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ABSTRACT

In multi-label learning, the label-specific features learning framework can effectively solve the dimensional
catastrophe problem brought by high-dimensional data. The classification performance and robustness of the
model are effectively improved. Most existing label-specific features learning utilizes the cosine similarity method
to measure label correlation. It is well known that the correlation between labels is asymmetric. However, existing
label-specific features learning only considers the private features of labels in classification and does not take into
account the common features of labels. Based on this, this paper proposes a Causality-driven Common and Label-
specific Features Learning, named CCSF algorithm. Firstly, the causal learning algorithm GSBN is used to calculate
the asymmetric correlation between labels. Then, in the optimization, both l2,1-norm and l1-norm are used to select
the corresponding features, respectively. Finally, it is compared with six state-of-the-art algorithms on nine datasets.
The experimental results prove the effectiveness of the algorithm in this paper.
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1 Introduction

Multi-label learning [1] (MLL) is one of the hot research areas in machine learning, which
alleviates the problem that instances covering multiple concepts or semantics in numerous real-world
application scenarios cannot be accurately handled by traditional single-label algorithms. In real life,
MLL has also long been applied in several domains, such as text classification [2], image annotation
[3], protein function detection [4] and personalized recommendation [5], to name a few. With the rapid
development of the Internet, data is gradually characterized by high dimensional distribution [6].
This can lead to the problem of dimensional catastrophe suffered by multi-label algorithms for data
learning.

Label-specific feature (LSF) learning can effectively solve this problem, which is to establish the
label-specific relation between labels and features by learning the connection between features and
labels. The core idea is that each label should have a specific feature corresponding to it, i.e., the specific
features of the label are learned. In multi-label learning, l1-norm can attain feature sparsity and extract
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label-specific features, which we call private features of labels. The l2,1-norm can also achieve feature
sparsity and extract more relevant features of the labels, which we call the common features of the
labels.

Label correlation [7] (LC) has long been commonly used in LSF learning, which effectively
improves the classification performance of LSF learning algorithms. However, the correlation cal-
culated by cosine similarity is symmetric, and ignore the asymmetric correlation may introduce
redundant information in the model. Cosine similarity is also highly susceptible to dimensional
catastrophe. As the amount of data increases, the Euclidean distance metric deteriorates. In the process
of calculation, the label relevance calculated by cosine similarity is highly susceptible to the a priori
knowledge of the labels. Most of the labels in multi-label datasets rely on manual expert marking. With
the increase of data volume and the influence of experts’ experience, it is inevitable that there will be
omission and miss labeling in the process of marking. For such incomplete datasets, the LC computed
by cosine similarity methods are inevitably mixed with many spurious correlations. Therefore, it is
necessary to adopt the causal learning [8] algorithm to measure the asymmetric correlation between
labels.

In LSF learning, most algorithms only consider the private features of labels and do not consider
the common features of labels [9]. However, when we classify two similar labels, the LC of the similar
labels are also similarly strongly correlated, but the computed weight matrices are not necessarily
similar. As shown in Fig. 1. The labels y1 and y2 are strongly correlated labels, yet the learned weight
coefficients are really different. This indicates that we should fully consider the common and private
features of labels in the process of classification. Only in this way, the LSF learning can obtain more
accurate classification performance.

Figure 1: The process of addressing the label-specific feature

Based on the above analysis, we propose a causality-driven common and LSF learning. The main
contributions of this paper are as follows:

1) We propose a novel CCSF method, which use l2,1-norm and l1-norm to learn the common and
private features of labels, respectively. Thereby, more correlated features are extracted for classification.

2) We use a causal learning algorithm to compute asymmetric label correlations, discarding the
traditional way of combining correlation matrix and neighbor matrix, which reduces the influence of
original labels.

The remaining sections are organized as follows. Section 2 summarizes some state-of-the-art
domestic and international research. The proposed framework and model optimization of CCSF
are presented in Section 3. Section 4 analyzes the experimental results and other related experiments.
Finally, the conclusion is presented in Section 5.
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2 Related Work

Traditional MLL considers that all labels are distinguished based on the same features. However,
this categorization is not reasonable and brings a lot of redundant information in the process
of categorization, and the classification results are often sub-optimal. Zhang et al. proposed the
LSF learning algorithm LIFT [10], which considers that each label is classified based on specific
features. Compared with the traditional classification methods, it effectively improves the classification
performance of MLL algorithm. But the algorithm does not take into account the correlation between
labels. We consider that each label does not exist independently, but has a strong or weak correlation
with other labels. The LLSF [11] algorithm proposed by Huang et al. uses the cosine similarity
method to measure the correlation between labels. Two strongly correlated labels, whose LSF are
also strongly correlated, which further improves the performance of the LSF learning algorithm. By
different methods to measure the correlation between labels, Cheng et al. proposed the FF-MLLA
[12] algorithm, which utilizes the Minkowski distance to measure the inter-sample similarity based
on LC, and uses the singular value decomposition and the limit learning machine to classify multiple
labels. The LF-LPLC [13] algorithm proposed by Weng et al. uses the nearest-neighbor technique to
consider the local correlation of labels on the basis of the LSF learning algorithm. The algorithm not
only enriches the semantic information of labels, but also solves the imbalance problem of labels. The
MLFC [14] algorithm proposed by Zhang et al. further improves the performance of the LSF learning
algorithm by uniting LSF learning and LC to obtain LSF for each label. For the missing label problem
occurring in LSF learning algorithms, the LSML [15] algorithm proposed by Huang et al. utilizes the
correlation between labels and has better experimental results not only on the complete dataset, but
also on the missing label dataset. Zhao et al. proposed the LSGL [16] algorithm, which considers not
only global but also local correlations between labels. LSGL algorithm, based on the assumption that
both global and local correlations coexist, has more accurate classification performance than the LSF
learning algorithm, which only considers local correlations.

However, most of the above algorithms use cosine similarity to measure out symmetric corre-
lations in the learning of LSF. In fact, the correlation between labels is mostly asymmetric. As the
data dimension increases, the Euclidean distance metric becomes less effective. ACML [17] algorithm
proposed by Bao et al. and CCSRMC [18] algorithm proposed by Zhang et al. measure the asymmetric
correlation between labels using the DC algorithm in causal learning, which are both effective in
improving the classification performance of MLL. Luo et al. proposed the MLDL [19] algorithm to
fully utilize the structural relationship between features and labels. Not only does it use bi-Laplace
regularization to mine the local information of the labels, but it also employs a causal learning
algorithm to explore the intrinsic causal relationships between the labels. The BDLS [20] algorithm
proposed by Tan et al. introduces a bi-mapping learning framework in LSF learning and uses a
causal learning algorithm to calculate the asymmetric correlation between labels, which also effectively
improves the classification performance of the LSF learning algorithm. However, the above LSF
learning only considers the private features of labels and not the common features of labels. CLML
[9] algorithm proposed by Li et al. first uses a norm in the LSF framework to extract the common
features of the labels. Subsequently, the GLFS [21] algorithm proposed by Zhang et al. builds a group-
preserving optimization framework for feature selection by learning the common features of similar
labels and the private features of each label using K-means clustering. Based on the above analysis, we
adopt a causal learning algorithm to learn asymmetric LC among labels in LSF learning framework.
The l2,1-norm and l1-norm used to extract the common and private features of labels, respectively. The
effectiveness of the algorithm in this paper is proved through a large number of experiments.
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3 CCSF Model Construction and Optimization
3.1 CCSF Model Construction

In MLL, X denotes the feature matrix, Y represents the label matrix, and the dataset D ={(
x1, y1

)
,
(
x2, y2

)
, . . . , (xn, yn)

}
, where X ∈ R

n×d, Y ∈ R
n×l, l is the number of labels, n is the number

of samples, d is the number of features. xn = {xn1, xn2, . . . , xnd} and yn = {yn1, yn2, . . . , ynl} denote the
feature and label vectors. The basic model of CCSF in conjunction with the LLSF [10] algorithm
proposed by Huang et al. can be written as:

min
W

1
2

‖XW − Y‖2
F + α ‖W‖1 (1)

where α is the feature sparse parameter, W is the weight coefficient and W = [w1, w2, w3, . . . , wl] ∈
R

d×l, and wl ∈ R
d denotes the LSF of each label. However, Eq. (1) only adopts the l1-norm, which

can only extract the private features of the label, but not the shared features of the label. So, we put
l2,1-norm in Eq. (1) to extract the common features of labels, and Eq. (2) can be written as:

min
W

1
2

‖XW − Y‖2
F + α ‖W‖1 + β ‖W‖2,1 (2)

where β is the feature sparse parameter.

LC has been widely used in LSF learning algorithms, which can effectively improve the classifica-
tion performance of MLL algorithms. But cosine similarity [22] all calculates symmetric correlations.
Indeed, correlations between labels are asymmetric [23]. In this paper, we use a globally structured
causal learning algorithm GSBN [24]. First, Markov Blanket (MB) or Parent and Child (PC) part-to-
whole structure learning for each label is obtained. Then a directed acyclic graph (DAG) framework
is constructed using MB or PC learning.

With the constraint of causal LC, assuming that C is the causal LC matrix and Cij denotes the
causal relationship between labels yi and yj. We improve the learning efficiency of LSF by calculating
the Euclidean distance between wi and wj, Cij

∥∥wi − wj

∥∥2

2
. When the labels are causally related, the

features are similar. Accordingly, wi will be closer to wj. The causal correlation matrix C is defined as
follows:

Cij =
{

1 yi → yj

0 yi � yj

(i, j ∈ 1, . . . , l) (3)

where yi → yj indicates that the label yi is causally related to yj and Cij = 1. Conversely yi � yj

indicates that the label yi is not causally related to yj and Cij = 0.

Therefore, we add causal constraints based on Eq. (2). The core formula of the CCSF algorithm
can be written as:

min
W

1
2

‖XW − Y‖2
F + α ‖W‖1 + β ‖W‖2,1 + γ tr

(
WCWT

)
(4)

where γ is the hyperparameter.

3.2 CCSF Model Optimization
Considering the non-smoothness of the l2,1-norm, we use the technique in the literature [25] to deal

with the non-smoothness.
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∂ ‖W i‖2,1

∂W i

= ∂Tr
(
WT

i AiW i

)
∂W i

= 2AiW i (5)

where Ai ∈ R
l *l is a diagonal matrix with the jth diagonal element Ajj

i = 1
2

∥∥wj
i

∥∥
2

. If wj
i = 0, then Ajj

i ∈ ∂.

The CCSF model is a convex optimization problem. Due to the non-smoothness of the l1-norm,
this paper adopts the accelerated proximal gradient descent method [26] to solve the non-smoothness
of the weight matrix W by alternating iterations. The objective function is:

min
W∈H

F (W) = f (W) + g (W) (6)

where H is the Hilbert space. The expressions for f (W) and g (W) are shown in Eqs. (7) and (8), which
are both convex functions and satisfy the Lipschitz condition.

(W) = min
W

1
2

‖XW − Y‖2
F + γ tr

(
WCWT

) + β ‖W‖2,1 (7)

g (W) = α ‖W‖1 (8)

∇f (W) = XTXW − XTY + 2γ WC + 2AW (9)

For any matrices W 1, W 2, there is:

‖∇f (W 1) − ∇f (W 2)‖ ≤ Lg ‖ΔW‖ (10)

where Lg is the Lipschitz constant and ΔW = W 1 − W 2. Introducing the quadratic approximation
F (W) for Q

(
W , W (t)

)
, then

Q
(
W , W (t)

) = f
(
W (t)

) + (∇f
(
W (t)

)
, W − W (t)

) + Lg

2

∥∥W − W (t)
∥∥2

F
+ g (W) (11)

Let qt (W) = W t − 1
Lg

∇f (W), then

W = arg min
W

Q
(
W , W (t)

) = arg min
W

1
2

∥∥W − q(t)
∥∥2

F
+ α

Lg

‖W‖1 (12)

The optimization algorithm proposed by Lin et al. [27] points out that

W (t) = Wt + θt+1 − 1
θt

(W t − W t−1) (13)

In Eq. (13), bt satisfies b2
t+1 −bt+1 ≤ b2

t . Meanwhile, the convergence rate of O
(
t−2

)
is improved, and

W t is the result of the tth iteration. The soft threshold function for performing the iterative operation
is shown in Eq. (14).

W t+1 = Sε

[
q(t)

] = arg min
W

ε ‖W‖1 + 1
2

∥∥W − q(t)
∥∥2

F
(14)
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where Sε [·] is the soft threshold operator. For any one parameter xij and ε = α

Lg

, we have

Sε

(
xij

) =

⎧⎪⎨
⎪⎩

xij − ε when xij > ε

xij + ε

0
when xij < −ε

other

(15)

According to f (W), the Lipschitz constant is calculated as:

‖f (W 1) − f (W 2)‖2
F = ∥∥XTX�W

∥∥2

F
+ ‖2γ�WR‖2

F + ‖2β�WA‖2
F

≤ 2
∥∥XTX

∥∥2

2
‖�W‖2

F + 4γ ‖C‖2
2 ‖�W‖2

F + 4β ‖A‖2
2 ‖�W‖2

F (16)

Therefore, the Lipschitz constant for the CCSF model is:

Lg =
√

2
(∥∥XTX

∥∥2

2
+ 2γ ‖C‖2

2 + 2β ‖A‖2
2

)
(17)

The CCSF algorithm framework is as following:

Algorithm 1: CCSF
Input: Training dataset {X, Y}, parameters α, β, γ
Output: W
(1) Initialization: W 0 = rand (n, l), θ0 = θ1 = 1, t = 1
(2) Calculate the causal relationship between the labels C by the GSBN algorithm
(3) repeat
(4) The Lipschitz constant is obtained from Eq. (17)

(5) Update qt (W) = W t − 1
Lg

∇f (W) by proximal gradient descent

(6) W (t) = Wt + θt−1 − 1
θt

(W t − W t−1)

(7) Update W t+1 by Eq. (14)
(8) W (t+1) ← W (t)

(9) θt+1 = (
1 + √

4θt + 1
)
/2

(10) t = t + 1
(11) until convergence
(12) return W

The validation method is as follows. Xtest stands for testing dataset. The matrix dimension m is
the sample size of the remainder of the test set. Ytest represents predictive matrix. Stest represents score
matrix.

Algorithm 2: Test of CCSF
Input: Xtest ∈ Rm×d, W ∈ Rd×l;
Output: Ytest, Stest;
Stest ← XtestW ;
Ytest = sign (Stest).
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3.3 Complexity Analysis
The time complexity analysis of CCSF and comparison algorithms is shown in Table 1, where

n represents the number of samples, d represents the number of features, and l represents the
number of labels. The time complexity of CCSF consists of computing the asymmetric correlation
matrix and accelerated gradient descent method, which results in O

(
d2l + ndl + dl2

)
. According to

Table 1, it can be seen that the time complexity of LLSF is lower than that of CCSF, which is
O

(
d2 + dl + l2 + nd + nl

)
, but the classification effect is not as good as that of CCSF. The time

complexity of FF-MLLA is not given in the article. The rest of the algorithms have higher time
complexity than that of CCSF.

Table 1: Time complexity of the algorithms

Methods Complexity analysis

LSGL O
(
d

(
d2 + nl + l2

) + l
(
l2 + d2

) + n
(
l2 + d2

))
ACML O

(
d2 (nl + n + l) + l2 (n + d + 3/2)

)
LSML O

(
(n + l) d2 + (n + d) l2 + ndl + d3 + l3

)
LLSF O

(
d2 + dl + l2 + nd + nl

)
LSI-CI O

(
nd2 + nd + ndl + lg2 + d3 + d2l

)
CCSF O

(
d2l + ndl + dl2

)

4 Experiment
4.1 Datasets

To validate the effectiveness of the algorithm proposed in this paper, five cross-validations were
performed on nine multi-label benchmark datasets. The datasets are from different domains, the details
of which are shown in Table 2.

Table 2: Multi-label datasets

Datasets Instance Feature Label Cardinality Domain

Birds [2] 645 260 20 1.471 Images
Arts [1] 5000 462 26 1.636 Text
Computer [1] 5000 681 33 1.508 Text
Education [1] 5000 550 33 1.461 Text
Entertainment [1] 5000 640 21 1.640 News
Business [1] 5000 438 30 1.438 News
Recreation [1] 5000 606 22 1.606 News
Reference [1] 5000 793 33 1.793 Text
Science [1] 5000 743 40 1.451 Text
Note: [1] http://www.uco.es/kdis/mllresources/. [2] http://mulan.sourceforge.net/datasets-mlc.html.

http://www.uco.es/kdis/mllresources/
http://mulan.sourceforge.net/datasets-mlc.html
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4.2 Results and Comparison Algorithms
The experimental codes are implemented in MatlabR2021a, with a hardware environment of

IntelCore (TM) i5-11600KF 3.90 GHz CPU, 32 G RAM, and an operating system of Windows 10.

In order to compare the effectiveness of CCSF algorithms, six commonly used evaluation metrics
in MLL are selected in this paper, which are Hamming Loss (HL), Average Precision (AP), One
Error (OE), Ranking Loss (RL), Coverage (CV), and AUC (AUC). Among them, the smaller the
HL, OE, RL, CV metrics the better, the larger the AP and AUC metrics the better the experimental
effect. Specific formulas and meanings can be found in the literature [28,29]. The parameters of the
comparison algorithm are set as follows:

1) In LSGL [16] algorithm, λ1 ∈ {
10−3, 10−2, . . . , 103

}
, λ2, λ3, λ4, λ5 ∈ {

10−3, 10−2, . . . , 101
}
;

2) The parameters interval of the ACML [17] algorithm are α ∈ [2−10, 210] , β ∈ [2−10, 210];

3) Numbers of nearest neighbors in the FF-MLLA [12] algorithm are k = 15, β =1, KRBF = 100;

4) The parameters of LSML [15] are set as follows λ1 = 101, λ2 = 10−5, λ3 = 10−3, λ4 = 10−5;

5) The parameters of LLSF [11] are set to α = 2−4, β = 2−6, γ = 1;

6) The parameters of LSI-CI [30] are set to α = 210, β = 28, γ = 1, θ = 2−8;

7) The parameters of CCSF are set as α, β, γ ∈ [2−10, 210].

The experimental results of the CCSF algorithm on 9 datasets with 6 state-of-the-art algorithms
under 6 different metrics are given in Table 2, where “↑” (“↓”) indicates that higher (lower) values of
the metrics are better, and the experimental results that are dominant are bolded. The details are as
follows.

1) As can be seen from Table 3, out of the 54 sets of experimental results, the CCSF algorithm is
superior in 49 sets, with a superiority rate of 90.74%. The CCSF algorithm significantly outperforms
the other compared algorithms on all 8 datasets. The variance of the CCSF algorithm is smaller, which
also proves that the CCSF algorithm is more stable. On the Birds dataset, the CCSF algorithm and
the ACML algorithm are equally dominant, due to the fact that both algorithms use causal learning
algorithms to compute asymmetric correlations between labels. While the Birds dataset is small, it is
difficult to extract more common features of the labels, and the experimental effect dominance is not
obvious compared to the larger dataset.
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2) The CCSF algorithm significantly outperforms the ACML algorithm on these 54 sets of
experimental results. This is because the ACML algorithm only takes into account the asymmetric
relationship between the labels and does not take into account the fact that the common features of
the labels also have a very significant role in multi-label classification.

3) The CCSF algorithm significantly outperforms the traditional LLSF algorithm and the LSGL
algorithm. The reason is that the LLSF algorithm only considers the global correlation of labels. The
LSGL algorithm is superior to the LLSF algorithm, which is because the LSGL algorithm not only
considers the global correlation of labels, but also considers the local correlation of labels. Both of
them do not consider the causal relationship between the labels and do not take into account that
the common features of labels can effectively improve the performance of multi-label classification
algorithms. However, we adopt a global causality and do not consider the local causality between
labels, which is also a defect of the algorithm in this paper.

4) The experimental results of the CCSF algorithm for the average ranking of six evaluation met-
rics on nine datasets are demonstrated in Table 4, which also fully proves that the adoption of causal
correlation and common features of labels can effectively improve the classification performance of
the LSF model.

Table 4: AVG results of each algorithms on five evaluation metrics

Metrics Average ranking

CCSF LSGL ACML FF-MLLA LSML LLSF LSF-CI

HL↓ 1.0556 2.1667 3.2222 4.8889 5.5556 5.0000 6.1111
AP↑ 1.0556 1.9444 3.0000 6.2222 4.1111 5.1111 6.5556
OE↓ 1.2222 1.8889 2.8889 6.3333 4.1111 5.1111 6.4444
RL↓ 1.1111 2.1111 3.0000 4.2222 4.8889 5.6667 7.0000
CV↓ 1.1111 2.4444 3.2222 3.6667 5.0000 5.5556 7.0000
AUC↑ 1.2222 2.3333 2.7778 6.2222 5.4444 4.5556 5.4444

4.3 Parameter Sensitivity Analysis
The CCSF algorithm has three main hyperparameters. α and β jointly adjust the contribution

of the matrix W , where α controls the contribution of the private features of the labels and β

controls the contribution of the common features of the labels. γ controls the effect of asymmetric LC
on the model. In order to test the sensitivity of the CCSF model, we control the other two parameters
unchanged and adjust one parameter at [2−10, 210] for the experiment, respectively, and the experimental
results are shown in Fig. 2. χ = 2x denotes the log function of log with base 2. As shown in the figure,
our algorithms all have better experimental results in general, although there are some fluctuations in
[2−10, 210], which may also be due to the small intervals set by our algorithms. We suggest setting the
parameters α = 24, β = 24, γ = 24.
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Figure 2: Parameter sensitivity analysis on the Birds dataset
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4.4 Component Analysis
In order to verify that introducing common features of labels in the model can effectively

improve the performance of multi-label LSF learning algorithms. We conducted component analysis
experiments on nine datasets. We compare the CCSF algorithm, which combines the common and
private features of label, with the CSF algorithm, which considers only the private features of label. The
experimental results are shown in Fig. 3, where the CCSF algorithm outperforms the CSF algorithm
on multiple datasets. This indicates that considering the common and private features of labels can
effectively improve the performance of LSF algorithm. It also demonstrates that common feature
learning of labels introduced into multi-label classification algorithms can improve the accuracy of
the algorithms.

Figure 3: Component analysis on nine datasets

4.5 Statistical Hypothesis Testing
The statistical hypothesis tests in this paper are all based on a significance level of θ = 0.05. The

Friedman test [31] was first used to evaluate the comprehensive performance of the CCSF algorithm
on all datasets. The obtained FF is compared with the critical value of the F-test. If it is greater, the
original hypothesis is rejected, and vice versa. The experimental results are shown in Table 5. The
FF of the CCSF algorithm is greater than the critical value for all evaluation metrics, so the original
hypothesis is rejected for all of them.

Table 5: The Friedman statistics FF of the critical value and each evaluation metric

Metrics FF Critical value

HL 25.4452 2.2950
AP 153.2800
OE 108.3077

(Continued)
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Table 5 (continued)

Metrics FF Critical value

RL 82.7200
CV 46.6504
AUC 25.9775

Nemenyi test [32] is then used to compare the CCSF algorithm with the other six algorithms on
all datasets. A significant difference exists when the difference between the average rankings of the
two algorithms on all datasets is greater than the Critical Difference (CD) and vice versa. CD value is
calculated as follows:

CD = qθ

√
K (K + 1)

6N
(18)

where K = 7, N = 9, qθ = 2.9480, CD = 3.0021. Fig. 4 demonstrates the CCSF algorithm
compared to other algorithms on six evaluation metrics. The algorithm performance decreases in
this way from left to right. There is no significant difference between CCSF algorithm and LSGL
and ACML algorithms on HL, AP, RL, CV, AUC metrics, and there is no significant difference
between CCSF algorithm and LSGL, ACML, LSML algorithms on OE metrics. Other than, there
is a significant difference between the CCSF algorithm and the other algorithms in six evaluation
metrics. The effectiveness of the algorithm proposed in this paper can be seen from these two statistical
hypothesis tests.

Figure 4: Performance comparison of the CCSF algorithm and the comparison algorithm

4.6 Convergence of CCSF
In this paper, the sentiment dataset and the yeast dataset are selected for convergence analysis.

As can be seen in Fig. 5, after about forty iterations, the experimental results tend to converge. We
conducted the same experiment on other datasets. The convergence results are also similar.
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Figure 5: Convergence of CCSF

5 Conclusion

In response to the fact that most of the current LSF learning does not consider the common
features of the labels. And only symmetric LC is considered in the calculation of LC. The result is
the introduction of much redundant information when classification is performed, which reduces the
classification performance of MLL algorithms. Based on the above problem, we use l2,1-norm and
l1-norm to extract the common and private features of the labels, respectively. And the asymmetric
correlation between labels is calculated utilizing the causal learning algorithm. A large number of
experiments are conducted on nine datasets using six evaluation metrics, and the results prove the
effectiveness of the algorithm in this paper. But at the same time, we find some problems. We use
a global-based causal learning algorithm, which computes the global LC. However, some labels are
only associated with local labels and only have local correlation. To minimize the complexity of the
model, we also did not utilize instance correlation to improve the classification accuracy of the model.
To minimize the complexity of the model, we also did not utilize instance correlation to improve the
classification accuracy of the model. In the future, we will try to compute the local correlation of labels
using causal learning algorithms and perform experiments in conjunction with instance correlation.
We observe the results of the experiments on the complete dataset and try to solve the missing label
problem.
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