
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/jai.2024.058649

ARTICLE

Using Artificial Intelligence Techniques in the Requirement Engineering Stage
of Traditional SDLC Process

Afam Okonkwo*, Pius Onobhayedo and Charles Igah

Computer and Information Sciences, Pan Atlantic University, Ibeju-Lekki, Lagos, 73688, Nigeria
*Corresponding Author: Afam Okonkwo. Email: afam.okonkwo@pau.edu.ng
Received: 17 September 2024 Accepted: 04 December 2024 Published: 31 December 2024

ABSTRACT

Artificial Intelligence, in general, and particularly Natural language Processing (NLP) has made unprecedented
progress recently in many areas of life, automating and enabling a lot of activities such as speech recognition,
language translations, search engines, and text-generations, among others. Software engineering and Software
Development Life Cycle (SDLC) is also not left out. Indeed, one of the most critical starting points of SDLC is the
requirement engineering stage which, traditionally, has been dominated by business analysts. Unfortunately, these
analysts have always done the job not just in a monotonous way, but also in an error-prone, tedious, and inefficient
manner, thus leading to poorly crafted works with lots of requirement creep and sometimes technical debts. This
work, which is the first iteration in a series, looks at how this crucial initial stage could not just be automated
but also improved using the latest techniques in Artificial Intelligence and NLP. Using the popular and available
PROMISE dataset, the emphasis, for this first part, is on improving requirement engineering, particularly the
classification of Functional and Non-functional Requirements. Transformer-powered BERT (Bidirectional Encoder
Representations from Transformers) Large Language Model (LLM) was adopted with validation performances of
0.93, 0.88, and 0.88. The experimental results showed that Base-BERT LLM, its distilled counterpart, Distil-BERT,
and its domain-specific version, Code-BERT, can be reliable in these tasks. We believe that our findings could
encourage the adoption of LLM, such as BERT, in Requirement Engineering (RE)-related tasks like the FR/NFR
classification. This kind of insight can help RE researchers as well as industry practitioners in their future work.

KEYWORDS
NLP; artificial intelligence; software; requirement engineering; SDLC; requirement classification; functional and
non-functional requirement; large language model (LLM); BERT

1 Introduction

Artificial Intelligence is currently leading many innovations in our world [1] and making lots of
inroads into the software development life cycle, the SDLC [2]. For instance, GitHub’s Co-pilot [3]
and ChatGPT’s ability to generate codes is popular today. Agentic AI and AI agents are becoming
popular as shown by frameworks such as AutoGen [4] and MetaGPT [5] due to the agents’ abilities to
assume and be assigned various roles traditionally reserved for humans.

https://www.techscience.com/journal/jai
https://www.techscience.com/
http://dx.doi.org/10.32604/jai.2024.058649
https://www.techscience.com/doi/10.32604/jai.2024.058649
mailto:afam.okonkwo@pau.edu.ng


380 JAI, 2024, vol.6

In a typical software process, SDLC, Requirement Engineering (RE) is the first stage. As one of
the most crucial stages [6–8], it sets the proper background and foundation for all other stages of the
SDLC. Consequently, it facilitates the proper understanding of the whole project regarding its scope
and core functionality, and the way it is carried out can predict the success of any software project [9].
Indeed, most failures of software projects are traceable to ineffective approaches at this stage [10].

Undoubtedly, human analysts and other stakeholders play a key role in the requirement elicitation
process [11] using natural language.

Unfortunately, there are inherent challenges associated with using these complex human lan-
guages. These include issues such as ambiguity, incompleteness, and inconsistencies [12] including the
inability to identify Functional Requirements (FR) and Non-functional Requirements (NFR) from
requirement texts as articulated by these authors [13].

Some of the aforementioned challenges have been addressed using tools and AI techniques such as
NLP [14]. However, most of them involve typical rule-based heuristics, lexical [10] and semi-automatic
approaches, information extraction, morphological analysis, conceptual model [14], and other related
NLP techniques. These adopted approaches have yielded remarkable results and improvements in
solving these problems [14]. However, there still exists a gap, as regards using the latest innovations
in NLP, such as advanced embedding techniques and using Transformer architecture, and Large
Language Models (LLMs), to better tackle these inherent difficulties found in natural language and
requirement engineering processes. This gap is backed by research conducted by Hou et al. [15]
who discovered that among all the stages of SDLC, RE has recorded only 4.72% adoption of
LLM. Compare this to implementation and maintenance phases that have had 58.3% and 24.89%,
respectively.

Therefore, this paper specifically and concretely addresses the above gap: Classification of
Functional and Non-functional Requirements from requirement texts by fine-tuning Transformer-
based Large Language Model (LLM) specifically BERT.

It suffices to state here that due to time and resource constraints, it was not possible to tackle all
these problems at once; however, we believe that this first experiment was able to address the last issue.
And there is a plan to attempt other inherent requirement problems in future works.

Using the popular PROMISE NFR dataset [16]. Our experiments showed that BERT-Base
particularly outperformed comparably, even on little fine-tuning and reduced training times, with
those of the authors [17–19]. Incidentally, our findings also confirmed the report, by the developers
of Distil-BERT, that it retains about 95% of the capability of the base BERT counterpart that it was
distilled from. We also observed that the finding of this work agrees with the findings of researchers
such as Alhoshan et al. [17] that generic LLM outperforms domain-specific ones.

Our results encourage the adoption of LLM, especially BERT, in RE-related tasks such as the
classification of FR/NFR. This kind of insight can help RE researchers as well as industry practitioners
in their future work.

This paper is structured as follows: Section 2 reports the background and review of related litera-
ture, Section 3 details the proposed and adopted methodology, Section 4 explains the experimental
results and briefly states the validity threats. Finally, Section 5 outlines the conclusion with some
limitations as well as recommendations.



JAI, 2024, vol.6 381

2 Background and Literature Review
2.1 Overview

In this section, a background and a review of the related literature will be provided.

2.2 Background and Related Literature
Artificial Intelligence (AI) is currently being seen at the forefront of driving the 5th generation

of the Industrial Revolution. As of the time of writing, some top business executives are calling for a
temporary halt in the development of AI. In addition, there are debates currently going on regarding
many jobs that are in the process of being displaced by it. Jobs such as content writers, editors, teachers,
and even programmers are listed as being on the line. While these debates are still ongoing with
arguments for and against them, there is no doubt that AI is causing lots of disruptions in many
industries. Many people have also pointed to its risks in general and in the military. A case in point,
a top AI chief from Google, Geoffrey Hinton, recently resigned, so that he could freely criticize the
apparent risks associated with AI. Elon Musk himself, the owner of Twitter (now X) and Tesla, also
pledged to build the so-called “Truth GPT” (whatever that means) to compete with both Microsoft-
backed OpenAI’s GPT and Google’s Bard [3], among others. All these serve to buttress further that
AI is causing lots of upheaval and automating a lot of domains traditionally done by human beings.

In the realm of software Engineering, AI is also not left out, ranging from Microsoft-owned
GitHub Co-pilot [3], to ChatGPT’s code generation using Generative Pre-Trained Model (GPT),
Some researchers have used TESTPILOT [20] for automatic unit tests generation using LLM, etc.
Stack Overflow recently reported experiments currently being carried out in many areas and, also in
Google, such as using AI for code reviews and introducing plugins that could lead to the so-called
‘self-healing codes’; that is, the ability of codes already committed to the version control system, being
automatically corrected and deployed to production by AI after being reviewed once the build process
failed in the CI/CD pipeline.

For developers, it is not a secret that software engineering and development is hard and complex
[21]. On one hand, partly due to misalignment and the knowledge gap between business analysts or
domain experts, who have expertise in their business domain, and software engineers who are masters
of technicality, on the other hand. Thus, to simplify things, it has traditionally followed a cycle known
as the Software Development Life Cycle (SDLC). In this cycle, requirement engineering is obviously at
the forefront [12]. Unfortunately, it has often been done tediously resulting in inherent issues such as
vagueness, and incompleteness [12], among others already listed, these call for an innovative approach.
With this background, the next section gives a review of related literature and previous works.

These reviews would be divided into these categories: Linguistic/Grammar Rules, GUI/Diagram-
matic Aided Builder Tools, Rule-Based/Parsing/Pattern Matching Heuristic Techniques, and ML
Models techniques.

2.2.1 Linguistic and Grammar Rules

These are based on pure analysis and parsing of grammar and linguistic rules such as subject, verb,
and objects while leveraging on their relationships. Kuchta et al. [22] proposed a methodology, different
from domain ontology and traditional statistical approaches, due to their inherent weaknesses.
Instead, they proposed a modern grammatical analysis tool powered by the OpenNLP framework
and WordNet lexical database. The procedures involved splitting, with the help of OPENLP, the
texts into sentences, followed by tokenization, part of speech (POS) tagging, disambiguation of POS,
phrase detection, and finally noun phrases. The above steps are combined into an NLP pipeline.



382 JAI, 2024, vol.6

Then concepts are detected with the help of WordNet. Finally, hypernyms, synsets, and hyponyms are
used to detect relationships between words. Though their contribution helped to solve the problem of
ambiguous concepts, it was not exhaustive since their next action plan, as of the time they drafted the
report, was to generate class diagrams from the disambiguated concepts.

2.2.2 GUI-Diagrammatic Aided Tools

In this category, there is usually a graphical user interface (GUI) that enables or aids the analysts
in requirements elicitation and management. According to Ibrahim et al. [23], a web-enabled platform
called Circle was developed by authors Ambriola and Gervasi for the selection, elicitation, and
validation of software requirements. It was both capable of information extraction and measurement
of consistency of extracted information. The above authors Ibrahim et al. [23] also built a desktop
and GUI-based RACE system, which was able to assist software developers and requirement analysts
in generating UML class diagrams; it, however, had the limitation and could not identify one-to-one,
one-to-many and many-to-many relationships.

2.2.3 Rule-Based-Parsing and Pattern-Matching Heuristic Technique

For this approach, certain patterns or keywords, entities, relationships, and co-references are
extracted from the requirement texts; these, in addition, include the use of heuristic rules. According
to Gamage [24], recent studies in these areas use part-of-speech (POS) tagging, domain-centered
databases, domain ontology, and entities. According to Ibrahim et al. [23], there was a proposed
technique that uses domain ontology and NLP; since the main classes are usually interrelated
via distinct types of relationships such as one-to-one, many-to-one, etc. The Object Oriented(OO)
classes are discovered via part of speech tagging, grammar parsing, and linguistic patterns, finally,
refinement is done using domain ontology. These authors [23] incorporated another heuristic-based
approach that they called the Taxonomic Class Model (TCM), and it involves several modeling
rules including analysis of nouns, using structural rules of English sentences, and class categories
among other heuristic rules. Though this rule-based approach generally worked, however, as is the
case with heuristics rules, they didn’t cover extensive cases as shown by the CM-Builder system of
Herchi et al. [25], this is unlike LLMs which are generally pre-trained with extensive datasets.

2.2.4 Machine Learning and Modern Techniques

ML models are typically trained to extract relationships and entities from NL texts through
algorithmic training; this helps to recognize patterns in the context of the texts. According to Gamage
[24], these models are good at identifying links and relationships that exist among components. Such
popular ML algorithms, used, include Support Vector Machine (SVM), Tree-based algorithms such
as the Decision Tree. They made use of initially defined keywords stored in the database, pertaining to
a particular domain, with the aid of domain ontology. Also, the same writer Gamage [24] reported that
Abdelnabi et al. [12] made use of NLP in combination with heuristic rules to extract UML artifacts,
with the aid of the Stanford CoreNLP library. This framework aided in achieving dependency parsing,
extraction of information, and tokenization. Logistics and Perceptron classifiers were, furthermore,
used. In other works, such as Arachchi [26], the Naive Bayes classifier was used for the attributes
and key terms needed to generate Unified Modeling Language (UML) components. In other areas,
advanced algorithms such as Convolutional Neural Network (CNN) and Generative Adversarial
Network (GAN) were used in the generation of architectural diagrams. ML technique is certainly
a modern approach to solving some highly structured data problems; however, it is not as efficient as a
deeply contextualized transformer approach such as BERT which uses bi-directional LSTM and can



JAI, 2024, vol.6 383

consider left-to-right contexts. Moreover, its supervised method requires extensive data as shown in
the works of Alhosan et al. [17].

2.3 Detailed Literature Review
In the works of Deeptimahanti et al. [27], adopting an NLP, Rule-Based, mostly Model

Driven Engineering (MDE) approach, the researchers proposed a domain-independent system called
UMGAR, aimed at assisting developers in generating UML analysis, collaboration, and design class
models from natural language based-requirement texts. The architecture is broadly divided into two
components: the NLP Tool Layer and Model Generator. Some of the key attributes of UMGAR
include First, the system used NLP technologies such as Java-RAP, WordNet, Stanford Parser, and
XMI import facility for visualization of the generated UML artifacts. Furthermore, it uses a glossary,
and eight syntactic reconstruction rules to solve the problem of incompleteness, ambiguities, and
other related communication gaps. Also, this technique used some features to identify the context of
a particular OO element. Lastly, UMGAR can generate Java code for the corresponding design class
model that was generated, in addition to a feature that allows traceability between the requirement
texts and generated code.

Ammar et al. [13] surveyed the applications of AI in the software development process, especially
SDLC. They presented the available trending tools, for software engineers, industry practitioners, and
SDLC process, to focus on instead of the prevailing academic tools of that time. At the same time, they
highlighted areas of research. They articulated problems arising from the requirement engineering
phase of SDLC such as ambiguity of requirements, incomplete, imprecise, vague, conflicting, and
volatile requirements. Finally, they highlighted others including communication problems among
stakeholders and difficulty in requirements management.

For Herchi et al. [25], adopting NLP, Domain Ontology, and Heuristics, the scientists implemented
a similar approach as the afore-mentioned RACE system [23]. In addition, they introduced XML
and used a text-processing java-based open-source tool, GATE framework, built by the University of
Sheffield. They, in addition, used linguistic, heuristic rules, and just as the previous authors they used
domain ontology for refining the identification of concepts. Their solution was, thus, able to identify
relationships among OOP objects.

Kuchta et al. [22] proposed a methodology different from domain ontology and traditional
statistical approaches due to their inherent weaknesses. They proposed a grammatical analytic tool
powered by OpenNLP and WordNet. The procedures involved, using OpenNLP, splitting the texts
into sentences, followed by tokenization, part of speech (POS) tagging, disambiguation of POS, phrase
detection and finally noun phrases analysis. The above steps are combined into an NLP pipeline. Then,
concepts are detected with the help of WordNet. Finally, hypernyms, synsets, and hyponyms are used
to detect relationships between words.

Stol et al. [28] tried to solve the problem of inconsistency of research methods and terminologies
used in Software Engineering (SE) among researchers, the authors proposed the ABC framework
which describes generalizability over Actors(A), an exact measurement of their Behaviors (B) in a
realistic Context (C). According to them, this offers a holistic understanding of eight archetypal
research strategies. The framework uses two important aspects in research design: unobtrusiveness/in-
trusiveness of the research and generalizability of research discoveries. Finally, the newly proposed
research strategies were demonstrated in two popular SE domains: Requirement Engineering and
Global Software Engineering.



384 JAI, 2024, vol.6

For their part, Wagner et al. [6] observed that there was little or no sound theory guiding SE and
RE, the researchers designed a survey instrument that was initially tested in Germany but was later
validated and carried out in ten countries, with respondents coming from 228 organizations. Their aim
was to establish an empirically based descriptive and explanatory theory for Requirement Engineering
(RE). One of their key findings is that interviews, prototyping, and meetings are the most frequently
used requirement elicitation processes.

Elallaoui et al. [29] adopted agile, scrum, methodology, and NLP to automatically transform user
stories into UML use-case diagrams.

Karunagaran [9] proposed AI and NLP techniques that can be helpful in minimizing human
involvement in the requirement stage of SDLC and improving this phase before moving to the design
stage. His suggested solutions include, apart from the traditional sentence tokenization approach,
modern techniques such as lemmatization, text pre-processing, feature extraction, regex, and classi-
fication using ML algorithms (such as Logistic Regressions, Random Forest, Decision Trees, etc.).
He, likewise, described how functional and non-functional requirements can be extracted from
requirement texts with higher accuracy.

Regarding Abdelnabi et al. [12], the authors proposed a way to generate UML class models from
NL texts using NLP and a handful of heuristic rules.

Ameller et al. [30], in their surveys, studied the degree of adoption of Non-Functional Require-
ments in the context of Model Driven Development (MDD). They interviewed practitioners from 18
companies in 6 European countries. Their findings showed that there is little support for NFRs (Non-
Functional Requirements) by practitioners of MDD. Productivity, reusability, and maintainability
with expectations met for productivity and maintainability when MDD is adopted.

As regards Lano et al. [31], having discovered an innovative technique to combine metamodel
matching with automated model transformations (MT) requirements analysis, these authors worked
on improving MT using techniques of Model Transformations by Example (MBTE) and automated
Requirement Analysis with the aid of NLP and Machine Learning (ML), The authors used the MBTE
to address the first two sets of limitations of meta-model matching. While NLP and ML were used to
address the third and fourth sets of identified limitations of the same meta-model matching.

Budake et al. [19] did a literature review and proposed a theoretical approach to discover and
classify functional and non-functional requirements of SRS. Their aim was to help software developers
and testers to achieve this and improve the creativity of their craft. They described an approach by
a researcher that classified requirements text into functional and non-functional requirements using
a supervised ML binary classifier algorithm. The experiment produced a recall of 92% using quite
modern NLP data pre-processing features such as n-grams and bags of words. However, according to the
experiment, higher recall and lower precision were obtained on automatic feature selection. They listed
issues inherent in natural language requirements as: Ambiguity, issue of vagueness, incompleteness,
subjectivism, and missing elements just as noted by previous authors Ammar et al. [13]. Lastly,
following their discussions, the authors recommended the following should be done, by anyone
interested in this area, before using NLP in the requirement-gathering stage of SDLC: Domain
knowledge and modeling, appreciation of common vocabulary, and clear internalization of a domain,
identification of objects, conditions, events, response, state and relations of the system and ordinarily
the ML model should receive historical data.

With respect to Franch et al. [32], with the aim of investigating any alignment between RE research
and industrial practice, the paper carried out an empirical study via a questionnaire-based approach



JAI, 2024, vol.6 385

to find out the relevance of RE research for practitioners in the industry. It surveyed 435 RE research
papers found in major conferences. The study participants were 153, providing 2164 ratings.

Hossain et al. [14], in this work, the researchers extensively surveyed the different traditional and
popular NLP-powered conceptual modeling frameworks. Specifically, they studied how each system
was constructed, the architecture, motivations, and verification capability, among others.

Hidellaarachchi et al. [33] studied the influence of human aspects such as motivation and
personality that impact practitioners’ work regarding RE-related activities. The study was in the form
of a survey that was carried out on 111 software practitioners of RE-related activities. Their findings
suggest that human aspects such as motivation, communication, domain knowledge, personality, and
attitude are incredibly important in RE. Emotions, cultural diversity, and geographic distributions
were found to be moderately important.

Alhoshan et al. [17], using the zero-shot Learning method as well as Transformer-based LLM,
the researchers observed that the scientific community had been focusing on using supervised learning
techniques, which has the inherent problems of relying exclusively on labeled data, as regards solving
Requirement Engineering (RE) challenges. Unfortunately, these annotated data are often lacking or
grossly inadequate. Hence, these scientists proposed another approach for RE classifications based on
zero-shot learning that does not need labeled data.

Subahi [7], with a noble intention of contributing to a green and sustainable RE and thus greener
software, presented a proof-of-concept to having a greener RE. The study also expanded the popular
PROMISED dataset to include sustainable elements in the NFR. Finally, BERT LLM was used in
this research.

Aranda et al. [11] wanted to confirm the popular assumption that experience improves the
elicitation effectiveness of requirement analysts. However, their quasi-experiment proved that the
impact of experience on a requirement analyst’s effectiveness varies depending on the problem domain.
Positive effects were more noticed as regards interviews and requirement experiences in familiar
domains. They concluded that experience has a bearing on analyst effectiveness depending on whether
the problem domain is familiar or not.

Hou et al. [15] in their work provided a systematic review of Large Language Models (LLMs) in
software engineering, categorizing LLMs used in SE tasks and data collection methods commonly
employed. Importantly, the paper examined specific SE tasks where LLMs have been employed
most. They discovered that among all the stages of SDLC, RE has recorded 4.72% adoption of
LLM. Compare this to the Implementation and Maintenance phases which had 58.3% and 24.89%,
respectively.

Lastly, Shreta and Santo [18] explored how AI techniques can be used to improve the design phase
of the SDLC.

2.4 Observations from Literature Review
Having reviewed existing literature, a gap is currently missing: Using advanced embedding

techniques to improve the requirement process of SDLC. Little or very few researchers seem to have
used advanced and deeply contextualized Large Language Models (LLMs) to carry out tasks such
as Requirement Classifications [15]. This means this novel technique is yet to be fully and sufficiently
explored. Hence, this work will explore this approach/methodology to contribute to and advance this
field.



386 JAI, 2024, vol.6

3 Methodology

For this chapter, the sections are divided into a brief Statement of the proposed Methodology
and Technical Approach, Proposed Architecture, Reason for the Proposed Architecture/Technical
Approach, Brief Description of Architectural Components, Proposed Technologies, Frameworks/Li-
braries, and Configuration of Training Environment, This is followed by Description of Datasets and
its Source, Description of Algorithmic Steps, Evaluation Metrics/Hyper Parameter Tuning and lastly
Ethical Considerations.

3.1 Research Design and Statement of Methodology and Proposed Technical Approach
Adopted Approach: Fine-Tuning of Bidirectional Encoder Representations from Transformers

(BERT) LLM and Attachment of Classification Head to the Transformer-Based Model

Classification of Requirements Texts into Functional (FR) and Functional (NFR) requirements
is a popular aspect of Requirement Engineering. This helps both the system analysts, developers, and
other stakeholders to have a clearer picture of the new system, and also to know areas to focus initial
attention. So, this project intends to fine-tune a pre-trained LLM Model for Functional and Non-
Functional Requirements Classifications. The LLM that it will be using is transformer-based BERT
LLM, introduced by Google in a paper by Devlin et al. [34]. It will also make use of the following
technologies, along with the LLM: Google TensorFlow and its Keras API, Hugging Face Transformer
API, and finally both TensorFlow and Hugging Face Hubs to download the pre-trained models. The
pre-trained BERT Models that will be used are:

1. Bert-Base: This is one of the original versions of BERT trained by Google with 110 million
parameters, as reported in detail by Devin et al. [34] and summarized by Okonkwo et al. [35].

2. Code-BERT : A version of BERT trained and tailored for both programming texts and
language texts, since we are trying to solve software development RE problems, this explains
why we adopted it.

3. Distil-BERT : Another version of BERT that is lesser in size than the original BERT base
model, but nevertheless, as confirmed by Sahn et al. [8], retains about 95%–97% of the original
base counterpart’s capabilities while being faster by 60%. It is also reported by the same
authors to have reduced the total parameters of the BERT base by 40%. Moreover, according
to Alhosan et al. [17], Distil-BERT gave the best result in security requirement classification,
these key features of the Distil-BERT made us adopt it.

3.1.1 Proposed System Architecture

The proposed overall system architecture is shown in Fig. 1

Note: Fig. 1 summarizes the overall system: typically, the PROMISED NFR datasets are inputted
into BERT LLM, and the output is a BERT NFR/FR Classifier for Requirement Gathering.



JAI, 2024, vol.6 387

Figure 1: The complete system architecture

Going forward the overall architectural components will be broken down, starting with LLM,
followed by justifications for using BERT, TensorFlow, and others, and we will give a brief justification
for using these technical components of the architecture:

3.1.2 Justifications for the Proposed Architectural Components and Technical Approach

In the first place, LLM was used for the following reasons:

1. LLM is a pre-trained model, meaning lots of datasets were used during the pre-training. One
just needs to fine-tune the weights with little datasets. Since there are insufficient datasets in the
software domain, and in particular requirement engineering, this thus makes LLM a perfect
candidate.

2. Pre-trained LLM is efficient in terms of energy, reduces computing costs, and carbon foot-
prints, and thus leads to a sustainable and safer climate, apart from efficiency of time and
other resources during training.

Secondly, BERT was adopted for the following reasons:

I) BERT is reported to be particularly good in software domains [17], this includes training a
classifier in SRS documents [7].

II) It has lots of pre-trained extensions capable of performing a wide array of tasks. Currently, it
has at least 3 LLMs available in Hugging Face’s NLP hub, capable of performing software-
related tasks.

III) BERT is also a deeply contextualized LLM since it is built on top of already existing advanced
embedding techniques such as:



388 JAI, 2024, vol.6

1. Transformer: This provides it with the necessary encoder and decoder stacks apart from
multi-head attention. This was dealt with in detail in the following sessions.
The reader is advised to read the second part of this work [35] or better still read Attention
is all you need by Vaswani et al. [36].
2. ULM-FiT : Universal Language Model Fine-Tuning (ULM-FiT) is both an architec-
ture and efficient transfer learning method that can be applied to NLP tasks. It has a
method that makes LLMs fine-tunable for different future downstream tasks. It was
introduced by Howard and Ruder in a 2018 paper titled Universal Language Model Fine-
tuning for Text Classification.
3. ELMO: This in turn uses bidirectional LSTM (Long Short-Term Memory) to under-
stand the context of each word.

It makes use of deep contextualized representations of each word based on the other words in the
sentence using a type of neural network called bi-directional long short-term memory (LSTM). Unlike
BERT, however, ELMO considers the left-to-right and right-to-left paths independently rather than a
single unified view of the whole context.

Since context, precision, and ambiguity detection are particularly important in software require-
ment analysis, the above constituent features make BERT a desirable choice.

Finally, Google TensorFlow and Hugging Face were chosen for the following reasons:

1. Google, apart from being the original developer of BERT, has a sizable number of pre-trained
BERT models on its TensorFlow hub.

2. Hugging Face has an even more extensive and larger collection of different ML models,
including BERT pre-trained LLMs. The platform, especially, provides lots of software-specific
LLMs, some of which are already listed above.

Configuration of Training Environment:

The training environment is made up of the following:

1) Google Colab-It is a popular environment for training ML models and carrying out other
data science workflows. The availability of a Graphical Processing Unit (GPU) and Tensor
Processing Unit (TPU) makes this environment an attractive option for resource-intensive
training.

2) Installing and importing TensorFlow ML Libraries on Colab notebook.
3) Installing and importing, on Google Colab notebook, the afore-mentioned Hugging Face

Transformer Framework, and other related libraries.

3.1.3 Description of Dataset and Its Source

Since this is a software requirement task, the dataset that will be used is the PROMISE NFR
dataset, made available here [16], a popular software requirement dataset widely used in Requirement
Engineering by researchers. This dataset [16] is quite small containing only 625 requirement entries.
In addition, it is imbalanced since the Non-Functional Requirements (NFRs) class is quite dominant,
59% or 370 while Functional Requirement texts contain 41%, with 255 entries to be precise.

Furthermore, NFRs are divided into 11 classes: Availability, denoted by A, and made up of 21
entries. Legal denoted by L consists of 13 entries, Look and Feel denoted as LF is 38, Maintainability
denoted as MN is 17, Operational denoted as O is 62, PE represents Performance and this contains
54 entries, Scalability (SC) is 21, SE represents Security consisting of 66 requirements, US represents



JAI, 2024, vol.6 389

Usability and is totaled 67, Fault Tolerance (FT) has just 10, and Portability denoted as PO is the least
with just only 1 requirement belonging to its class.

Fig. 2 shows the first 10 rows of the dataset as displayed by the Data table of Google Colab. The
Excel screenshot is also shown.

Figure 2: A view of promise datasets from Google Colab’s data table API

As can be seen in Fig. 2, the class label represents different classes of the NFR already listed above.
Our target column, the NFR column, is a binary column we want to predict, where a one (1) represents
that the requirement text is Non-Functional (NFR), but a zero (0) denotes functional requirement.

3.1.4 Brief Description of Architectural Components, Frameworks and Libraries

The reader is encouraged to read the second part of this work Okonkwo et al. [35] for more details
on this section.

3.1.5 Description and Outlining of Algorithmic Steps

In this section, there will be a brief description and outlining of the algorithmic steps followed in
the Fine-Tuning of BERT for Requirement Classification.

First, the solution involves two approaches:

1. Using TensorFlow/Keras, via its Data API, Pipeline, and other related models and frameworks:
This approach is longer and more complex.

2. Using Hugging Face’s Transformer as well as TensorFlow/Keras API: This approach is shorter
and less complex.

The first approach involves carrying out the following Tasks:

1. Task 1: Setting up TensorFlow and Colab Runtime

2. Task 2: Load the PROMISE NFR Dataset and carry out some Exploratory Data Analysis
(EDA). Split the dataset into 80% training and 20% test sets. Furthermore, split the dataset into 75%
training sets and 25% validation sets, applying a stratified random sampling technique as an argument
in the train_split function of the sklearn library



390 JAI, 2024, vol.6

3. Task 3: Create tf. data.Datasets for Training and Evaluation

4. Task 4: Download a Pre-trained BERT Model from TensorFlow Hub

5. Task 5: Tokenize and Pre-process Text for BERT

6. Task 6: Wrap a Python Function into a TensorFlow op for Eager Execution

7. Task 7: Create a TensorFlow Input Pipeline with tf.data

8. Task 8: Add/Attach Classification Head to BERT

9. Task 9: Fine-Tune BERT for NFR Classification

10. Task 10: Evaluate the BERT NFR Classification Model

The second algorithmic approach, as illustrated in Fig. 3, consists of smaller set of tasks and
involves using Hugging Face Transformer and related libraries.

Figure 3: An illustration of the second algorithmic approach

Fig. 3 shows a process diagram illustration of the second algorithmic step.

They are explained in detail as follows:

1. Task 1: Setting up TensorFlow, Google Colab Runtime and Hugging Face Libraries
2. Task 2: Load the PROMISE NFR dataset and carry out some Exploratory Data Analysis

(EDA). Split the dataset into 80% training and 20% test sets. Furthermore, split the dataset
into 75% training sets and 25% validation sets applying a stratified random sampling technique
as an argument in the train_split function of the sklearn library

3. Task 3: Create tf.data.Datasets for Training and Evaluation
4. Task 4: Download and Load Different Versions of Pre-trained BERT Models from Hugging Face

Repo: In this step, we shall download pre-trained and afore-listed LLMs such as: Sentence
BERT, BERT All Mini, Distil-BERT, Hugging Face’s Code-BERT, and Stack Overflow’s
BERT Overflow

5. Task 5: Tokenize Each Domain Specific Model
6. Task 6: Load Model and Attach Classification Head
7. Task 7: Evaluate the BERT NFR Classification Model

3.1.6 Brief Description of Architectural Components, Frameworks and Libraries

For the two approaches, we shall be using binary accuracy since this is the case of binary
classification.



JAI, 2024, vol.6 391

3.1.7 Evaluation Metrics and Training Parameters

For the two approaches, we shall be using binary accuracy since this is the case of binary
classification. In addition, we shall compare both the validation and the training accuracy metrics. This
method helps in finding out if there is a presence of overfitting, known as high variance, or underfitting
also called high bias. Other optimization techniques that we plan to use include:

1. Lower epoch values, say 12, since BERT is large with 109 million+ parameters. Reducing the
epoch will reduce computing time, though it might affect performance. So, there is a need for
a certain level of trade-off.

2. My loss function is BinaryCrossEntropy for the simple reason that this is a fine-tuned BERT
model that does binary classification.

3. We shall make use of Adam as an Optimizer for its proven efficiency and popularity. Moreover,
it is a viable alternative to stochastic gradient descent since it can adapt the learning rate based
on the historical gradient descent.

4. We will, also, make use of other call-back functions from Keras such as ReduceLROnPlateau.
This adjusts and reduces the learning rate to 0.0001, for instance, based on the current perfor-
mance during the training process, EarlyStopping, stops the training process when the model
performance is no longer improving. This prevents waste of resources and computer time.

3.2 Ethical Considerations
For the PROMISE dataset used in this fine-tuning work, there is no ethical issue, either as regards

the acquisition, the processing of the dataset, or the subsequent experiment. Also, the dataset is freely
available and has been used extensively by the research community [17]. So, there is nothing affecting
ethical concerns such as user privacy or other questions posed by moral philosophers, especially
concern for others, fairness among other fundamental ethical principles and virtues. However, we have
read reports accusing BERT of bias though this is yet to be seen in existing literature. Nevertheless, the
prospective user is warned to be careful when using BERT LLM, proposed as the default LLM in this
work, as such discrimination could be engraved unconsciously in the massive dataset it was trained
on. Also, LLMs are known to perpetuate and amplify biases prevalent in their training data. A case in
point: Some researchers [37] carried out a study that revealed gender bias in LLM-generated reference
letters. There are also popular cases of hallucination bias.

4 Results Discussion
4.1 Observations from the First Approach: BERT-Base with Google Hub

First, we would like to present, pictorially, outputs as well as Keras plots for this approach. Figs. 4
and 5 both show experimental outputs.

Fig. 4 shows a tabular summary of input at different layers: BERT Input Layer, Keras Layer, and
Output Layers. More importantly, it shows the total number of trainable parameters which is 768 in
this case.

Fig. 5 shows a visual plot of input at different layers: BERT Input Layer, Keras Layer, and Output
Layers. More importantly, it shows the total number of trainable parameters which is 768 in this case.

With an epoch value in the range of 4–5, the experimental result is as follows:

1. Training Accuracy: 99%

2. Validation Accuracy: 93%



392 JAI, 2024, vol.6

Figure 4: TensorFlow-keras model summary of trainable parameters and model size

Figure 5: Keras visual plot of trainable parameters

First, in comparison with performances of classical ML algorithms, such as SVM, Naïve Bayes,
etc., reported by Alhosan et al. [17], this result demonstrates the potential of the transformer-based
model in Requirement Engineering tasks.

However, there is obviously the case of overfitting, even if there is no underfitting. BERT, and
in general many large deep learning models, are prone to overfitting, this is because they are usually
complex have large trainable parameters and in our case, our PROMISE dataset is quite small (barely
600 data points), this is often one the reasons behind overfitting. Nevertheless, we implemented
other strategies for reducing overfitting such as adopting an early stopping technique, and tuning
the dropout layer. Lastly, we believe that further tuning or hyperparameter tuning can reduce the
overfitting especially if we increase the epoch value which is between 4–5 in this case. Other techniques
such as conventional data augmentation, regularization, and training only a few layers of BERT while
freezing others could help reduce the overfitting.



JAI, 2024, vol.6 393

4.2 Observations from the Second Algorithmic Approach: Domain-Specific LLM
Please find Figs. 6 and 7 plots of respective training-validation loss and training-validation

accuracy for the Code-BERT model. It is plotted against the epoch.

Figure 6: Training-validation loss plotted against epoch

Figure 7: Training-validation accuracy plotted against epoch

Fig. 6 shows that as the training time increases, the calculated loss function result reduces, which
means that the model is performing better. At epoch 2.5 and 6.7, the results for both validation and
training seem to converge.

Mathematically, we know that for a given input x, and a labeled true output y, the model is expected
to predict an output ŷ.



394 JAI, 2024, vol.6

The loss is supposed to show a discrepancy between y and ŷ.

So, in a single instance of training or validation, this discrepancy can be measured with a loss
function denoted as Loss(y-ŷ).

For all the data points, it can be summed as:
∑

i=1
NLoss

(
yi − ŷi

)

where N is the total number of data points in the training or validation sets.

So, for instance, using stochastic gradient descent or any of its variants, the whole point of training
is to minimize the loss function as shown below:

θ : =θ−∂∇θLoss(y-ŷ)

where θ is the trainable parameter, ∂ is the adjustable learning rate.

Fig. 7 shows that as the training time increases, the calculated training and validation accuracy
results increase, meaning the model is performing better. At epochs 2.9 and 5.9, the results for both
validation and training seem to converge, and after that they diverge meaning that the model is no
longer improving.

Table 1 shows a more nuanced performance of the model other than just validation performance,
it highlights precision, recall, and F1-Score of domain-specific models.

Table 1: Performance metrics reports

Class/Label Precision Recall F1-Score Support

0 0.98 0.75 0.85 55
1 0.83 0.99 0.90 70
Accuracy 0.88 125
Macro Avg 0.90 0.87 0.87 125
Weighted Avg 0.90 0.88 0.88 125

4.3 Comparisons of Findings from Different Domain Specific LLM
As explained earlier, in this second approach, the following domain-specific and Distilled BERT

models were used for fine-tuning.

The different binary validation accuracy results are shown in the Table 2 listed below:

Among the domain-specific counterparts, it is obvious that both Distil-Bert and Code-BERT
stood out in terms of performance.

We also observed that the difference between their training and validation accuracies, not more
than 3%, was drastically reduced with epochs of 8–12. This means there is little or no overfitting
between the two BERT versions. This finding proves the rationale behind the creation of Distil-BERT
by the authors [8]. That is, the reduction in parameters retains about 95% of the performance of the
BERT base model. In other words, quick mathematics will reveal that 95% of the validation result,
which is 92%, listed above for BERT-Base uncased, is 87.4 which is remarkably close to 88% which
happens to be the observed validation result for the Distil-BERT.



JAI, 2024, vol.6 395

Table 2: Comparison of domain-specific LLM

SN Distilled/domain-specific BERT Validation performance (%)

1 SO-BERT 55%–58%
2 Sentence-BERT mini (All Mini) 75%
3 Code-BERT 88%
4 Distil-BERT-uncased 88%
Note: This table summarizes the experimental results of domain-specific LLM. The result is based on
validation/evaluation accuracies. The first column specifies each LLM while the right column specifies
the performance in percentage.

Also as confirmed by Sahn et al. [8], Distil-BERT retains about 97% of the original base
counterpart’s capabilities while being faster by 60%, since the total parameters of the BERT base
were reduced by 40%. We noticed during the training process that it took less time. The reason Distil-
BERT performed lower is because of the reduced parameters and as reported by the aforementioned
developers, it retains 95%, not 100%, performance of the original Base-BERT.

4.4 General Comparisons of all LLMs in the Two Approaches

Table 3: General comparison of all LLMs

SN Distilled/domain-specific BERT Validation performance (%)

1 SO-BERT 55%–58%
2 Sentence-bert mini (All Mini) 75%
3 Code-BERT 88%
4 Distil-BERT-uncased 88%
5∗ BERT-base-uncased 93%
Note: This Table 3 compares all the BERT LLM irrespective of whether it is base, distilled, or
domain-specific. Again, the first column specifies each LLM, while the second one includes the
validation/evaluation performance in percentage. ∗ As already reported, although it tops all, this base
LLM has, from the experimental result, high variance with a difference of up to 6%–7% between the
training and validation accuracies.

4.5 The Best Models
The solution findings reveal that apart from the uncased Bert-Base model which gave a 93%

validation score, either the Code-BERT or Distil-BERT are top performers for, domain-specific
models, and therefore we can trust them as regards Classification of Functional or Non-Functional
Software Requirements. However, we will advise caution, and recommend further training, and further
observations before one can be confident in this. We mean the target variables of the datasets used are
not only small but are also quite imbalanced: 59 vs. 41.

4.6 Comparisons with Similar Experiments from Other Authors
Researchers Alhoshan et al. [17] reported that some authors who used the same PROMISE

datasets, but different algorithms, achieved recall and precisions in the range of 79 to 95. However,
since the results of our experiment are comparatively better than 79 and remarkably close to 95, it



396 JAI, 2024, vol.6

means that using LLM in RE, specifically NFR, is worth exploring and there is a lot of potential with
this technique.

Table 4: Comparisons with similar experiments from others

SN Performance (%) Source/Authors

1 79–95 Similar authors reported by Alhoshan et al. [17]
2 60–80 Alhoshan et al. [17]
3 92 Budake et al. [19]
4 71–87 Subahi [7]
5 88–93 Our approach
Note: This Table 4 compares our findings with the performances of the related NFR-FR classifications carried
out or reported by other authors.

Even if 95% seems to be better than the current result of BERT LLM, we believe that if some
further hyperparameter tuning or the epoch and training time were increased, the result would beat
this record. We intentionally did little tuning to save computing time and resources.

In any case, it is also a popular belief, among data scientists, that some conventional machine
learning algorithms, such as Naïve Bayes, SVM, and Decision Trees, can outperform deep learning
ones, especially in some tasks, typically involving tabular or highly structured data, or when the
datasets are insufficient as is the case here.

Interestingly, the finding of this work agrees with the findings of Alhoshan et al. [17] that generic
LLM outperforms domain-specific ones.

4.7 Validity Threats
For this experiment, the main validity threats include:

4.7.1 Insufficient and Imbalance Dataset

As has been stated, the distribution of the NFR vs. FR in the PROMISE dataset [16] is quite
skewed (that is 59% vs. 41%, respectively). We could have balanced it ourselves using the conventional
50-50 sampling technique, but because the dataset was insufficient, we did not want to. Hence, this
could be a validity threat, even if the proportional difference in the distribution is not very wide. As
regards, the dataset being insufficient, this explains one of the rationales why we adopted LLM.

4.7.2 LLM Inherent Bias and Hallucination

This could also be a threat to the validity of the result. We countered this by fine-tuning various
LLMs (such as Distil-BERT, Base-BERT, and Code-BERT) as already seen to get a sense of the
overall performance. This could also be improved in the future iteration of this project by adopting
optimization techniques such as Retrieval Augmented Generation (RAG), Vector Database [38], and
Prompt Tuning, among others.

4.7.3 BERT Overfitting Tendency

There is a general belief, among practitioners, that BERT LLM tends to overfit. Once again, we
used different fine-tuned and distilled versions of BERT to prevent this.



JAI, 2024, vol.6 397

5 Summary, Conclusions, and Recommendations
5.1 Summary of Background and Problem

Truly, Artificial Intelligence, and NLP in particular, is at the forefront of many innovations in
today’s World [1]. This can be seen in the almost pervasive presence and capability of Large Language
Models (LLMs) such as ChatGPT and Agentic AI tools such as AutoGen [4] and MetaGPT [5].

It is also obvious that software development is included [2]. Microsoft Copilot, Meta’s Code
Llama, and even ChatGPT have demonstrated their abilities to generate code and assist developers in
their tasks [3]. Sadly, SDLC processes [39,40], Requirement Gathering in particular, have traditionally,
and are still, being done manually by most corporations. This has always led to tedious, error-prone,
and inefficient processes. This has been the case despite this stage’s crucial nature [6,7] and the fact
that it is considered a bridge between the design and implementation phases [41].

5.2 Summary of Research Objectives
In this work, the specific objectives addressed were: In the first place, to use one of the latest

approaches in NLP, particularly BERT LLM, to build an efficient and accurate Requirement Engi-
neering Classifier from natural language user requirements that can classify functional (FR) and non-
functional requirements (NFR) [42].

5.3 Answering Research Questions and Objectives
Since our experimental findings, using Bert-Base in particular, outperformed comparably even on

little fine-tuning and reduced training times, with those of the authors already cited above, particularly
by Alhoshan et al. [17], Subahi [7] and Budake et al. [19], it is reasonable to adopt this LLM approach
since this experimental result confirms that there is a potential in using transformer-based LLM in
RE-related tasks.

Incidentally, our experiments also confirmed the report, by the developers of Distil-BERT, that it
retains about 95% of the capability of the base BERT counterpart that it was distilled from, even
though the parameters were reduced by 40%. We also noted that the finding of this work agrees
with the findings of researchers such as Alhoshan et al. [17] that generic LLM outperforms domain-
specific ones.

5.4 Specific Limitations, Recommendations for Future Works
Among all the challenges we met, the foremost was inadequate time, followed by other resources

such as the financial cost of experiments.

We have already stated that the current performance of these models could be improved, though
at the cost of further Google Colab GPU processing and computing time.

There was also the constraint of inadequate datasets. Though there is availability of PURE
datasets as stated here https://ieeexplore.ieee.org/document/8049173 (accessed on 03 December 2024),
it demands extra time for extra tagging and labeling to adapt it to the specific tasks of this thesis.

Hence, having access to a larger RE-related dataset would be very instrumental in improving the
performance of our model, including reducing the observed overfitting.

Once again, we could not prolong the training time due to the above-stated reason of inadequate
time and resources.

In addition, our model currently overfits, as we have noted, which is another limitation.

https://ieeexplore.ieee.org/document/8049173


398 JAI, 2024, vol.6

Going forward, interested researchers could explore other fine-tuning techniques such as Parame-
ter Efficient Fine-Tuning (PEFT), Knowledge Distillation just like Distil-BERT, Prompt Engineering
or Prompt Tuning techniques such as Zero or Few Short Prompting techniques, etc.

Interested Scientists could equally explore other software or RE-related LLMs such as BERT4RE
(Bert For Requirement Engineering), SO-Bert (Domain-specific BERT that was trained on 152 million
sentences from the popular Stack Overflow developer community, and others as listed by these authors
Alhosan et al. [17]. One can even explore modern Meta’s (formerly Facebook) software-related LLM
such as Code-Llama.

Indeed, we wanted to use the popular and specialized BERT4RE (which is specifically tailored and
designed for Requirement Engineering and related tasks); but it was neither available in TensorFlow
nor Hugging Face hubs. But on a third-party website. We downloaded it though from this website
but unfortunately, there was no apparent way to integrate the domain-specific LLM with the existing
TensorFlow framework or Hugging Face Transformer library that facilitates access to various and
huge LLM models.

In view of these, we believe that given enough time, one can make this BERT4RE available for
other developers to use in Hugging Face and even design additional or down-streamed LLMs for
software-related NLP tasks. Hence, we recommend that anyone interested in advancing this field
should explore this area. We might still find a solution to this soon.

Furthermore, other Requirement Engineering tasks were not done because of inadequate time
and other resources. Such tasks include the Problem of Incompleteness (often leading to requirement
creep), Ambiguity detection [43–46], Problem of Imprecise [42] and Vagueness of Requirements, and
even automation of the requirement elicitation process. These are interesting recommendations for
future researchers interested in this area and other SDLC phases such as the Design, Implementation,
and Testing stages. We hope to take up these questions and tasks in future versions of this work.
Particularly, we have explained, in the second part of this work [35], and plans to implement, in
the future iteration, LLM optimization techniques such as Retrieval Augmented Generation (RAG),
Reinforcement Learning from Human Feedback (RLFH), including the latest alternative-Direct
Preference Optimization (DPO) [47]. Others include Vector Database [38], Prompt-Engineering,
Parameter Efficient Fine-Tuning (PEFT), 4-bit Quantization, Agentic design patterns and workflow
[4,5], among others.

As regards other aspects of SDLC [39,40], different areas such as Model Driven Engineering
(MDE) approach, generating UML [48] models such as class diagrams, and use-case diagrams could
also be taken up by any interested researcher. Also, from literature reviews, lots of scientists have
already worked on these MDE areas.

In fact, as demonstrated in the preceding paragraph, we hope to keep working in these related
areas, that is, not only the first phase of SDLC, soon.

Acknowledgement: I appreciate all the various lecturers that contributed to making this work a success.
This includes both academic and non-academic staff.

Funding Statement: None.

Author Contributions: The authors confirm their contribution to the paper as follows: study topic
conception: Pius Onobhayedo; supervisions: Pius Onobhayedo, Charles Igah; data collection: Afam



JAI, 2024, vol.6 399

Okonkwo; analysis and interpretation of results: Afam Okonkwo; draft manuscript preparation: Afam
Okonkwo. All authors reviewed the results and approved the last version of the manuscript.

Availability of Data and Materials: This statement should make clear how readers can access the data
used in the study and explain why any unavailable data cannot be released. The following statement is
offered for reference: Data openly available in a public repository. The data that support the findings
of this study are openly available in Zenodo platform at https://zenodo.org/records/268542 (accessed
on 03 December 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
[1] C. Zhang et al., “Generative image AI using design sketches as input: Opportunities and chal-

lenges,” in Proc. 15th Conf. Creat. Cognit., New York, NY, USA, ACM, Jun. 19–21, 2023. doi:
10.1145/3591196.3596820.

[2] D. P. Wangoo, “Artificial intelligence techniques in software engineering for automated software reuse and
design,” in 2018 4th Int. Conf. Comput. Commun. Automat. (ICCCA), 2018.

[3] I. Ozkaya, “Application of large language models to software engineering tasks: Opportunities, risks, and
implications,” IEEE Softw., vol. 40, no. 3, pp. 4–8, May–Jun. 2023. doi: 10.1109/MS.2023.3248401.

[4] W. Qingyun et al., “AutoGen: Enabling next-gen LLM applications via multi-agent conversation,” pre-
sented at 12th Int. Conf. Learn. Represent. (ICLR), 2024. doi: 10.48550/arXiv.2308.08155.

[5] S. Hong et al., “Metagpt: Meta programming for a multi-agent collaborative framework,” presented at Int.
Conf. Learn. Represent. (ICLR), 16 Jan. 2024. doi: 10.48550/arXiv.2308.00352.

[6] S. Wagner et al., “Status Quo in requirements engineering: A theory and a global family of surveys,” ACM
Transact. Softw. Engi. Method., vol. 28, no. 2, pp. 1–48, 2019. doi: 10.1145/3306607.

[7] F. Subahi, “BERT-based approach for greening software requirements engineering through non-functional
requirements,” IEEE Access, vol. 11, pp. 103001–103013, 2023. doi: 10.1109/ACCESS.2023.3317798.

[8] SANH et al., “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter,” 2020. [Online].
Available: https://arxiv.org/pdf/1910.01108

[9] Karunagaran, “How artificial intelligence can transform software gathering process?,” Faculty of Sci. and
Technolo. Bournemouth, Univ. Bournemouth, UK, Dec. 2020. doi: 10.13140/RG.2.2.24711.83361.

[10] R. Sonbol, G. Rebdawi, and N. Ghneim, “The use of NLP-based text representation techniques to support
requirement engineering tasks: A systematic mapping review,”IEEE Access, vol. 10, no. 4, pp. 62811–62830,
2022. doi: 10.1109/ACCESS.2022.3182372.

[11] M. Aranda et al., “Effect of requirements analyst experience on elicitation effectiveness: A family
of quasi-experiments,” IEEE Trans. Software Eng., vol. 49, no. 4, pp. 2088–2106, 1 Apr., 2023. doi:
10.1109/TSE.2022.3210076.

[12] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. M. Elakeili, “Generating UML class diagram
using NLP techniques and heuristic rules,” presented at 2020 20th Int. Conf. Sci. Techni. Automat. Cont.
Comput. Eng. (STA), Monastir, Tunisia, 2020, pp. 277–282. doi: 10.1109/STA50679.2020.9329301.

[13] H. Ammar, W. Abdelmoez, and M. S. Hamdi, “Software engineering using artificial intelligence techniques:
Current state and open problems,” presented at 2012 Int. Conf. Comput. Inform. Technol., 2012.

[14] B. A. Hossain et al., “Natural language based conceptual modelling frameworks: State of the art and future
opportunities,” ACM Comput. Surv., vol. 56, no. 12, pp. 1–26, 26 Aug. 2023. doi: 10.1145/3596597.

[15] X. Hou et al., “Large language models for software engineering: A systematic literature review,” ACM
Trans. Software. Eng. Methodol., vol. 33, no. 8, Dec. 2024, Art. no. 220. doi: 10.1145/369598.

[16] J. Cleland-Huang et al., “NFR” distributed by “Zenodo,” Mar. 17, 2007. doi: 10.5281/zenodo.268542.

https://zenodo.org/records/268542
https://doi.org/10.1145/3591196.3596820
https://doi.org/10.1109/MS.2023.3248401
https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.48550/arXiv.2308.00352
https://doi.org/10.1145/3306607
https://doi.org/10.1109/ACCESS.2023.3317798
https://arxiv.org/pdf/1910.01108
https://doi.org/10.13140/RG.2.2.24711.83361
https://doi.org/10.1109/ACCESS.2022.3182372
https://doi.org/10.1109/TSE.2022.3210076
https://doi.org/10.1109/STA50679.2020.9329301
https://doi.org/10.1145/3596597
https://doi.org/10.1145/369598
https://doi.org/10.5281/zenodo.268542


400 JAI, 2024, vol.6

[17] W. Alhoshan et al., “Zero-shot learning for requirements classification: An exploratory study,” Issue
Inform. Softw. Technol., vol. 159, Jul. 2023, Art. no. 107202. doi: 10.48550/arXiv.2302.04723.

[18] S. Shreta and P. Santo, “Integrating AI techniques In SDLC-design phase perspective,” in Proc. Third Int.
Symp. Women Comput. Inform., India, Aug. 2015. doi: 10.1145/2791405.2791418.

[19] R. Budake et al., “Challenges and future of AI-based requirement analysis: A literature review,” in Emerging
Trends in Basic and Applied Sciences, vol. 2, Kolhapur-416004, Maharashtra, India: Bhumi Publishing
India, Feb. 2023.

[20] M. Schäfer et al., “An empirical evaluation of using large language models for automated unit test gener-
ation,” IEEE Trans. Software Eng., vol. 50, no. 1, pp. 85–105, Jan. 2024. doi: 10.1109/TSE.2023.3334955.

[21] S. Yang and H. Sahraoui, “Towards automatically extracting UML class diagrams from natural language
specifications,” in Proc. ACM/IEEE 25th Int. Conf. Model Driv. Eng. Lang. Syst., Montreal, QC, Canada,
Association for Computing Machinery, Oct. 23–28, 2022, pp. 396–403. doi: 10.1145/3550356.3561592.

[22] J. Kuchta and P. Padhiyar, “Extracting concepts from the software requirements specification using natural
language processing,” in Proc. 2018 11th Int. Conf. Human Syst. Interact. (HSI), 2018, pp. 443–448. doi:
10.1109/HSI.2018.8431221.

[23] M. Ibrahim and R. Ahmad, “Class diagram extraction from textual requirements using natural language
processing (NLP) techniques,” presented at 2010 Second Int. Conf. Comput. Res. Develop., Kuala Lumpur,
Malaysia, 2010, pp. 200–204. doi: 10.1109/ICCRD.2010.71.

[24] Y. L.Gamage, “Automated software architecture diagram generator using natural language
processing,” BSc dissertation, Dept. Computer Sci Univ. of Westminster, UK, May 2023. doi:
10.13140/RG.2.2.31866.26563.

[25] H. Herchi and W. B. Abdessalem, “From user requirements to UML class diagram,” presented at 2012 Int.
Conf. Comput. Relat. Knowl., 2012. https://arxiv.org/ftp/arxiv/papers/1211/1211.0713.pdf.

[26] K. A. D. Arachchi, “Oshada Kasun Kiringoda “AI based UML diagrams generator’’,” Ph.D. dissertation,
Univ. of Colombo School of Computing, Colombo, Sri Lanka, Nov. 2021.

[27] D. K. Deeptimahanti and M. A. Babar, “An automated tool for generating UML models from natural
language requirements,” presented at 2009 IEEE/ACM Int. Conf. Automat. Softw. Eng., Auckland, New
Zealand, 2009, pp. 680–682. doi: 10.1109/ASE.2009.48.

[28] K. J. Stol and B. Fitzgerald, “The ABC of software engineering research,” ACM Transact. Softw. Eng.
Methodol. (TOSEM), vol. 27, no. 3 , pp. 1–51, Sep. 2018, Art. No. 11. doi: 10.1145/3241743.

[29] M. Elallaoui et al., “Automatic transformation of user stories into UML use case diagrams using NLP
techniques,” in 8th Int. Conf. Ambient Syst., Netw. Technol., Jan. 2018. doi: 10.1016/j.procs.2018.04.010.

[30] D. Ameller et al., “Dealing with non-functional requirements in model-driven development: A survey,”
IEEE Trans. Software Eng., vol. 47, no. 4, pp. 818–835, 1 Apr. 2021. doi: 10.1109/TSE.2019.2904476.

[31] K. Lano, S. Kolahdouz-Rahimi, and S. Fang, “Model transformation development using automated
requirements analysis, metamodel matching, and transformation by example,” ACM Transact. Softw. Eng.
Methodol., vol. 31, no. 1, pp. 1–71, 2022. doi: 10.1145/3471907.

[32] X. Franch et al., “How do practitioners perceive the relevance of requirements engineering research?,” IEEE
Trans. Software Eng., vol. 48, no. 6, pp. 1947–1964, 1 Jun., 2022. doi: 10.1109/TSE.2020.3042747.

[33] D. Hidellaarachchi, J. Grundy, R. Hoda, I. Mueller, “The influence of human aspects on requirements
engineering-related activities: Software practitioners’ perspective,” ACM Trans. Softw. Eng. Methodol., vol.
32, no. 5, pp. 1–37, 22 Jul. 2023. doi: 10.1145/3546943.

[34] J. Devlin et al., “BERT: Pre-training of deep bidirectional transformers for language understand-
ing,” in Proc. 2019 Conf. North American Chap. Assoc. Computati. Linguist.: Human Lang. Tech-
nol., Minneapolis, Minnesota, Association for Computational Linguistics, 2019, pp. 4171–4186. doi:
10.48550/arXiv.1810.0480.5.

[35] Okonkwo et al., “Review of traditional SDLC process, literature and NLP techniques for requirement
engineering,” Feb. 2024. doi: 10.13140/RG.2.2.20705.28002.

[36] Vaswani et al., “Attention is all you need,” presented at 31st Conf. Neural Inform. Process. Syst. (NIPS
2017), Long Beach, CA, USA, 2017. doi: 10.48550/arXiv.1706.03762.

https://doi.org/10.48550/arXiv.2302.04723
https://doi.org/10.1145/2791405.2791418
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1145/3550356.3561592
https://doi.org/10.1109/HSI.2018.8431221
https://doi.org/10.1109/ICCRD.2010.71
https://doi.org/10.13140/RG.2.2.31866.26563
https://arxiv.org/ftp/arxiv/papers/1211/1211.0713.pdf
https://doi.org/10.1109/ASE.2009.48
https://doi.org/10.1145/3241743
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1109/TSE.2019.2904476
https://doi.org/10.1145/3471907
https://doi.org/10.1109/TSE.2020.3042747
https://doi.org/10.1145/3546943
https://doi.org/10.48550/arXiv.1810.0480.5
https://doi.org/10.13140/RG.2.2.20705.28002
https://doi.org/10.48550/arXiv.1706.03762


JAI, 2024, vol.6 401

[37] Y. Wan et al., “Kelly is a Warm Person, Joseph is a Role Model”: Gender Biases in LLM-
Generated Reference Letters. Singapore: Association for Computational Linguistics, 2023, pp. 3730–3748.
https://arxiv.org/pdf/2310.09219.pdf

[38] Y. Han, C. Liu, and P. Wang, “A comprehensive survey on vector database: storage and retrieval technique,
challenge,” 2023. doi: 10.48550/arXiv.2310.11703.

[39] K. Ali, “A study of software development life cycle process models,” Int. J. Adv. Res. Comp. Sci., vol. 8, no.
1, pp. 1, Jan.–Feb. 2017. doi: 10.26483/ijarcs.v8i1.2844.

[40] M. K. Sharma, “A study of SDLC to develop well engineered software,” Int. J. Adv. Res. Comp. Sci., vol.
8, no. 3, Mar.–Apr. 2017. doi: 10.26483/ijarcs.v8i3.3045.

[41] S. Al-Fedaghi, “Beyond SDLC: Process modeling and documentation using thinging machines,” Int. J.
Comput. Sci. Netw. Secur. (IJCSNS), vol. 21, no. 7, Jul. 2021. doi: 10.22937/IJCSNS.2021.21.7.23.

[42] P. A. Laplante, Requirements Engineering for Software and Systems, 3rd ed., Roca Raton, FL, USA: CRC
Press Taylor & Francis Group, pp. 25, 2018.

[43] R. Sharma. et al., “Machine learning for constituency test of coordinating conjunctions in requirements
specifications,” in RAISE 2014:in Proc. 3rd Int. Workshop. Realiz. Artif. Intell. Synerg. Softw. Eng., Jun.
2014, pp. 25–31. doi: 10.1145/2593801.2593806.

[44] A. Yadav, A. Patel, and M. Shah, “A comprehensive review on resolving ambiguities in natural language
processing,” J. AI Open, vol. 2, no. 1, pp. 85–92, 2021. doi: 10.1016/j.aiopen.2021.05.001.

[45] P. Yap et al., Adapting BERT for Word Sense Disambiguation with Gloss Selection Objective and Example
Sentences, Association for Computational Linguistics, 2020, pp. 41–46. doi: 10.48550/arXiv.2009.11795.

[46] R. Beg, Q. Abbas, and A. Joshi, “A method to deal with the type of lexical ambiguity in a software
requirement specification document,” in 2008 First Int. Conf. Emerg. Trends. Eng. Technol., Nagpur, India,
2008, pp. 1212–1215. doi: 10.1109/ICETET.2008.160.

[47] R. Rafailov et al., “Direct preference optimization: Your language model is secretly a reward model,” in
37th Conf. Neural Inform. Process. Syst. (NeurIPS 2023), 2023. doi: 10.48550/arXiv.2305.18290.

[48] S. Nasiri et al., “From user stories to UML diagrams driven by ontological and production mode,” Int. J.
Adv. Comp. Sci. Appl. (IJACSA), vol. 12, no. 6, pp. 1, 2021. doi: 10.14569/IJACSA.2021.0120637.

https://arxiv.org/pdf/2310.09219.pdf
https://doi.org/10.48550/arXiv.2310.11703
https://doi.org/10.26483/ijarcs.v8i1.2844
https://doi.org/10.26483/ijarcs.v8i3.3045
https://doi.org/10.22937/IJCSNS.2021.21.7.23
https://doi.org/10.1145/2593801.2593806
https://doi.org/10.1016/j.aiopen.2021.05.001
https://doi.org/10.48550/arXiv.2009.11795
https://doi.org/10.1109/ICETET.2008.160
https://doi.org/10.48550/arXiv.2305.18290
https://doi.org/10.14569/IJACSA.2021.0120637

	Using Artificial Intelligence Techniques in the Requirement Engineering Stage of Traditional SDLC Process
	1 Introduction
	2 Background and Literature Review
	3 Methodology
	4 Results Discussion
	5 Summary, Conclusions, and Recommendations
	References


