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ABSTRACT

Stress is defined as a subjective reflection of an internal psychological state of tension or arousal, manifesting
as an interpretive, emotional, and defensive coping process within the body. Prolonged and sustained stress can
significantly increase the risk of psychological and physiological disorders. Heart rate variability (HRV) is a key
biomarker for assessing autonomic cardiac function, typically increasing during relaxation and decreasing under
stress. Although measuring stress through physiological parameters like HRV is a common approach, achieving
ultra-high accuracy based on HRV measurements remains a challenging task. In this study, the role of HRV
features as biomarkers for stress detection was investigated, leading to the development of an advanced CNN-
Transformer-LSTM multi-class stress detection model that leverages both the time-domain and frequency-domain
characteristics of HRV. Specifically, the model incorporates a convolutional neural network (CNN) combined with
a classifier that integrates long short-term memory (LSTM) networks and a Transformer architecture. The CNN
effectively captures local patterns and features within time-series data, while the LSTM networks manage temporal
dependencies. The Transformer component enhances the model’s ability to understand the relationships between
different time points in the HRV signal through self-attention mechanisms. HRV signals were extracted from the
SWELL-KW database and cross-validated using the WESAD database. Experimental results demonstrate that the
proposed method achieves higher accuracy compared to existing studies in the literature, even when using fewer
HRV features. The obtained stress detection accuracy ranged between 98.84% and 99.31%. Additionally, this study
employed marginal utility analysis to validate the effectiveness of HRV features in stress detection.
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1 Introduction

Psychological stress is widely regarded as one of the major contemporary issues affecting human
health and productivity. According to statistics from the World Health Organization in 2022, approx-
imately 350 million people globally suffer from depression, with an annual incidence rate of about 5%
among adults. Stress, a response to various psychological, physiological, and emotional challenges,
can disrupt an individual’s psychological equilibrium [1].
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Heart Rate Variability (HRV) serves as a crucial quantitative measure of autonomic nervous
system activity. Research indicates that HRV can be an effective indicator of stress. It is defined as the
fluctuation in the time intervals between consecutive heartbeats (RR intervals) [2,3]. HRV decreases
under stress; typically, it is higher when the heart rate slows and vice versa. Consequently, there is
an inverse relationship between heart rate and HRV, measured through electrocardiogram readings
[4]. HRV varies over time depending on the level of activity and work-related stress. For instance,
individuals with anxiety disorders tend to have consistently lower HRV [5].

Generally, stress is linked to negative thoughts and is considered a subjective experience that can
affect both emotional and physical health. It can be defined as a psychological and physiological
reaction to various stressors, including biological, chemical, and environmental factors, which may
induce stress within an organism [6,7]. However, measuring stress poses challenges primarily due to its
reliance on subjective reports from questionnaires, requiring participants to directly report their stress
levels over time. This method has limitations, such as self-bias and the time commitment required for
ongoing participation.

In recent years, utilizing HRV physiological parameters, various machine learning and deep
learning algorithms have been developed to predict stress [8–10]. For instance, in 2007, Dinges et al. [11]
conducted a study on stress detection using facial recognition. Lin et al. [12] proposed using physio-
logical signals obtained from heart rate (HR) and blood pressure (BP) monitoring to assess mental
stress. Yue et al. [13] filtered Photoplethysmography (PPG) signals, used Welch’s spectral estimation
to generate a spectrum, and calculated HRV, achieving an accuracy and specificity of 92.26% and
96.12%, respectively for psychological fatigue classification. Melillo et al. [14] employed Poincaré plots,
approximate entropy, and detrended fluctuation analysis on short-term electrocardiogram records
of HRV to conduct linear discriminant analysis, ultimately achieving a total classification accuracy
of 90% for stress detection. Lee et al. [15] proposed using IMF energy features based on EMD,
substituting the frequency domain information that is challenging to use in ultra-short terms, and
assessed performance using LOSOCV, achieving a top accuracy score of 86.5%. Shikha et al. [16]
employed a random forest to perform binary classification on HRV features derived from skin
conductance response (GSR) and electrocardiogram (ECG) after feature selection, reaching a top
accuracy score of 93.96%. Among the numerous publicly available stress detection datasets, the
SWELL-KW HRV dataset developed in References [17,18] is one of the most extensively used. In
multi-level stress classification, the methods employed in [19] achieved the highest accuracy of 87.6%;
in [20], using 15 HRV features resulted in an accuracy of up to 96.50%, albeit with high computational
costs and lengthy execution times. This underscores the ongoing need for new machine learning models
that offer high accuracy and computational efficiency.

Existing studies on machine learning and deep learning based on the SWELL-KW dataset face
two main issues. Firstly, the accuracy of multi-level stress classification is insufficient, limiting its
effectiveness in practical applications. Secondly, while maintaining accuracy, the models are complex
and require numerous parameters, which not only increase computational load but also prolong
execution times. These issues indicate that, despite progress, there is significant room for improvement
in creating efficient and accurate stress classification models.

In this study, we design and validate an innovative CNN-Transformer-LSTM hybrid model
specifically for multivariate stress classification. This model uniquely integrates the strengths of CNN
for effective local feature extraction from time-series data, Transformer for enhanced understanding
of temporal relationships in HRV signals via self-attention mechanisms, and LSTM for capturing
long-term dependencies crucial for interpreting dynamic changes in heart rate intervals. By combining
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these architectures with residual connections to prevent gradient vanishing, our model ensures lossless
information transmission across multiple network layers, demonstrating exceptional generalization
capabilities and high accuracy in stress classification. Experimental results show that our approach
achieves a classification accuracy of 99.01% based on seven HRV features, significantly outperforming
existing state-of-the-art models on the SWELL-KW dataset in both predictive accuracy and compu-
tational efficiency.

2 Related Work

Recent research in the field of electrocardiogram data analysis has focused on using machine
learning and deep learning methods for stress classification, particularly in binary (presence or absence
of stress) and multi-level stress state classifications. In recent studies, Kaya et al. [21] developed a
method combining 1D-DS-LBP with LSTM to classify ECG signals, achieving 96.80% to 99.79%
accuracy by analyzing neighboring point relationships. Bu et al. [22] analyzed differential RRI time
series using Long Short-Term Memory (LSTM) networks. In a trinary classification of differential
RRI data, they achieved a maximum accuracy score of 87.9% within 20 s, significantly enhancing
the LSTM model’s training and classification performance. Dalmeida et al. [6] classified HRV data
into stressed and non-stressed states, evaluating various machine learning methods including Naïve
Bayes, KNN, SVM, MLP, Random Forest, and Gradient Boosting, achieving a maximum recall
rate of 80%. Another study [7] utilized both time-domain and frequency-domain features of HRV,
employing Radial Basis Function (RBF) SVM, and achieved accuracies of 83.33% and 66.66%.
Dimensionality reduction methods were also employed to identify the most representative time-
domain and frequency-domain features in HRV [9]. Research using CNN for binary classification
[10] reached an accuracy of 98.4% in stress detection (though this study focuses on multi-class
classification). Jegan et al. [23] used Support Vector Machine (SVM) classifier techniques with ultra-
short-term HRV analysis, achieving a mental stress classification accuracy of 91%. Coutts et al. [24]
predicted using LSTM techniques from HRV data collected via wrist-wearable devices, achieving
up to 85% classification accuracy. Gomathi et al. [25] used frequency-domain parameters of HRV,
analyzed the power spectral density of ECG signals through the Welch method, and employed the
K-Nearest Neighbors (KNN) classifier to analyze and classify individual stress levels, with a stress
F1 score of 90%. Pajong et al. [26] proposed a time-series-based emotional classification algorithm
and compared the emotional detection performance of five learning algorithms including Random
Forest, Extreme Gradient Boosting (XGBoost), LSTM, Convolutional LSTM (CNN-LSTM), and
Deep Convolutional LSTM (DeepConvLSTM), achieving a maximum accuracy of 80% and an Area
Under the Curve (AUC) of 94%.

In studies on multi-level stress classification using the SWELL-KW dataset (such as no stress,
interruptive stress, and time stress), Koldijk et al. [18] achieved a maximum accuracy of 90% using
SVM. Sarkar et al. [10] reached an accuracy of 98.30% using CNN. Meanwhile, research [8] using the
WESAD dataset [27] for multi-category (leisure, baseline, and stress) and binary (stress vs. non-stress)
classifications, an accuracy of 84.32% was achieved in the three-class classification. Benita et al. [28]
optimized a CNN with random forest-based feature selection, successfully classifying individuals into
“stressed” or “not stressed” categories using HRV data from the WESAD dataset, achieving 98%
accuracy.

In 2023, Mortensen developed a 1D-CNN multi-class stress discrimination model based on the
SWELL-KW dataset [20], achieving 99% accuracy with 34 features, and 96.5% with 15 features,
though this increased computational load and execution time. In comparison, our model achieved an
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accuracy of 99.01% using only 7 features, surpassing existing advanced models in performance. When
the number of features was increased to 14, the accuracy further improved to 100%. This achievement
highlights that careful selection and utilization of a limited number of features can not only optimize
model performance but also significantly enhance computational efficiency while precisely capturing
stress states.

3 Framework Overview and Dataset Preprocessing

In this section, a framework for multivariate pressure detection is outlined.

3.1 Overview of the Framework
Fig. 1 presents the schematic diagram of the proposed stress level classification framework. In

summary, the framework consists of the following steps:

- Data Acquisition and Dataset Preparation: HRV signals are gathered and split into training
and test datasets. These datasets are used to design the model architecture and assess the model’s
effectiveness.

- Classification and Model Validation: The deep learning-based multi-class classifiers are trained,
tested, and validated using critical features and annotations provided by medical professionals (e.g.,
no stress, interrupted conditions, and time stress).

- Testing: During the testing phase, the key features of the new test sample are extracted, and the
class labels are predicted using the classification parameters.

- Performance Evaluation: The performance of the classifier is measured based on discriminant
analysis metrics, such as accuracy, precision, recall, F1 score and MCC.

Dataset (HRV 

features)
Feature selection

Classification 

(Transformer -

LSTM model)

Multi-stress 

classification

Figure 1: Framework of the proposed pressure state classification model

3.2 Introduction to the Dataset
The SWELL-KW dataset [17] and the WESAD dataset [27] were utilized for conducting intra-

dataset testing on SWELL-KW and cross-dataset testing on WESAD. Model effectiveness was
evaluated using various metrics, including accuracy, precision, recall, F1 score, and MCC.

The SWELL-KW dataset comprises HRV data intended for stress modeling and also records
participants’ subjective experiences related to task load, mental labor, emotion, and perceived stress.
Data were collected from 25 individuals under various work conditions, such as report writing,
presenting, reading emails, and information searching. Each participant was subjected to three distinct
work environments, during this period, the participants’ psychological and physiological state data
were recorded. The annotations provided by medical experts are as follows:

- No stress: Participants could engage in activities as needed for a maximum duration of 45 min,
although they were not informed of the task’s time limit.

- Time pressure: The time to complete the same tasks was reduced to two-thirds of the normal
duration under time pressure.
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- Interruptions: Participants were interrupted upon receiving eight emails during an activity. Some
emails necessitated specific actions related to their tasks, while others were unrelated to the ongoing
activities.

The WESAD dataset is a multimodal dataset available to the public, aimed at investigating
stress and emotion detection through wearable devices. It consists of physiological and motion data
collected from 15 subjects in a laboratory setting using wrist and chest-worn devices. The dataset
features sensor modalities such as blood volume pulse, electrocardiogram, electrodermal activity,
electromyogram, respiration, body temperature, and triaxial acceleration. Furthermore, WESAD
fills the gap in laboratory studies between stress and emotion, covering three different emotional
states (neutral, stress, amusement), complemented by self-reports from participants acquired through
established questionnaires.

Fig. 2 displays the distribution of three distinct stress states within the SWELL and WESAD
databases. In SWELL-KW, HRV indices were computed by extracting the inter-beat interval (IBI)
signals from each participant’s electrocardiogram peak signals. The duration of the experiments was
about three hours per participant. In WESAD shows that original sensor data were recorded using a
chest-worn device (RespiBAN), with all signals sampled at 700 Hz.

Figure 2: Distribution of different stress states in the SWELL-KW and WESAD databases

3.3 Feature Selection
Unlike the variance analysis method employed in [20], this study utilizes the Pearson correlation

coefficient to conduct a linear analysis of all 34 features in the SWELL-KW dataset with respect to
stress states, assessing and ranking the linear correlations between various features and stress. Fig. 3
presents a bar graph of the correlations between HRV features and stress states within the SWELL-
KW dataset.

This paper selects 16 HRV parameters with correlations greater than 0.1, as shown in Table 1. The
features ranked by the Pearson correlation coefficients were sequentially chosen to demonstrate the
accuracy scores. The following two sections will introduce the developed CNN-Transformer-LSTM
hybrid model and its performance metrics.



366 JAI, 2024, vol.6

Figure 3: Bar chart of linear correlation using 34 HRV features

Table 1: Description of HRV parameters

No. Feature Meaning Mean Max Min StedDev
1 MEAN_RR Mean of RR intervals 846.65 1322.01 547.49 124.60
2 MEDIAN_RR Median of RR intervals 841.96 1653.12 517.29 132.32
3 LF_NU Low frequency Normalized unit 95.56 99.98 69.88 4.12
4 VLF Very low (0.003–0.04 Hz) frequency 2199.58 12617.98 159.48 1815.77
5 TP Total HRV power spectrum 3185.35 13390.68 377.69 1923.22
6 SDRR_RMSSD

_REL_RR
The ratio of SDRR_REL to
RMSSD_REL

2.01 3.72 1.17 0.38

7 LF_HF Ration of high to low frequency 115.97 7796.44 2.32 360.85
8 SDSD Standard deviation of RR intervals 14.98 26.63 5.53 4.12
9 SD1 Poincaré plot Standard deviation

perpendicular the line of identity
10.59 18.83 3.91 2.91

10 RMSSD Root mean square of successive RR
interval differences

14.98 26.63 5.53 4.12

11 SampEn Sample entropy, which measures
the regularity and complexity of a
time series

2.06 2.23 0.43 0.21

12 pNN25 Percentage of consecutive RR
intervals that differ by more than
25 ms

9.84 39.40 0.00 8.19

13 VLF_PCT VLF percentage in HRV spectrum 64.29 97.74 19.03 16.77
14 SDRR SD of RR intervals 109.35 563.49 27.23 77.12
15 SD2 Poincaré plot Standard deviation

along the line of identity
154.18 796.85 38.31 109.17
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4 Artificial Intelligence Models for Assessing Stress

The CNN-Transformer-LSTM model proposed in this paper (as illustrated in Fig. 4) represents
an innovative improvement over the traditional Transformer model, specifically designed to enhance
the accuracy of Heart Rate Variability (HRV) signal classification. The model consists of two main
components: initially, a CNN encoder for feature extraction, followed by a classifier that combines
Transformer and LSTM elements. The model utilizes CNN to extract local features from HRV data,
employs the Transformer to model global dependencies, and leverages LSTM to manage long-term
dependencies in time series, incorporating residual connections to boost overall performance.
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During the data preprocessing and feature extraction stage, the model applies a one-dimensional
Convolutional Neural Network (CNN) to extract local features from the input HRV signals. This
step effectively identifies key features within the data, which are then relayed to the encoder part
of the Transformer classifier. The Transformer captures dependencies between different positions
in the input sequence through its self-attention mechanism. The self-attention mechanism computes
the weights for each position by linear transformations of Query, Key, and Value, expressed by the
formula:

Attention (Q, K, V) = soft max
(

QKT

√
dk

)
V (1)

In the Transformer, the multi-head attention mechanism allows multiple attention heads to
compute features in parallel and combines these outputs through a linear transformation, further
enhancing the model’s ability to capture complex dependencies. Additionally, each Transformer
encoder layer includes a Feed-Forward Network (FFN), which independently processes the features
at each position. The formula for the FFN is:

FFN (x) = max (0, xW1 + b1) W2 + b2 (2)

In the formula, W1, W2 are the weight matrices for the linear transformations, and b1b2 are the
bias terms. Residual connections and layer normalization mechanisms are employed to preserve input
information and ensure the stability of the deep network. The formula for this integration is:

LayerNorm (x + sub − layer (x)) (3)

The sequence encoded by the Transformer is subsequently passed to an LSTM network. The
LSTM is tasked with learning temporal dynamic features within the input sequence and is capable
of capturing long-term dependencies in time series data. The core of the LSTM consists of forget
gates, input gates, and output gates, which dynamically update and store sequence information. The
formulas for updating the state are as follows:

ht = ot ∗ tanh (Ct) (4)

The current hidden state is represented by ht, and the state of the memory cell is denoted as Ct.

To enhance the stability of the model, a residual connection mechanism combines the output of
the LSTM with the output from the Transformer encoder. This residual structure allows for effective
information flow, mitigates the issue of vanishing gradients, and ensures stable performance across
multiple layers of the neural network. The formula for the residual connection is:

hlstm = hlstm + skip_x (5)

Overall, the hybrid CNN-Transformer-LSTM model effectively integrates the local feature extrac-
tion capabilities of CNNs, the global attention mechanism of Transformers, and the memory capabil-
ities of LSTMs for time series, providing a comprehensive understanding of HRV signals. The CNN
is tasked with extracting local features from raw HRV data, the Transformer captures long-distance
dependencies through its self-attention mechanism, and the LSTM handles the dynamic variations in
the time series. This triple architecture not only enhances the model’s comprehension of complex time
series data but also offers improved classification accuracy and stability.
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5 Experimental Validation and Analysis

In this section, we detail the experimental results. Various methods, including CNN, SVM, LSTM,
and Transformer, were evaluated. Given the random splitting process used, five-fold cross-validation
was conducted to average the performance metrics of each classifier, ensuring comparability of the
results. Additionally, this study specifically focused on the marginal improvement effects associated
with increasing the number of parameters. This analysis helps to understand the potential benefits of
maintaining or enhancing model accuracy while increasing complexity.

5.1 Performance of the Eight HRV Parameters before Use
In our study, the performance of the CNN-Transformer-LSTM hybrid model, developed using

the SWELL-KW dataset, was assessed for multi-class stress classification. The discriminative metrics
used included Precision, Recall, Accuracy, F1 score, Matthew’s Correlation Coefficient (MCC), and
the confusion matrix. The confusion matrix, a two-dimensional table is used to compare actual vs.
predicted categories, containing four elements: True Positives (TP) are the correctly predicted positive
instances; True Negatives (TN) are the correctly predicted negative instances; False Positives (FP) are
the incorrectly predicted positive instances; and False Negatives (FN) are the incorrectly predicted
negative instances. Thus, the performance metrics for a given class are represented as follows:

Precision = TP
TP + FP

(6)

Recall = TP
TP + FN

(7)

Accuracy = TP + TN
TP + TN + FP + FN

(8)

F1 − score = 2 × Recall × Pr ecision
Recall + Pr ecison

(9)

The higher these metrics, the better the performance of the model. Additionally, the model’s bias
and variance are crucial considerations. Bias refers to errors caused by incorrect assumptions in the
algorithm, while variance arises from sensitivity to minor fluctuations in the training data. High bias
can lead to underfitting, whereas high variance can lead to overfitting. While accuracy and the F1
score are crucial, they fail to capture the proportions of all categories within the confusion matrix. In
contrast, the MCC offers a more holistic measure by considering the balance among all four categories
(TP, TN, FP, FN) in the confusion matrix. The formula for MCC is as follows:

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(10)

The advantage of theMCC is that it remains unaffected by the classification of positive and
negative classes, making it more reliable than the F1 score, as it eliminates the problem of misclassifying
positive classes.

Additionally, during the model training process, the cross-entropy loss function was employed to
measure the discrepancy between the predicted probability distribution of the model’s output and the
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actual class labels. The formula for cross-entropy loss is:

L = − 1
N

N∑
i=1

C∑
c=1

yi,c log
(
pi,c

)
(11)

In this formula, N represents the number of samples, and C denotes the number of categories.
The term yi,c indicates the true label of sample i for category c, while pi,c refers to the model’s predicted
probability for category c. By minimizing this loss function, the model can effectively optimize its
predictions and enhance classification accuracy.

5.2 Performance of the 7 HRV Parameters before Use
The CNN-Transformer-LSTM model developed for the SWELL-KW dataset categorizes emo-

tional stress states into three classes: no stress, time pressure, and interruptions. This model achieved
exceedingly high accuracy, surpassing existing methods documented in the literature. Fig. 5a presents
the confusion matrix generated by the CNN-Transformer-LSTM model using the SWELL-KW
dataset. As shown in the figure, the classifier demonstrates high accuracy in predicting the correct
labels. with all three categories showing less than 1% error when utilizing 7 heart rate variability
features. In Fig. 5b, when 14 heart rate variability features are used, the accuracy reaches 100%.

Figure 5: Confusion matrix for three-class classification

Moreover, validation results indicate that the model did not experience overfitting during the
training process. Fig. 6a shows the training and validation accuracy when utilizing 7 HRV features,
with both metrics maintaining nearly identical levels. This consistency demonstrates the model’s
stability across training and validation sets, highlighting its robust generalization capabilities.

In Fig. 6b, the cross-entropy loss function is used to calculate loss values, further corroborating
the model’s stability throughout the training and validation phases. Experimental results reveal that
the validation loss is slightly higher than the training loss, indicating that the model has not overfitted
and meets the criteria for a well-fitted model.
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Figure 6: Accuracy and loss curve

Table 2 provides a detailed overview of the performance of the developed CNN-Transformer-
LSTM model in horizontal classification. Evidently, the CNN-Transformer-LSTM model crafted in
this study achieved a peak accuracy score of 99.01% across all three classification levels.

Table 2: Performance for three-level categorization with the first eight ANOVA ranking features

Categorization Precision Recall F1 score

No stress 0.9818 0.9868 0.9842
Time pressure 0.9915 0.9918 0.9916
Disruptions 0.9922 0.9994 0.9908

5.3 K-Fold Cross Validation
In this study, the default setting of 5-fold cross-validation was employed, with each iteration

involving the training and performance evaluation of the model based on the test dataset, encom-
passing metrics such as precision, recall, accuracy, F1 score, and Matthew’s Correlation Coefficient
(MCC). As demonstrated in Table 3, the experimental results reveal that the model achieved an average
accuracy of 99.09% on the test dataset. These results strongly suggest that the proposed model can
categorize samples into their appropriate groups with remarkable precision.

Table 3: Five-fold cross-validation and average results

Features MCC Accuracy Precision Recall F1 score Cross-entropy
loss

1 98.17% 98.91% 98.91% 98.91% 98.91% 0.0247
2 98.54% 99.13% 99.13% 99.13% 99.13% 0.0188
3 98.03% 98.84% 98.84% 98.84% 98.84% 0.0231
4 98.09% 98.86% 98.86% 98.86% 98.86% 0.0294

(Continued)
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Table 3 (continued)

Features MCC Accuracy Precision Recall F1 score Cross-entropy
loss

5 98.83% 99.31% 99.31% 99.31% 99.31% 0.0184
Average 98.33% 99.01% 99.01% 99.01% 99.01% 0.0192

5.4 Marginal Improvement
In data analysis and machine learning, marginal improvement refers to the impact of adding or

changing a certain amount of input on model performance or outcomes. The marginal improvement
effect illustrates that as the number of parameters in the model increases, so do performance metrics
such as average precision, average recall, average accuracy, average F1 score, and average MCC
(Matthew’s Correlation Coefficient). From 7 to 16 parameters, the incremental changes in these metrics
can be observed with each additional parameter.

In this study, when the number of parameters increased from 7 to 8, there was a 0.51% improve-
ment in average precision, average recall, and average accuracy, and a 0.51% increase in average F1
score, while the average MCC rose by 0.85%. As the number of parameters further increased, varying
degrees of gains were noted. By the 14th parameter, the values for precision, recall, accuracy, F1 score,
and MCC all reached 100%. Upon adding the 15th parameter, a slight decline in performance was
observed, but with the 16th parameter, performance again improved. These marginal improvement
calculations are presented in Table 4.

Table 4: Marginal lift for different parameters

Arity Marginal
improvement MCC

Marginal improvement
accuracy

Marginal
improvement recall

Marginal improvement
F1 score

7 0.00% 0.00% 0.00% 0.00%
8 0.89% 0.53% 0.53% 0.53%
9 0.07% 0.04% 0.04% 0.04%
10 0.10% 0.06% 0.06% 0.06%
11 0.46% 0.27% 0.27% 0.27%
12 0.06% 0.03% 0.03% 0.03%
13 0.03% 0.02% 0.02% 0.02%
14 0.06% 0.04% 0.04% 0.04%
15 −0.03% −0.02% −0.02% −0.02%
16 0.03% 0.02% 0.02% 0.02%

As shown in Fig. 7, the accuracy improves as more features are used in model training. Specifically,
the proposed model achieves over 99% accuracy using fewer than half of the features, ranked by the
Pearson correlation coefficient.
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Figure 7: The impact of different HRV feature counts on classification accuracy

5.5 Quantitative Comparison with Existing Studies
In this study, the developed CNN-Transformer-LSTM hybrid model demonstrated superior clas-

sification accuracy with fewer features compared to existing stress classification models [9,10,17,18,20].
As illustrated in Table 5, utilizing only 7 HRV features, the model achieved a classification accuracy
of 99.01%, significantly surpassing the 1D-CNN model that used 15 features as reported in [20].
This approach not only simplifies the complexity of feature processing but also greatly enhances
computational efficiency. When the number of features was increased to 14, the classification accuracy
further improved to 99.99%. Although the 1D-CNN model based on 34 HRV features showed
higher accuracy, its substantial parameter requirements and prolonged execution cycles added to the
computational burden.

Table 5: Quantitative comparison of results with other state-of-the-art models

Reference Dataset Binary/Multilevel Features Model Accuracy Recall F1 score

[9] SWELL-KW Binary 17 SVM 92.75% N.A N.A
[10] SWELL-KW

AMIGOS [7]
3 class N.A CNN 98.30% 96.30% 95.80%

[18] SWELL-KW 3 class N.A SVM 90.00% N.A N.A
[8] WESAD [27] Binary/3 class 7 ML 84.32% N.A 78.71%/94.24%

95.21%
[24] From

experiment
3 class 12 LSTM 85.00% N.A N.A

[29] From
experiment

Binary/3 class 7 MLP 92.85% N.A N.A
64.28%

[19] SWELL-KW Binary 34 MLP 88.64% 92.68% 82.75%
[20] SWELL-KW 3 class 34/15 1D-CNN 99.99%/96.50% 100%/97% 100%/96%

(Continued)
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Table 5 (continued)

Reference Dataset Binary/Multilevel Features Model Accuracy Recall F1 score

Our study WESAD 3 class 7 Our model 96.88% 96.87% 96.88%
Our study SWELL-KW 3 class 7 Our model 99.01% 99.01% 99.01%
Our study SWELL-KW 3 class 14 Our model 99.99% 99.99% 100%

Moreover, compared to traditional models, the CNN-Transformer-LSTM hybrid model combines
the rapid feature extraction capability of CNNs, the global dependency handling of Transformers,
and the sequential dependency capture of LSTMs. This integrated approach effectively boosts the
model’s ability to process time-series data, successfully addressing the shortcomings of single models
in managing long-term dependencies and positional information.

Tests on the WESAD dataset further verified the model’s generalization capability, where it
achieved a classification accuracy of 97.68%, surpassing the models discussed in [8,26]. These results
underscore the potential of the designed hybrid model in handling complex biomedical time-series
signals, excelling not only in traditional classification tasks but also in effectively managing long-term
dependencies and positional information.

6 Concluding Remarks

In this study, an innovative CNN-Transformer-LSTM hybrid model was developed and validated
for classifying stress levels based on physiological parameters. This model integrates Convolutional
Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), and Transformer struc-
tures, significantly enhancing stress classification accuracy both within and outside the database.
Experimental results indicate that using just 7 HRV features, the model achieved a classification
accuracy of 99.01%. Additionally, the CNN in the model architecture effectively captures local patterns
in time-series data through convolution and pooling operations; LSTMs process time-series data
to capture long-term dependencies, crucial for understanding the dynamics of inter-beat intervals;
meanwhile, the Transformer component enhances the model’s comprehension of the relationships at
different time points in HRV signals through its self-attention mechanism. Residual connections ensure
lossless information transfer across multiple layers, preventing the issue of vanishing gradients. By
integrating the strengths of these three models, both classification accuracy and model generalization
capabilities were significantly improved. Furthermore, variance analysis for feature selection further
reduced the model’s dimensionality, enhancing computational efficiency, enabling efficient real-time
monitoring both in traditional computing environments and on resource-constrained edge devices.

Despite its high accuracy in experiments, this model highly depends on the size and quality of
datasets, particularly when trained with a limited number of HRV features. Moreover, the model’s
complexity requires substantial computational resources, which may limit its application on low-power
or computationally weak devices.

In the future, plans include utilizing non-invasive remote photoplethysmography (rPPG) to
extract HRV from facial videos, further reducing reliance on specialized equipment and making
stress monitoring more accessible. Additionally, exploration of model compression and optimization
algorithms is underway to enable rapid, accurate stress state detection on low-power devices, providing
robust technical support for real-time mental health monitoring and further enhancing the practicality,
accuracy, and reliability of the model.
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