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ABSTRACT

Automatic detection of student engagement levels from videos, which is a spatio-temporal classification problem
is crucial for enhancing the quality of online education. This paper addresses this challenge by proposing four
novel hybrid end-to-end deep learning models designed for the automatic detection of student engagement levels
in e-learning videos. The evaluation of these models utilizes the DAiSEE dataset, a public repository capturing
student affective states in e-learning scenarios. The initial model integrates EfficientNetV2-L with Gated Recurrent
Unit (GRU) and attains an accuracy of 61.45%. Subsequently, the second model combines EfficientNetV2-L
with bidirectional GRU (Bi-GRU), yielding an accuracy of 61.56%. The third and fourth models leverage a
fusion of EfficientNetV2-L with Long Short-Term Memory (LSTM) and bidirectional LSTM (Bi-LSTM), achieving
accuracies of 62.11% and 61.67%, respectively. Our findings demonstrate the viability of these models in effectively
discerning student engagement levels, with the EfficientNetV2-L+LSTM model emerging as the most proficient,
reaching an accuracy of 62.11%. This study underscores the potential of hybrid spatio-temporal networks in
automating the detection of student engagement, thereby contributing to advancements in online education quality.
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1 Introduction

The rise of online education, propelled by advancements in Internet technology has garnered
widespread popularity among students [1]. In contrast to traditional teaching methods, online learning
streamlines and enhances the accessibility of educational resources [2]. The global accessibility and
affordability of education owe much to the transformative impact of online learning. However, amidst
the benefits and growing interest in distance education, a pressing concern revolves around students’
performance and active engagement in online learning environments [3].

Central to effective learning is the concept of student engagement [4], denoting active involvement
in situations conducive to high-quality learning outcomes [5]. Actively engaged students generally
exhibit better conceptual understanding and learning outcomes [6]. Student engagement encompasses
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behavioral, cognitive, and emotional states within the learning environment [7]. Behavioral engage-
ment requires active participation in class activities, emphasizing effort and perseverance [8], while
cognition involves learning skills such as perception, storage, processing, and retrieval [9]. Emotional
engagement reflects a student’s active participation influenced by affective states [10], where positive
emotions like happiness and interest enhance focus and engagement, while negative emotions such as
boredom and frustration lead to disengagement [11].

In the realm of online learning, challenges such as lack of motivation and focus often arise,
directly impacting engagement [12]. Unlike physical classrooms where teachers gauge engagement
through facial expressions and social cues such as yawning, body posture, and glued eyes, assessing
engagement in online environments proves significantly more intricate. Diverse electronic devices
and varied backgrounds further complicate tracking students’ engagement [13]. A pivotal aspect of
enhancing the quality of online learning is the automated prediction of students’ engagement levels
[14]. This holds across various learning environments, encompassing traditional classrooms, massive
open online courses (MOOCs), intelligent tutoring systems (ITS), and educational games.

Several methods exist for automating the determination of students’ engagement in online
education, broadly categorized into sensor-based and computer-vision-based approaches. Notably,
computer-vision-based approaches, further divided into image-based and video-based methods, have
garnered substantial interest. The image-based approaches rely solely on spatial information from a
single image or frame which is a significant limitation. Since engagement detection is a spatio-temporal
effective behavior because it is not stable over time, therefore, video-based methods emerge as more
efficient and popular for detecting students’ engagement [15].

Video-based methods predominantly fall into two categories: Machine learning-based and deep
learning-based approaches. Machine learning-based methods extract features and employ handcrafted
patterns for engagement estimation [16], while deep learning techniques dynamically learn features
from training data, enabling the algorithm to discern subtle variations [17]. Deep learning meth-
ods surpass traditional machine learning in tasks requiring affective state prediction. Moreover,
deep learning-based facial expression analysis in video data is non-intrusive, automated, and easily
implementable [18].

This study aims to propose a new spatio-temporal hybrid deep learning model for detecting and
classifying students’ engagement from video data by combining the advantages of EfficientNetV2-
L with four different RNN-based Models in online learning environments. The rest of the paper is
organized as follows. Reviewing recent studies in student engagement detection in Section 2. Section 3
delves into the proposed deep learning approach, followed by experimental findings in Section 4 and
concluding remarks in Section 5.

2 Related Works

In the realm of automatic student engagement detection, two primary methods have emerged:
Sensor-based approaches and video-based methods. Sensor-based methods rely on physiological
signals, encompassing heart rate variability, skin temperature, blood volume pulse, electrodermal
activity (EDA), electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG)
[19,20].

Authors in [21] demonstrated the feasibility of distinguishing engaged and non-engaged students
during lectures using wearable electrodermal activity sensors. Employing the Empatica E4 wristband
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[22], which integrates blood volume pulse, acceleration, peripheral skin temperature, and electrodermal
activity sensors, they recorded physiological data to achieve this distinction.

Kerdawy et al. [9] proposed a method for predicting students’ cognitive states, engagement, and
spontaneous attention by combining facial expression modalities and electroencephalography (EEG).
They observed strong agreement between EEG and face-based models in engaged classes, with less
agreement in non-engaged scenarios.

While some works explore sensor-based methods for detecting student engagement [23–25], chal-
lenges such as cost, wearability, portability, and mental privacy constraints hinder the implementation
of brain-computer interface (BCI) modules in physical or online classrooms [26]. In contrast, video-
based methods have gained prominence for their ease of data collection and unobtrusive evaluation
processes [27].

Pise et al. [28] suggested a model that combined SqueezeNet [29] for feature extraction and
temporal relational network (TRN) for connecting significant transformations between extracted
spatio-temporal frames. This model achieved an accuracy of 91.30% on the DISFA+ dataset [30].

Gupta et al. [31] introduced the DAiSEE dataset, including affective states and engagement
levels. They provided baseline results for four-class classification using CNN-based video classification
techniques, such as InceptionNet frame level, InceptionNet video level [32], C3D training, C3D fine-
tuning [33], and long-term recurrent convolutional networks (LRCN) [34], achieving accuracies of
47.1%, 46.4%, 48.6%, 56.1%, and 57.9%, respectively.

In [35], an inflated 3D convolutional network (I3D) was proposed for predicting students’
engagement levels, utilizing OpenFace and AlphaPose for feature extraction, with an accuracy of
52.35% on the DAiSEE dataset.

Liao et al. [27] introduced the DFSTN model, combining long short-term memory (LSTM)
with global attention (GALN) and pretrained SE-ResNet-50 (SENet) [36] for student engagement
prediction. They tested the proposed method on the DAiSEE dataset and achieved an accuracy of
58.84%.

Abedi et al. [37] proposed a new end-to-end spatio-temporal hybrid method based on residual net-
work (ResNet) [38], and temporal convolutional network (TCN) [39] for assessing student engagement
in an online learning environment. While the ResNet extracts spatial features from subsequent video
frames, TCN analyses the temporal changes in video frames to determine the degree of engagement.
They achieved a performance increase of 63.9% on the DAiSEE dataset.

Bajaj et al. [40] utilized a hybrid neural network architecture based on ResNet and temporal
convolutional network (TCN) for classifying student engagement, achieving a recognition accuracy
of 53.6% on the DAiSEE dataset.

Mehta et al. [41] introduced a three-dimensional DenseNet Self-Attention neural network (3D
DenseAttNet) for automatically detecting students’ engagement in online learning environments. This
model is designed to selectively extract relevant high-level intra-frame and inter-frame features from
video data using the 3D DenseNet block. The proposed model surpassed the previous state-of-the-art,
achieving a recognition accuracy of 63.59% on the DAiSEE dataset.

Gupta et al. [11] presented a deep learning approach centered on analyzing facial emotions to
assess the engagement levels of students in real time during online learning. This system employs the
faster region-based convolutional neural network (R-CNN) [42] for identifying faces and a modified
face-points extractor (MFACXTOR) for pinpointing key facial features. The system was tested using
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various deep learning architectures including Inception-V3 [32], VGG19 [43], and ResNet-50 [38] to
determine the most effective model for accurately classifying real-time student engagement. The results
from their experiments indicate that the system attained accuracies of 89.11% with Inception-V3,
90.14% with VGG19, and 92.32% with ResNet-50 on the dataset they developed.

Chen et al. [44] integrated gaze directions and facial expressions as separate elements in a multi-
modal deep neural network (MDNN) for predicting student engagement in collaborative learning
settings. This multi-faceted approach was tested in an actual collaborative learning context. The
findings demonstrate that the model is effective in precisely forecasting student performance within
these environments.

Ahmad et al. [45] employed the lightweight MobileNetv2 model for automatic assessment of
student engagement. The MobileNetv2 architecture’s layers have all been fine-tuned to enhance learn-
ing efficiency and adaptability. The model’s final layer was modified to classify three distinct output
classes, instead of the original 1000 classes used in ImageNet. Their experimental analysis utilized
an open-source dataset comprising individuals watching videos in online courses. The performance
of lightweight MobileNetv2 was benchmarked against two other established pre-trained networks,
ResNet-50 and Inception-V4, with MobileNetv2 achieving a superior average accuracy of 74.55%.

The authors in [46] developed a real-time system to monitor the engagement of student groups
by analyzing their facial expressions and identifying affective states such as ‘boredom,’ ‘confu-
sion,’ ‘focus,’ ‘frustration,’ ‘yawning,’ and ‘sleepiness,’ which are crucial in educational settings. This
approach involves pre-processing steps like face detection, utilizing a convolutional neural network
(CNN) for facial expression recognition, and post-processing for estimating group engagement frame
by frame. To train the model, a dataset was compiled featuring the mentioned facial expressions from
classroom lectures. This dataset was augmented with samples from three other datasets: BAUM-1 [47],
DAiSEE [31], and YawDD [48], to enhance the model’s predictive accuracy across various scenarios.

Sharma et al. [49] devised a method that amalgamates data on eye and head movements with
facial emotional cues to create an engagement index categorized into three levels: “highly engaged,”
“moderately engaged,” and “completely disengaged.” They employed convolutional neural network
(CNN) models for classification purposes and used them in the training process. Implemented in
a standard e-learning context, the system demonstrated its efficacy by accurately determining the
engagement level of students, and classifying them into one of the three aforementioned categories
for each analyzed time segment.

Ikram et al. [50] developed a refined transfer learning approach using a modified VGG16 model,
enhanced with an additional layer and meticulously calibrated hyperparameters. This model was
designed to assess student engagement in a minimally controlled, real-world classroom setting with
45 students. In evaluating the level of student engagement, the model demonstrated impressive results,
achieving 90% accuracy and a computation time of only 0.5 N seconds for distinguishing between
engaged and non-engaged students.

3 Methodology and Proposed Model

The majority of available datasets for detecting student engagement are either privately held
or small in scale, making it challenging to benchmark our research. Consequently, we opted to use
the public DAiSEE dataset [31] for our evaluation and comparisons. One key limitation of current
models for four-level classification on the DAiSEE dataset is their subpar accuracy. To address
this issue, we leveraged EfficientNetV2-L [51] for extracting spatial features from video frames and
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employed four distinct RNN-based models to capture temporal information, thereby enhancing
accuracy. Notably, among the various model families, EfficientNetV2 stands out as the top performer,
surpassing EfficientNet [52], ResNet [38], DenseNet [53], and Inception [32] models, which contributes
to the overall improvement in accuracy. Additionally, the adoption of EfficientNetV2 substantially
accelerates the training process.

Fig. 1 illustrates the block diagram of our methodology designed to predict automated student
engagement in an online learning environment using video data. The proposed pipeline comprises
several essential stages, including Dataset Selection: Involving the careful selection of an appropriate
dataset for analysis. Pre-Processing Stage: Encompasses critical data preparation steps such as data
reduction and data normalization.

DAiSEE Dataset

Training data Testing data

Video
Simpler 

640

480

480

640

Resizing

224

224

50×224×224×3

Pre-Processing

Result and Analysis

Proposed hybrid model
Evaluation

Features extraction and
Classification model:

Proposed hybrid model

Pre-Processing

Figure 1: Block diagram of the proposed methodology for student engagement detection

Feature Extraction and Classification: Utilizes our proposed hybrid deep learning model to per-
form feature extraction and classification of relevant engagement levels. Model Evaluation: Includes
the assessment and validation of our proposed model’s performance. Experimental Result Analysis:
Analyzing the outcomes of our experiments to gain insights into student engagement patterns and
behavior. This comprehensive methodology is designed to enhance our understanding of student
engagement in online learning by leveraging advanced deep learning techniques and rigorous data
analysis procedures.

The architecture of the proposed hybrid deep learning model for detecting student engagement
levels is depicted in Fig. 2. Raw video frames serve as input data to the model, generating output
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across four distinct classes reflecting students’ levels of engagement. Given the spatio-temporal
nature of student engagement detection manifested in a sequence of video frames over time, a
comprehensive analysis demands both spatial and temporal considerations. This analysis typically
entails the monitoring and evaluation of students’ conduct within an online learning environment
by examining video footage. Regarding the spatial dimension, it involves monitoring the positions
of students within the virtual classroom or e-learning platform. This encompasses identifying their
screen location and observing visual cues linked to their engagement, such as eye movement and facial
expressions. On the other hand, the temporal dimension concentrates on how student engagement
evolves throughout an e-learning session over time. This involves tracing fluctuations in engagement
levels during lectures, interactive activities, or discussions. Various features are derived from the video
data to define students’ behavior and involvement, encompassing aspects like facial expressions, body
language, and interactions with e-learning materials. The extraction and classification of these features
employ machine learning and computer vision techniques. This study employs EfficientNetV2-L to
extract spatial features from video frames, while four distinct RNN-based models capture temporal
information and model the sequence of frames.

.

.

.

.

.

Figure 2: The structure of the proposed hybrid model for determining student engagement
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The proposed hybrid models include (1) EfficientNetV2-L with gated recurrent unit (GRU),
(2) EfficientNetV2-L with bidirectional GRU (Bi-GRU), (3) EfficientNetV2-L with long short-term
memory (LSTM), and (4) EfficientNetV2-L with bidirectional LSTM (Bi-LSTM).

3.1 EfficientNetV2
EfficientNetV2 represents an advancement over previous models like DenseNet [53] and Effi-

cientNet [52], demonstrating superior training speed and parameter efficiency. The architecture incor-
porates mobile inverted bottleneck (MBConv) [54] and fused-MBConv [55] as fundamental building
blocks. Pre-training is performed on the ImageNet dataset [56]. The architecture of EfficientNetV2,
illustrated in Fig. 3, distinguishes itself from the EfficientNet backbone in key aspects: 1-Increased
use of both MBConv and fused-MBConv in the initial layers. 2-Preference for smaller expansion
coefficients for MBConv. 3-Preference for smaller kernel size (3 × 3) compensated by an increased
number of layers. 4-Elimination of the final stride-1 step present in the original EfficientNet, likely to
address memory access overhead and large parameter size.

Figure 3: Architecture of EfficientNetV2

3.2 Long Short-Term Memory (LSTM)
The long short-term memory (LSTM), introduced as a seminal work in [57], epitomizes a

sophisticated iteration of recurrent neural network (RNN), meticulously crafted to tackle the pervasive
issue of long-term dependency [58]. Proven to excel in retaining information over extended sequences,
LSTM tackles the vanishing gradient problem effectively [59]. The LSTM network processes the
output from the previous time step and the current input at a given time step, producing an output
sent to the subsequent time step. The last time step’s final hidden layer is commonly utilized for
classification [60].

The LSTM architecture includes a memory unit denoted as c, a hidden state represented by h, and
three distinct gates: The input gate (i), the forget gate (f ), and the output gate (o). These gates play a
crucial role in controlling the flow of information in and out of the memory unit, effectively managing
reading and writing operations within the LSTM framework. Specifically, the input gate determines
the manner in which the internal state is updated based on the current input and the preceding internal
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state. Conversely, the forget gate governs the degree to which the previous internal state is retained.
Lastly, the output gate modulates the impact of the internal state on the overall system [61]. Fig. 4
demonstrates how the update process functions within the internal framework of an LSTM. More
concretely, at each time step t, the LSTM initially receives an input xt along with the previous hidden
state ht−1. Subsequently, it calculates activations for the gates and proceeds to update both the memory
unit to ct and the hidden state to ht. This computational process can be outlined as follows [62]:

it = σ (Wxixt + Whiht−1 + bi) (1)

ft = σ
(
Wxf xt + Whf ht−1 + bf

)
(2)

ct = ft � ct−1 + it � tanh (Wxcxt + Whcht−1 + bc) (3)

ot = σ (Wxoxt + Whoht−1 + bo) (4)

ht = ot � tanh (ct) (5)

Figure 4: The inner structure of a LSTM unit

Here, the symbol σ(x) represents the logistic sigmoid function defined as σ(x) = 1/(1 + exp(−x)).
The symbol � denotes the point-wise product operation. The parameters W and b correspond to the
weights and biases associated with the three gates and the memory unit.

A version of LSTM known as bidirectional long short-term memory (Bi-LSTM) [63] addresses
the drawbacks of traditional LSTM architectures by incorporating both preceding and succeeding
contexts in tasks involving sequence modeling. Unlike LSTM models, which solely handle input data
in a forward direction, Bi-LSTM operates in both forward and backward directions [64].

3.3 Gated Recurrent Unit (GRU)
The gated recurrent unit (GRU) serves as an alternative variant to the traditional recurrent

neural network (RNN), aimed at resolving issues related to short-term memory through a design
that is less complex than the long short-term memory (LSTM) [65]. By consolidating the input and
forget gates found in LSTM into a singular update gate, GRU achieves an improvement in overall
efficiency. Comprising update gate, reset gate, and current memory content, GRU identifies long-term
dependencies in sequences. The gates allow for selective modification and utilization of data from
previous time steps, aiding in the identification of long-term dependencies [66]. Fig. 5 provides a visual
representation of the GRU unit’s architecture.
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Figure 5: The inner structure of a GRU unit [66]

At time t, the GRU cell’s activation, denoted as hj
t, is determined through a weighted mix of its

previous activation (hj
t−1), and a candidate activation (h̃j

t), as follows [67]:

hj
t = (

1 − hj
zt

)
ht−1 + zj

th̃
j
t (6)

Here, an update gate, denoted as zj
t, determines the extent to which the unit updates its activation

or content. The formulation for this gate is given by:

zj
t = σ (Wzxt + Uzht−1)

j (7)

This process involves calculating a linear combination of the current state and a newly generated
state, a technique reminiscent of what is seen in LSTM units. However, unlike LSTM, GRU lacks a
mechanism for regulating how much of their state is revealed, instead opting to fully disclose their
entire state at each update.

The candidate activation, denoted as h̃j
t, is calculated in a manner akin to the conventional

recurrent unit.

h̃j
t = tanh (Wxt + U (rt � ht−1))

j (8)

where rt represents a collection of reset gates and � indicating element-wise multiplication. When rt

approaches 0, indicating “off,” the reset gate essentially causes the unit to behave as if it is processing
the initial symbol of an input sequence, allowing it to forget the previously computed state. The
calculation of the reset gate, denoted as rj

t, follows a process similar to that of the update gate.

rj
t = σ (Wrxt + Urht−1)

j (9)

GRU models, which require fewer tensor operations, provide a simpler option compared to
LSTM, leading to quicker training times. Nonetheless, whether to use GRU or LSTM is contingent
on the particular use case and the nature of the problem being addressed [58].

A notable improvement to the GRU architecture is the Bi-GRU [68], which successfully addresses
specific limitations of the standard GRU by integrating information from both past and future
contexts in sequential modeling tasks. In contrast to the GRU, which handles input sequences
exclusively in a forward direction, the Bi-GRU operates in both forward and backward directions.
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In a Bi-GRU model, two parallel GRU layers are employed, with one processing the input data in the
forward direction and the other handling it in reverse [69].

4 Experimental Results
4.1 Dataset

The prevalent datasets for student engagement detection are largely private or limited in size,
posing challenges in benchmarking our research against existing work. Therefore, in this study, we
conducted experiments and evaluated the proposed models using the DAiSEE dataset (Dataset for
Affective States in E-Environments) [31]. The dataset comprises 112 students currently enrolled in
school, aged between 18 to 30, with a predominantly Asian demographic, comprising 32 females and
80 males. A total of 9068 video clips, each lasting 10 seconds, were captured in six distinct locations
such as dorm rooms, labs, and libraries, under three lighting conditions: bright, dark, and mild. Under
different lighting conditions, using indoor or outdoor light sources, images or videos absorb light
properties that are inextricably linked to the original image [70]. The DAiSEE dataset encompasses
four affective states including confusion, boredom, engagement, and frustration, each with four levels:
“very low,” “low,” “high,” and “very high.” This paper focuses predominantly on assessing student
engagement levels during online learning. Table 1 presents the detailed distribution of engagement
levels.

Table 1: Data distribution on the DAiSEE dataset

Level Train Validation Test Total

Very high 2494 450 814 3758
High 2617 813 882 4312
Low 213 143 84 440
Very low 34 23 4 61
Total 5358 1429 1784 8571

4.2 Result
We evaluated the four proposed deep learning models, namely EfficientNetV2-L+GRU,

EfficientNetV2-L+Bi-GRU, EfficientNetV2-L+LSTM, and EfficientNetV2-L+Bi-LSTM, utilizing
the DAiSEE dataset to investigate the effectiveness of each model. Before experimentation, the
decision was made regarding the number of frames from each video to be fed into the model. Utilizing
a vector with k-frames to represent the spatial features of a video, we aimed to balance temporal
information and training time. In this study, we opted for 50 frames per video, resizing them to
224 × 224 to generate 50 × 3 × 224 × 224 (L × C × H × W) tensors as inputs to the model.
The EfficientNetV2-L model extracts feature vectors of dimension 1280 from successive frames,
subsequently feeding them to the RNN-based module. The parameter values used are provided in
Table 2.

The performance of the proposed models is summarized in Table 3. The results highlight the
EfficientNetV2-L+LSTM model as the top performer among the proposed models, achieving an
accuracy of 62.11%. Accuracy is measured as the ratio of correct to incorrect prediction [71].
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Table 2: The parameter values used for experiments

Model EfficientNetV2L GRU Bi-GRU LSTM Bi-LSTM

Input 50 × 224 × 224
× 3

50 × 1280 50 × 1280 50 × 1280 50 × 1280

Layer 1 Unit = 100,
return
sequences =
True

Unit = 100,
return_
sequences =
True

Unit = 100,
return_
sequences =
True

Unit = 100,
return_
sequences =
True

Layer 2 Dropout: 0.4 Dropout: 0.4 Dropout: 0.4 Dropout:
0.4

Layer 3 Unit = 50 Unit = 50 Unit = 50 Unit = 50
Layer 4 Dropout: 0.4 Dropout: 0.4 Dropout: 0.4 Dropout:

0.4
Layer 5 Dense: 16 units,

Activation:
Relu

Dense: 16 units,
Activation:
Relu

Dense: 16 units,
Activation:
Relu

Dense: 16
units,
Activation:
Relu

Output 50 × 1280 Dense: 4 units,
Activation:
softmax

Dense: 4 units,
Activation:
softmax

Dense: 4 units,
Activation:
softmax

Dense: 4
units,
Activation:
softmax

weights =
imagenet

Loss function: “binary_crossentropy”, Optimizer function:
“Adam”

pooling =
“avg”

Batch size = 32, Epochs = 10

Table 3: Accuracies of the four proposed models

Model Accuracy

EfficientNetV2-L+GRU 61.45%
EfficientNetV2-L+Bi-GRU 61.56%
EfficientNetV2-L+LSTM 62.11%
EfficientNetV2-L+Bi-LSTM 61.67%

Fig. 6 illustrates accuracy and validation-accuracy diagrams, offering a visual representation
of how the proposed models perform during training and testing across multiple epochs. Upon
closer examination of the graphs, a noticeable trend emerges. In all the charts, the training accuracy
initiates at approximately 50% in the first epoch and gradually rises to around 55% by the eighth
epoch, after which it stabilizes. However, in graph (d), a decline in training accuracy is observed
post the eighth epoch. As for the validation accuracy depicted in all the graphs, there are notable
fluctuations. These fluctuations stem from the dataset’s inherent imbalance in terms of engagement
level distribution. Specifically, the number of samples with low engagement levels is considerably
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lower than those with high engagement levels. In such a skewed distribution, it is plausible that a
majority of the minority-level samples are misclassified as belonging to the majority engagement
levels. Nonetheless, these fluctuations are less pronounced in graphs (b) and (d). Consequently, it can
be inferred that bidirectional RNN models exhibit greater stability when dealing with imbalanced
datasets in comparison to unidirectional RNN models.

Figure 6: The accuracy diagram of the four proposed models on training and testing

Additionally, Fig. 7 presents loss and validation-loss diagrams, visually representing the fluctua-
tion in loss values during training and evaluation processes for the different models. The loss function
quantifies the dissimilarity between predicted and actual labels. By reviewing the graphs, a clear trend
emerges that the training losses have consistently diminished across all graphs. Notably, graph (c)
exhibits the lowest training loss, hovering around 0.51. Moreover, the validation loss in graphs (a)
and (b) demonstrates greater stability compared to graphs (c) and (d). However, it is worth noting that
the final validation loss values in graphs (c) and (d), both approximately at 0.51, are lower than the
values in the other two graphs, which are approximately 0.52. This observation indicates that in this
specific context, the LSTM models outperform the GRU model.
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Figure 7: The Loss diagram of the four proposed models on training and testing

4.3 Comparison Performance
Table 4 intricately compares the outcomes of our four proposed hybrid models with previous

studies utilizing the DAiSEE dataset. In a benchmark study [31], diverse deep learning models,
including video-level InceptionNet, C3D fine-tuning, and long-term recurrent convolutional network
(LRCN), were tested. LRCN emerged as the leader with an accuracy of 57.90%. Several other models,
such as inflated 3D convolutional network (I3D) [35], convolutional 3D (C3D) neural networks with
focal loss [72], ResNet+TCN with weighted loss [37], and ResNet+TCN [40], were introduced in
subsequent works. Despite these efforts, the consistently superior performance of the LRCN model
remained. Comparatively, DFSTN [27] surpassed LRCN with an accuracy of 58.84%, while the deep
engagement recognition network (DERN) [73] which combines temporal convolution, bidirectional
LSTM, and attention mechanism, achieved 60%, a 1.16% improvement over DFSTN. The Neural
Turing Machine [74] exhibited an accuracy of 61.3% which is better than DERN. Notably, the
proposed EfficientNetV2-L+LSTM model, achieving an accuracy of 62.11%, outperformed both
LRCN and the majority of contemporary models. However, DenseAttNet [41] with 63.59%, and
ResNet+TCN [37] with 63.9% outperformed previous works. This comparative analysis underscores
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that our proposed models exhibit sufficient accuracy in detecting student engagement within the
DAiSEE dataset compared to earlier models.

Table 4: Comparison of proposed models and previous works on DAiSEE

Model Accuracy

InceptionNet [31] 46.40%
C3D fine-tuning [31] 56.10%
LRCN [31] 57.90%
I3D [35] 52.35%
C3D (FL) [72] 56.20%
ResNet+TCN [40] 53.60%
DFSTN [27] 58.84%
DERN [73] 60.00%
Neural turing machine [74] 61.30%
ResNet+TCN with weighted loss [37] 53.70%
C3D+TCN [37] 59.97%
ResNet+LSTM [37] 61.15%
ResNet+TCN [37] 63.90%
DenseAttNet [41] 63.59%
EfficientNetV2-L+GRU (proposed) 61.45%
EfficientNetV2-L+Bi-GRU (proposed) 61.56%
EfficientNetV2-L+LSTM (proposed) 62.11%
EfficientNetV2-L+Bi-LSTM (proposed) 61.67%

5 Conclusion

In this paper, our primary objective was to address the challenge faced by teachers in accurately
and promptly detecting their students’ engagement in online learning. To achieve this, we introduced
four hybrid spatio-temporal models designed for detecting student engagement from video in online
learning environments. These models encompassed a hybrid EfficientNetV2-L in conjunction with
gated recurrent unit (GRU), a hybrid EfficientNetV2-L paired with Bidirectional GRU, a hybrid
EfficientNetV2-L combined with long short-term memory (LSTM), and a hybrid EfficientNetV2-L
together with Bidirectional LSTM.

The EfficientNetV2-L played a pivotal role in spatial feature extraction, while GRU, Bidirectional
GRU, LSTM, and Bidirectional LSTM were employed to capture temporal information from sequen-
tial data. Our experimentation, conducted on the DAiSEE dataset featuring four levels of student
engagement, demonstrated that the proposed models exhibited superior accuracy compared to the
majority of previous works utilizing the same dataset. Notably, the EfficientNetV2-L+LSTM model
emerged as the top performer, achieving an accuracy of 62.11%.

Despite these promising results, certain limitations exist in the current study. To address these,
future research will refine the automatic recognition of learning engagement by implementing a
robust face detector to crop face regions from each frame during pre-processing. Additionally, the
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incorporation of attention mechanisms in the proposed models will be explored to further enhance
accuracy. Furthermore, our commitment to advancing research in this domain involves testing the
suggested models on diverse datasets, ensuring broader applicability and generalizability.

In essence, this study contributes valuable insights into automating the detection of student
engagement in online learning environments. The demonstrated effectiveness of our hybrid models
highlights their potential to provide teachers with accurate assessments of student engagement, thus
contributing to the ongoing efforts to enhance the quality of online education.
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