)∑rl+1

i=1
w(l+1)

ij δ(l+1)

i . (24)

Eq. (24) shows how the error at the output of any layer can be obtained in terms of the error at
the output of the next layer. This equation describes the backpropagation process, where the known
error at the output of the network is propagated backward, one layer at a time, to obtain the error at
the outputs of all the other layers including the hidden layers and the input layer. After computing
all the δ

(k)

j terms for a typical layer, the ∂E

∂w(k−1)
jp

terms at preceding layer are computed, and this process



JAI, 2024, vol.6 167

starts at the output layer and proceeds all the way to input layer, one layer at a time. Following the
computation of all the partial derivatives (gradients) the change values for all the weights and biases
are recorded as expressed by Eqs. (25a)–(25c).

δ(k)

j = o(k)

j

(
1 − o(k)

j

) ∑rk+1

i=1
w(k+1)

ij δ(k+1)

i ; 1 ≤ k ≤ l, 1 ≤ j ≤ rk. (25a)

w(k)

ij ← w(k)

ij − γ δ(k)

i o(k−1)

j . (25b)

b(k)

i ← b(k)

i − γ δ(k)

i . (25c)

6 Training the Neural Network

The values of the NN weights and biases are initially set randomly using a random number
generator and a probability distribution function such as a normal distribution with zero mean and
unit standard deviation. The training set is utilized to compute the NN weights and biases through
the process of training the network, as described below.

For an NN classifier, the training set comprises a finite set of tuples, where each tuple consists
of a feature vector and the corresponding class label comprising one training object. For example, the
training set of a binary classifier comprises a set of feature vectors and the respective class labels, where
each label can be either zero or one. The training vectors are applied to the NN classifier, one trainer at
a time. The computed class label, which is the actual NN response to the feature vector representation
of the training object, is compared to the true class label of the trainer. The true class label of the input
feature vector, which is also called the ground truth, is the desired or target response.

According to the terminology in Section 5.2, the feature vector representation of the training
object is denoted as �x, which is applied to the NN input. The computed response (actual response) of
the NN to the training object is denoted as �o(l+1). The desired (target) response is the true class label
of the training object and is denoted as �y. The pair of vectors comprising the feature vector of the
training object and the respective class (�x, �y) comprise one training instant. For a binary classifier,
the output layer of the NN has only one neuron, and the computed response is a scaler. The desired
(target) response or ground truth is a binary number, zero or one, which is the true class label of �x.

The process of updating the weights and biases of a typical binary classifier proceeds as follows.
The training object feature vector �x is applied to the NN, and the scalar response of the network
o(l + 1) is computed. The computed (actual) response o(l + 1) of the network and the true class label of
�x, which is the binary number y are compared. Eqs. (19a), (20a), (20b) are used to update the weights
and biases associated with the last layer, which is the (l + 1)th layer of the NN. The error term at the
output of the (l + 1)th layer, δ(l+1) which is computed in accordance with Eq. (19a) is backpropagated,
one layer at a time, to compute the error vectors �δ(k)

at the output of every other layer using Eq. (25a).
Eqs. (25b), (25c) are subsequently used to update the weights and biases at every layer. The procedure
of computing the error vector at the output of the kth layer, namely, �δ(k)

and updating of the weights and
biases of that layer �W(k)

, �b(k)

is done one layer at a time, starting from the output layer, and proceeding
to the left. The weight and bias updating procedure outlined above is repeated for every training object
in the training set. Each time, one trainer is applied to the NN, the weights and biases are updated, and
the trainer is set aside. Then the next trainer is applied, the NN weights and biases are updated, and
so on, until all the trainers have been utilized and the trainer set is empty. This constitutes one training
epoch. The procedure is repeated for a user-prescribed number of training epochs, for example one
hundred. At the end of each epoch, the order of trainers in the training set is shuffled randomly. The



168 JAI, 2024, vol.6

method of training described above is called stochastic gradient descent, and is the method used to
obtain the experimental results reported in Section 7.

There are several other alternative training methods. In batch training, all the training elements
are applied to the classifier, one trainer at a time as is done in stochastic gradient descent. After
applying each trainer to the network, the actual network response to the trainer input is computed
and is compared to the true class of the object as was done before. The backpropagation algorithm
is used to compute and record the prescribed changes for all the weights and biases of the network
without making any updates to the values of the weights and biases. After applying the entire training
set to the NN and recording the prescribed changes of the weights and biases for each input, the change
records across all trainers are combined and the weights and biases are updated at once at the end of
the epoch. This process is repeated for a prescribed number of epochs.

The minibatch training method contains elements from both the stochastic training and the
batch training. Here, multiple subsets of the training set each comprising a small number of trainers,
for example one hundred trainers, are chosen randomly. Each randomly chosen subset is called a
minibatch. Each of the randomly chosen minibatches are used to train the NN using the batch training
method described above. There are several alternative ways to do minibatch training. In minibatch
training without replacement, after a minibatch is utilized to train the NN, the trainers in the minibatch
are removed from the training set, and the next minibatch is chosen from the remaining training set.
In minibatch training with replacement, after a minibatch is utilized to train the NN, the trainers in
the minibatch are put back into the training set, the set is reshuffled and the next minibatch is chosen
and the training process continues.

7 Dataset

The multilayered feedforward neural network described in Section 4 is utilized as a classifier for
cybersecurity applications. The NN is designed as a binary classifier to label the network traffic packets
as either normal or an attack. The binary classifier is trained and tested using the KDD99 dataset,
which has been widely utilized in cybersecurity studies. The KDD dataset is comprised of packet
header data for 805,051 packets and is divided into two subsets, namely the training set and the test
set. The training set comprises 494,022 packets, including 97,278 normal packets and 396,744 attack
packets. The test set comprises 311,029 packets, including 60,593 normal packets and 250,436 attack
packets. The attack packets in the training and test sets include four attack types: denial of service
(DoS), probe attack, remote to local attack (R2L), and user to root attack (U2R). Each of the header
packets in the training and test sets has forty-two attributes, including the packet label. Thirty-eight
of the attributes are numerical, and three are categorical. In the work reported here, all the packets
associated with the two main subsets of the KDD99 dataset, namely the training set and the test
set, were combined into one dataset. The three non-numerical features of each packet header were
dropped, leaving a dataset with 805,051 packets, where each packet has thirty-eight features and one
binary label of normal or attack. The data set was then partitioned into two separate sets in accordance
with the packets’ binary labels. The normal packets were all grouped together into the normal set,
which contains 157,871 packets. Likewise, the attack packets were grouped together into the attack
set, which contains 647,180 packets.

In the experiments reported in Section 8, the input applied to the classifier is a typical network
traffic packet header. Each input is represented by its feature vector, which has thirty-eight dimensions.
Each input can have one of two possible class labels, namely normal or attack. Therefore, the NN
binary classifier has thirty-eight nodes in the input layer and one node in the output layer. The



JAI, 2024, vol.6 169

number of hidden layers and the number of nodes in each hidden layer are design parameters, that
are determined through experimentation by trial and error heuristically. The training and test sets that
are used to train the binary classifier and evaluate its performance were chosen from the normal and
attack sets described in the previous paragraph.

8 Test Results

The packet classifier used in the experiments of this section is a multilayered feedforward neural
network comprising an input layer with thirty-eight nodes, an output layer with one node, and l hidden
layers. The hidden layers are numbered from one through l, and the number of nodes in each hidden
layer is denoted as rk, where 1 ≤ k ≤ l denotes the index of the hidden layer as shown in the block
diagram of Fig. 4.

The NN training process involves a training set comprising normal and attack packets, which are
randomly chosen from the normal and attack sets described in Section 7. In all of the experiments
presented here, the number of normal and attack packets in the training set of each experiment are
equal. Following the training process, the NN is tested by evaluating its performance using a test
set. The test set also comprises normal and attack packets, which are randomly selected from the
normal and attack sets of Section 7, after the removal of the training packets from each set. In all the
experiments presented here, the number of normal and attack packets in the test set of each experiment
are equal. Each of the packets of the test set is applied to the trained classifier, and the classifier
computes the class label for each test packet. The computed class of each test packet is compared to
the respective true class. If the true class of the input packet (ground truth) is attack and the computed
class is also attack, this is called true-positive (TP). If the true class of the input packet is attack but
the computed class is normal, this is called false-negative (FN). If the true class of the input packet
is normal and the computed class is also normal, this is called true-negative (TN). If the true class of
the input packet is normal but the computed class is attack, this is called false-positive (FP). These
definitions are further illustrated by Eqs. (26a), (26b) and Table 1.

TP + FN = total number of attack packets in the test set (26a)

TN + FP = total number of normal packets in the test set (26b)

Table 1: Definitions of classifier performance parameters

Computed class (assigned label)

Normal packet Attack packet

Ground-truth or true class
Normal packet TN FP
Attack packet FN TP

The true-positive rate (TPR) and the true-negative rate (TNR) denote, respectively, the percentage
of attack and normal packets in the test set that are correctly labeled by the NN classifier. The false-
positive rate (FPR) and the false-negative rate (FNR) denote, respectively, the percentage of normal
and attack packets that are misclassified. The additional classifier performance parameters that are
used in this report include classifier precision, recall, and F-score. The classifier precision denotes
the true-positive rate (TPR) divided by the total number of test packets that are classified as attack
packets by the classifier. The classifier recall is the true-positive rate (TPR) divided by the total number
of attack packets in the test set. The classifier F-score is the harmonic mean of its precision and recall.



170 JAI, 2024, vol.6

precision = TPR
TPR + FPR

. (27a)

recall = TPR
TPR + FNR

. (27b)

F − score = 2 × precision × recall
precision + recall

. (27c)

The plots of Fig. 6 show the effect of the number of trainers on the classifier performance as
measured by the five metrics defined above. Here, the classifier, in addition to the input and output
layers, is comprised of one hidden layer with ten nodes. The number of test packets was set at two
thousand, equally divided between normal and attack packets. None of the training packets were
included in the test set, and the NN was trained using ten epochs with a batch size of one, namely,
stochastic gradient descent training. For each setting of the number of trainers, the experiment was
repeated twenty-five times, and the performance results were averaged across all the trials of the
experiment.

Figure 6: Effect of number of trainers on performance of classifier with one hidden layer

The box plots of Fig. 7 show the distributions of the true-positive rate and the true-negative rate
across twenty-five instantiations of the experiment. The plots of Figs. 6 and 7 show that as the number
of normal and attack trainers increases from ten to one hundred, the classifier performance improves
as expected. This experiment shows that an FFNN classifier with one hidden layer comprising ten
nodes, trained with two hundred packets equally divided between normal and attack, leads to precision
exceeding 99.7%, which is a remarkable achievement. The plots of Fig. 7 also show that as the number
of trainers increases, the statistical dispersion of the classifier performance parameters, namely, TPR
and TNR, tightens across different instantiations of the experiment.



JAI, 2024, vol.6 171

Figure 7: Effect of the number of trainers on distributions of TPR and TNR of the classifier with one
hidden layer

The plots of Fig. 8 show the effect of the number of trainers on the performance of classifiers with
different numbers of hidden layers. In these experiments, three different FFNN classifiers, namely, with
one, two, and three hidden layers, were trained, and the performance of each trained classifier was
assessed. Each classifier has ten nodes in each of its hidden layers. The numbers of normal and attack
packets used in the training sets of different classifiers varied from one hundred to one thousand. As
expected, as the number of trainers increases, the classifier’s performance improves. The plot in the
fourth quadrant of Fig. 8 shows that increasing the number of hidden layers does not appreciably
improve the classifier performance, as measured by the F-score. The plots of Figs. 9 and 10 show the
effect of the number of nodes in the hidden layer on the performance of a classifier with one hidden
layer. The number of trainers from normal and attack classes was fixed at twenty, and two thousand
test packets were equally divided between normal and attack packets. For each setting of the number
of nodes, the experiment was repeated one hundred times, and the performance results were averaged
across all the instantiations of the experiment. It is seen from Fig. 9 that performance, as measured
by the F-score of the classifier, improves as the number of nodes increases from one to ten, where it
reaches a plateau. Increasing the number of nodes beyond ten does not have an appreciable effect on the
performance, as measured by the F-score. The plots of Fig. 10 show the distributions of true-positive
and true-negative rates across all the one hundred instantiations of the experiment. As the number
of nodes increases, there seems to be a tightening of the true negative rate, as shown by the box plot
on the right of Fig. 10. This shows that the greater number of nodes improves the performance, as
measured by the worst-performing classifier in the one hundred instantiations of the classifier in this
experiment.



172 JAI, 2024, vol.6

Figure 8: Effect of number of trainers on the performance of classifiers with different number of hidden
layers

Figure 9: Effect of number of nodes of hidden layer on classifier performance



JAI, 2024, vol.6 173

Figure 10: Effect of number of nodes of hidden layer on TPR and TNR distributions

This study compared the performance of three classifiers: a binary neural network (NN) with one
hidden layer of ten nodes, a k-nearest neighbors (KNN) classifier with three neighbors, and a support
vector classifier (SVC) with a linear kernel. All three machine learning algorithms were implemented
using the Scikit-learn library. The classifiers were trained on the same data and evaluated on an
identical test set consisting of 1000 packet headers from each class in the KDD dataset. For each setting
of the number of trainers each experiment was repeated 100 times using randomly selected trainers,
and the average performance across all repetitions is reported in Table 2. Among the three classifiers
compared, the neural network (NN) demonstrated the highest performance for binary classification of
network traffic packets, exceeding the k-nearest neighbor (KNN) and support vector classifier (SVC).

Table 2: Comparison of classification accuracy

Number of trainers from each class

100 200 400 800 1000

Classifier type
NN 0.994 0.994 0.995 0.996 0.998
SV 0.875 0.896 0.936 0.947 0.959
KNN 0.912 0.928 0.925 0.936 0.965

9 Conclusions

This paper establishes the mathematical underpinnings of the fully connected feedforward neural
network (FFNN), commonly known as the multi-layer perceptron (MLP), and elucidates the intricate
formulations of the backpropagation and gradient descent algorithms employed for adjusting network
weights and biases throughout the training phase. Comprehensive derivations of the mathematical
formulas delineating the forward propagation from the input to the output of the neural network (NN)
are presented, alongside an analysis of its computational complexity. The NN is applied to conduct a
binary classification of network traffic utilizing a well-known open-source benchmark dataset. The
paper evaluates the impact of different parameters, including network configurations such as the



174 JAI, 2024, vol.6

number of hidden layers and the number of nodes within each hidden layer, as well as the number of
trainers, on the performance of the classifier. The statistical distributions of the true-positive and true-
negative rates of the classifier are analyzed across various experimental setups, which involve random
selection of training and testing elements under different scenarios including variations in the number
of hidden layers and nodes. Compared to the k-nearest neighbor (KNN) and support vector classifier
(SVC), the study demonstrates that a neural network (NN) classifier achieves superior accuracy in
binary classification of network traffic packets.

Acknowledgement: None.

Funding Statement: Kaveh Heidary’s research project was partially funded by Quantum Research
International Inc. through Contract QRI-SC-20-105. https://www.quantum-intl.com/.

Availability of Data and Materials: The network traffic data used in this paper is open-source and can
be downloaded from the following source: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
(accessed on 08/04/2024).

Conflicts of Interest: The author declares that they have no conflicts of interest to report regarding the
present study.

References
[1] M. G. Solomon and D. Kim, “Evolution of communication technologies,” in Fundamentals of Communi-

cations and Networking, 3rd ed. Burlington MA, USA: Jones & Bartlett Learning, 2022, pp. 1–26.
[2] B. A. Forouzan, “Network layer: Delivery, forwarding, and routing,” in Data Communication and Network-

ing with TCP/IP Protocol Suite, 6th ed. New York, NY, USA: McGraw Hill, 2022, pp. 647–699.
[3] P. Baltzan and A. Phillips, “Databases and data warehouses,” in Essentials of Business Driven Information

Systems, 5th ed. New York, NY, USA: McGraw Hill, 2018, pp. 169–208.
[4] National Institute of Standards and Technology (NIST), Guide to Operational Technology (OT) Security,

NIST SP 800-82, Rev 3, Sep. 2023. Accessed: Apr. 5, 2024. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-82r3.pdf

[5] “The White House National cybersecurity strategy,” Mar. 2023. Accessed: Apr. 8, 2024. [Online]. Available:
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf

[6] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Comput. Netw., vol. 54, no. 15, pp.
2787–2805, Oct. 2010. doi: 10.1016/j.comnet.2010.05.010.

[7] M. Ammar, G. Russello, and B. Crispo, “Internet of things: A survey on the security of IoT frameworks,”
J. Inf. Secur. Appl., vol. 38, pp. 8–27, Feb. 2018. doi: 10.1016/j.jisa.2017.11.002.

[8] L. Chen, S. Tang, V. Balasubramanian, J. Xia, F. Zhou and L. Fan, “Physical-layer security based mobile
edge computing for emerging cyber physical systems,” Comput. Commun., vol. 194, pp. 180–188, Oct. 2022.
doi: 10.1016/j.comcom.2022.07.037.

[9] R. W. Lucky and J. Eisenberg, “National Academies Renewing U.S. telecommunications research,” in
National Research Council of the National Academies, Committee on Telecommunications Research and
Development. Washington, DC, 2006. Accessed: Nov. 10, 2023. [Online]. Available: http://www.nap.edu/
catalog/11711/renewing-us-telecommunications-research

[10] Y. Li and Q. Liu, “A comprehensive review study of cyber-attacks and cyber security: Emerging trends and
recent developments,” Energy Rep., vol. 7, pp. 8176–8186, Nov. 2021. doi: 10.1016/j.egyr.2021.08.126.

[11] S. Ansari, S. G. Rajeev, and H. S. Chandrashekar, “Packet sniffing: A brief introduction,” IEEE Potentials,
vol. 21, no. 5, pp. 17–19, 2003. doi: 10.1109/MP.2002.1166620.

https://www.quantum-intl.com/
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r3.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.jisa.2017.11.002
https://doi.org/10.1016/j.comcom.2022.07.037
http://www.nap.edu/catalog/11711/renewing-us-telecommunications-research
http://www.nap.edu/catalog/11711/renewing-us-telecommunications-research
https://doi.org/10.1016/j.egyr.2021.08.126
https://doi.org/10.1109/MP.2002.1166620


JAI, 2024, vol.6 175

[12] M. A. Qadeer, A. Iqbal, M. Zaheed, and M. R. Siddiqi, “Network traffic analysis and intrusion detection
using packet sniffer,” in 2010 Second Int. Conf. Commun. Softw. Netw., Singapore, 2010, pp. 313–317. doi:
10.1109/ICCSN.2010.104.

[13] K. E. Hemsly and R. E. Fisher, “History of industrial control system cyber incidents,” in Idaho National
Laboratory Report, US Department of Energy, Dec. 2018.

[14] P. Gupta and V. McKeown, “Algorithms for packet classification,” IEEE Network, vol. 15, pp. 24–32, 2001.
Accessed: Jan. 15, 2024. [Online]. Available: https://cse.sc.edu/&#x007E;srihari/reflib/GuptaIN01.pdf

[15] C. L. Hsieh, N. Weng, and W. Wei, “Scalable many-field packet classification for traffic steering
in SDN switches,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 1, pp. 348–361, Mar. 2019. doi:
10.1109/TNSM.2018.2869403.

[16] A. S. Qureshi, A. Khan, N. Shamin, and M. H. Durad, “Intrusion detection using deep sparse auto-
encoder and self-taught learning,” Neural Comput. Appl., vol. 32, no. 8, pp. 3135–3147, Apr. 2020. doi:
10.1007/s00521-019-04152-6.

[17] D. Ding, Q. L. Han, Y. Xiang, A. Ge, and X. M. Zhang, “A survey on security control and attack
detection for industrial cyber-physical systems,” Neurocomputing, vol. 275, pp. 1674–1683, Jan. 2018. doi:
10.1016/j.neucom.2017.10.009.

[18] R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, “Cyber-physical systems and their security issues,”
Comput. Ind., vol. 100, pp. 212–223, Sep. 2018. doi: 10.1016/j.compind.2018.04.017.

[19] V. P. Janeja, “Understanding sources of cybersecurity data,” in Data Analytics for Cybersecurity. Cam-
bridge, UK: Cambridge University Press, 2022, pp. 14–27.

[20] I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters and A. Ng, “Cybersecurity data science:
An overview from machine learning perspective,” J. Big Data, vol. 7, no. 41, pp. 1–29, Jul. 2020.

[21] I. Goodfellows, Y. Bengio, and A. Courville, “Machine learning basics,” in Deep Learning. Boston, MA,
USA: MIT Press, 2016, pp. 98–155.

[22] C. C. Aggarwall, “Deep learning: Principles and learning algorithms,” in Neural Network and Deep
Learning: A Textbook, 2nd ed. Yorktown Heights, NY, USA: Springer, 2021, pp. 119–162.

[23] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann machines,” Cogn.
Sci., vol. 9, pp. 147–169, Jan. 1985. doi: 10.1207/s15516709cog0901_7.

[24] Y. Bengio, “Deep learning of representations: Looking forward,” in Proc. First Int. Conf. Stat. Lang. Speech
Process., Berlin, Heidelberg, Springer, May 2013, vol. 7978. doi: 10.1007/978-3-642-39593-2_1.

[25] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015. doi:
10.1038/nature14539.

[26] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 7586, pp. 504–507, Jul. 2006. doi: 10.1126/science.1127647.

[27] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, “VLSI implementation of deep
neural networks using integral stochastic computing,” IEEE Trans. Very Large Integr. (VLSI) Syst., vol.
25, no. 10, pp. 2688–2699, Oct. 2017. doi: 10.1109/TVLSI.2017.2654298.

[28] L. Alzubaidi et al., “Review of deep learning: Concepts, CNN architectures, challenges, applications, future
directions,” J. Big Data, vol. 8, no. 53, pp. 1–74, Mar. 2021. doi: 10.1186/s40537-021-00444-8.

https://doi.org/10.1109/ICCSN.2010.104
https://cse.sc.edu/&#x007E;srihari/reflib/GuptaIN01.pdf
https://doi.org/10.1109/TNSM.2018.2869403
https://doi.org/10.1007/s00521-019-04152-6
https://doi.org/10.1016/j.neucom.2017.10.009
https://doi.org/10.1016/j.compind.2018.04.017
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1007/978-3-642-39593-2_1
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/TVLSI.2017.2654298
https://doi.org/10.1186/s40537-021-00444-8

	Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection
	1 Introduction
	2 Background
	3 Feedforward Multilayered Perceptron Architecture
	4 Computational Complexity of the Feedforward Neural Network
	5 Multilayered Feedforward Neural Network Training
	6 Training the Neural Network
	7 Dataset
	8 Test Results
	9 Conclusions
	References


