Journal on i
Artificial Intelligence &« Jech Science Press

DOI: 10.32604/jai.2024.056259

Check for
updates

ARTICLE

Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud
Computing: A Performance Evaluation

Abdulrahman M. Abdulghani’

Department of Communication Technology and Network, Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, Serdang, 43400, Malaysia

*Corresponding Author: Abdulrahman M. Abdulghani. Email: abdulrahman.m.abdulghani@gmail.com
Received: 18 July 2024 Accepted: 04 September 2024 Published: 16 October 2024

ABSTRACT

Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of
daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource
management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that
determines how tasks are allocated and executed across cloud resources. While extensive research has been
conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant
challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to
address these challenges by providing a comprehensive review and experimental analysis of task scheduling
approaches, with a particular focus on hybrid techniques that offer promising solutions. Utilizing the CloudSim
simulation toolkit, we evaluated the performance of three hybrid algorithms: Estimation of Distribution Algorithm-
Genetic Algorithm (EDA-GA), Hybrid Genetic Algorithm-Ant Colony Optimization (HGA-ACO), and Improved
Discrete Particle Swarm Optimization (IDPSO). Our experimental results demonstrate that these hybrid methods
significantly outperform traditional standalone algorithms in reducing Makespan, which is a critical measure of
task completion time. Notably, the IDPSO algorithm exhibited superior performance, achieving a Makespan of
just 0.64 milliseconds for a set of 150 tasks. These findings underscore the potential of hybrid algorithms to
enhance task scheduling efficiency in cloud computing environments. This paper concludes with a discussion of
the implications of our findings and offers recommendations for future research aimed at further improving task
scheduling strategies, particularly in the context of increasingly complex and dynamic cloud environments.

KEYWORDS

Makespan; multi-objective optimisation; task scheduling; cloud computing; hybrid algorithms

1 Introduction

As cloud computing industries flourish, offering diverse applications in fields like education,
healthcare, and telecommunications, the integration of task scheduling algorithms for cloud resources
becomes essential [1-5]. This requirement arises from user demands, with cloud service providers
responsible for service delivery and maintenance [6—8]. Cloud computing continues to evolve, espe-
cially with advancements in virtualisation, resource management, security, energy consumption, and

Copyright © 2024 The Author. Published by Tech Science Press.
@ @ This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/jai
https://www.techscience.com/
http://dx.doi.org/10.32604/jai.2024.056259
https://www.techscience.com/doi/10.32604/jai.2024.056259
mailto:abdulrahman.m.abdulghani@gmail.com

242 JAI 2024, vol.6

task scheduling [8—11]. The growth in cloud computing and increasing user numbers introduce greater
complexity in resource management and task execution, adhering to Service Level Agreements (SLA)
[12]. An SLA defines the agreement between service providers and consumers [13]. In this dynamic
environment, organising cloud systems to ensure user satisfaction and efficient demand management
under the ‘Pay as You Go’ model becomes vital [14]. The organisation involves a resource manager, task
manager, and scheduler, with the scheduler acting as an intermediary to distribute tasks using various
scheduling techniques [15,16]. Fig. | depicts the cloud computing scheduling architecture, detailing
the function of each component.

User User User

Submit Tasks
Cloud System

Computer Resource Network Resource
Storage Resource Firewall Resource

! } !

Task Manager Scheduler Resource Manager
VM1 VMm
Get the Size of Task Scheduling
Tasks Algorithms Get the Computing
Speed of VMs

Figure 1: Scheduling mechanism in cloud computing

The role of the Scheduler in cloud computing is to effectively match incoming tasks with
appropriate cloud resources or virtual machines (VMs) [17,18]. This process involves the Scheduler
receiving task descriptions and resource manager details, and then assigning tasks based on quality
of service (QoS) parameters. The Scheduler also determines the total number of tasks in the schedule.
Task schedulers often utilise a range of optimisation algorithms to achieve different goals such as
maximising resource utilisation, improving energy efficiency, balancing workloads, and minimising
completion time. Tasks can have a wide range of requirements, including different hardware or
software resources, as explained in [17]. The main goal of this paper is to investigate multi-objective
task scheduling algorithms in cloud computing, specifically examining the impact of Makespan on
load balancing, resource utilisation, cost, and energy efficiency.

The structure of this paper is outlined below: Sections 2 discusses related fieldwork. Sections 3 and
4 investigate hybridisation techniques found in the literature, discussing both the simulated results and

JAI, 2024, vol.6 243

the viable solutions they offer. Section 5 addresses the challenges of multi-objective solutions. Finally,
Section 6 summarises the paper’s findings.

2 Related Works
2.1 Single-Objective Optimisation

This section delves into the complexities of cloud computing task scheduling, critiquing the
reliance on single-objective optimisation methods like Min-Min and Max-Min [16]. These methods,
though efficient in certain aspects such as minimising job completion times, often result in significant
drawbacks like resource underutilisation and load imbalances. Highlighting the necessity for a multi-
faceted approach, it points out the limitations of focusing on a single parameter at the expense of others
[2,13]. The passage advocates for multi-objective optimisation in cloud computing, emphasising the
need to balance various goals and consider the wide-ranging needs of different stakeholders to achieve
effective and efficient task management in cloud environments.

2.2 Multi-Objective Optimization

The paper introduces multi-objective optimisation algorithms to overcome the limitations of
single-objective optimisation in task scheduling. These algorithms are designed to balance a variety of
parameters such as task numbers and available VMs. The authors in [16] conducted a comprehensive
literature review covering 2015-2018, analysing methods, parameters, and strategies in this field.
Fig. 2 displays the number of research papers published on task scheduling solutions. Key algorithms
identified include Ant Colony Optimisation (ACO), Particle Swarm Optimisation (PSO), and Genetic
Algorithm (GA). The review emphasises the need for innovative approaches in machine learning, with
some studies exploring hybrid methods for new task scheduling solutions in cloud computing.

Time Periods

wt]
. 2009-2012

2013-2016

PSO

o —

ACO

Fuzzy

Clustering = -
4 6

0 2

8 10 12 14
Figure 2: Survey summary about task scheduling methods

In the research summarised from [16], various studies in cloud computing and resource manage-
ment are reviewed, with a focus on diverse parameters. One notable approach is the Adaptive Genetic
Algorithm (AGA) discussed in [1], which employs binary coding for chromosomes to optimise resource
scheduling. AGA’s key feature, crossover mutation, is instrumental in generating new populations

244 JAI, 2024, vol.6

and has superior results in reducing Makespan, thereby improving load balancing. However, this
approach tends to overlook the aspect of resource utilisation, highlighting a potential area for further
development in task scheduling strategies.

In the study referenced in [2], researchers applied a novel hybrid EDA-GA algorithm, combining
the Estimation of Distribution Algorithm (EDA) and Genetic Algorithm (GA). This method focused
on improving task scheduling in cloud computing, targeting parameters like Makespan and load
balancing. EDA enhanced mapping possibilities, while GA deepened the search for optimal solutions.
The hybrid approach showed noticeable differences in performance compared to using EDA and
GA separately and aligned with the findings in [1]. However, this study did not account for the cost
implications of resource utilisation.

In [3], the focus is on Makespan as a critical factor influencing cloud application performance. The
study explores energy conservation in cloud systems by examining job run times on virtual machines
and resource availability. A key development is the multi-model EDA (mEDA), which calculates
permutations and Voltage Levels of Supplies (VLSs) for task processing. This approach aims to reduce
execution time and energy use, with enhancement operators improving the range of optimal solutions.
While the study is effective in some areas, it fails to address the cost component or the complexities
of heterogeneous systems in real-world settings. In their studies, researchers in [2] and [4] explored the
use of Genetic Algorithm (GA) combined with other methods for job scheduling, highlighting it as
an effective solution. A notable development is the efficient Hybrid Genetic Algorithm-Ant Colony
Optimisation (HGA-ACO) [19], which applies a job allocation methodology to manage the demands
of numerous cloud users. This approach merges top solutions from GA and ACO in a crossover,
creating a new chromosome for optimal resource allocation. Their findings showed improvements
in minimising response time and Makespan while increasing system throughput. However, aspects
like load balancing and security were not addressed in their research. In [5], researchers introduced
the Load balancing and Cost reduction Genetic Algorithm (LCGA), which combines load balancing
GA and Cost GA to simultaneously address both parameters. This algorithm employs double fitness
operations for load balancing and cost optimisation regarding completion time. LCGA outperformed
standalone load balancing GA (LGA) and Cost GA (CGA), successfully demonstrating optimal task-
resource mapping in CloudSim simulations. However, the approach did not consider task priority,
which is important in scheduling and has an impact on energy consumption.

In [6], the Power-Aware and Real-Time Scheduling (PRTS) algorithm is introduced, aimed at
reducing workflow costs and energy consumption. This algorithm comprises three key components:
selecting cost-effective VMs while adhering to deadlines, tracking and utilising dynamic slack, and
implementing the energy-efficient Dynamic Voltage/Frequency Saving (DVFS) methodology. The
PRTS algorithm demonstrated up to 12.3% energy savings compared to the basic Energy Storage
Systems (ESS) algorithm. However, its performance is somewhat limited as it does not fully consider
the dynamics of real-world frequency variations. On the other hand, researchers [7] tackled task
scheduling challenges using a modified Grey Wolf Optimisation (GWO) algorithm. This approach
involves adjusting the fitness function to address multiple objectives, focusing on Makespan and cost
reduction. According to their findings, the Modified Grey Wolf Optimisation (MGWO) algorithm
outperforms the classic GWO and the Whale Optimisation Algorithm (WOA) regarding cost efficiency
and Makespan. Nevertheless, their study is limited by the absence of practical application in real-
world situations. In addition, this paper introduces a Memetic Algorithm (MA) based on the Genetic
Algorithm (GA) for workflow scheduling. The main focus is on minimising completion time and
resource costs. This method integrates hill-climbing optimisation with GA, improving individual
solutions while conducting a global search. Consequently, the MA algorithm outperforms both GA

JAI, 2024, vol.6 245

and PSO in lowering Makespan. However, the study has a notable limitation in not addressing load
balancing, which is considered a significant oversight in this context. In their study, researchers in
[9] applied Particle Swarm Optimisation (PSO) to task scheduling, treating tasks as particles within
swarms. The study focused on parameters like completion time and resource cost. They introduced an
Improved Discrete Particle Swarm Optimisation (IDPSO) algorithm, utilising a sinusoidal strategy-
based dynamic inertia weight for adaptive optimisation. Even though it was tested in a virtual
environment with a small population size, IDPSO outperformed DPSO and First Come First Served
(FCFS) algorithms in terms of completion time and convergence. In addition, the study by [10]
explores the application of the Hybrid Genetic-Gravitational Search Algorithm (HG-GSA) in cost
management for load scheduling, which is a crucial aspect of high-performance computing systems
such as cloud systems. They used a GA with crossover and mutation for scheduling, with the goal of
optimising the velocity and location of particles. The study discovered that this approach significantly
decreased computation expenses by making full use of VMs, evaluating fitness function values and
forces within the solution space. However, load balancing and Makespan were not included as
objectives. In contrast, Reference [11] presented the Best Minimum (BMin) algorithm, which focuses
on load balancing and includes completion time and throughput. In their experiments, the algorithm
demonstrated limited performance when dealing with 80 cloudlets, despite its efficiency improvement
over the Min-Min algorithm. In addition, the authors in [12] have developed an Enhanced Round
Robin (ERR) approach, which builds upon the strategy used in [11]. This method was designed to
enhance efficiency while maintaining the core functionality of the traditional Round Robin (RR)
technique. The efficacy of ERR was confirmed through the utilisation of the CloudSim toolbox,
showcasing a decrease in the total waiting time for tasks when compared to the RR method in similar
circumstances. Despite some variability in the number of cloudlets, ERR showed superior results
over algorithms like ACO, GA, Min-Min, and PSO in terms of Makespan and energy consumption.
Yet, in [13], the Efficient Resource Allocation with Score (ERAS) algorithm was introduced for task
scheduling in cloud data centres, focusing on VMs’ operational availability and employing Earliest
Finish Time (EFT) for standardised scoring. ERAS, which also takes into account throughput,
demonstrated superior efficiency and reliability when compared to systems that solely rely on EFT. In
[14], researchers proposed a dynamic fusion mission planning method that combines GA and ant-
colony techniques. This method aims to minimise energy consumption in cloud data and storage
facilities. Their approach, implemented using CloudSim, showcased remarkable improvements in task
completion time and energy usage. In [1 5], researchers studied scientific workflow applications utilising
the Distributed Grey Wolf Optimiser (DGWO) algorithm. Their approach treated task scheduling as
an optimisation problem, emphasising a more detailed mapping of dependent tasks and strategies
to minimise Makespan. The results indicated that DGWO significantly outperformed both the Grey
Wolf Optimiser (GWO) [7] and Particle Swarm Optimisation (PSO) [9] when used independently.

2.3 Literature Analysis

From the previous section, most studies ditch the employment of traditional highlighted algo-
rithms GA, ACO, and PSO that are used to orchestrate the task scheduling process in cloud computing.
As a result, the researchers turned to algorithm hybridisation.

Table | presents the summary of the research findings regarding hybridisation in this review. It is
worth noting that the hybrid approaches yield significant outcomes in comparison to the stand-alone
algorithms when considering the objective functions. In cloud computing task scheduling missions,
GA ranked first place as the most used hybridisation technique.

246 JAI 2024, vol.6

Table 1: Summary of hybrid techniques in task scheduling

Author Method GA ACO PSO Other
[1] AGA J — — —

[2] EDA-GA J — — EDA
[3] mEDA — — — EDA
[4] HGA-ACO J J — —

[5] LCGA J — — —

[6] PRTS — — — PRTS
[7] GWO — — — MGWO
[8] MAGA J — — MA
[10] IDPSO — — J —

[11] HG-GSA J — — GSA
[12] BMin — — — BMin
[13] ERR — — — ERR
[14] ERAS — — — ERAS
[15] DGWO Ni J — —

Table 2 provides a summary of the objectives that enhance the significance of reducing completion
time (Makespan) and its impact on other objectives and the output for each method. However,
it is worth noting that the Makespan has consistently been the primary objective of focus in the
literature. Other objectives are also taken into account and optimised simultaneously using a hybrid
multi-objective algorithm. The majority of studies primarily concentrate on hybridisation techniques,
which are considered a crucial solution for reducing makespan when compared to using the combined
algorithms separately. References [2,4,10] employed various algorithms by combining them, and the
hybridised approaches yielded improved outcomes in their studies.

Table 2: Summary of task scheduling techniques based on objective functions

Author Makespan Load balancing Resources utilisation Resources cost Energy
-y v - - -
R N - - -
3] Y, A -~ _ J
O - v - -
DI Y - y -
o - - - v Y
mo - J - v -
I - - N -
R Y - - -
[10] — — — J —

(Continued)

JAI, 2024, vol.6 247

Table 2 (continued)

Author Makespan Load balancing Resources utilisation Resources cost Energy

(1]
[12]
[13]
[14]
[15]

LK
|
|
|
RN

3 Method and Experiment

In the experimental methodology section, the performance of algorithms from [2,4,10] is com-
pared using CloudSim Software. The study uses ten virtual machines to test both hybrid (EDA-GA,
HGA-ACO, IDPSO) and standalone algorithms (GA, ACO, PSO) under varying task loads (50, 100,
and 150).

3.1 Algorithm Combination Explanation

This section details the formation of the three hybrid algorithms (EDA-GA, HGA-ACO, and
IDPSO) used in this study, providing a detailed explanation of how they are derived from other
heuristic methods. The selection of EDA, GA, ACO, and PSO as components for our hybrid
algorithms was driven by their proven effectiveness in addressing complex optimisation problems,
particularly in the context of cloud computing task scheduling. Each algorithm brings unique
advantages that, when combined, create a more robust and efficient hybrid method. EDA is known
for its ability to model the probability distribution of promising solutions and sample new solutions
based on this model, effectively capturing and exploiting the underlying structure of the problem. GA
excels in global search capabilities with its operators—selection, crossover, and mutation—ensuring
diversity in the solution population, preventing premature convergence, and exploring a wide range of
potential solutions. ACO, inspired by the foraging behaviour of ants, is highly effective in solving
combinatorial optimisation problems with its pheromone-based learning mechanism, making it
suitable for scheduling tasks where the order and allocation of tasks significantly impact performance.
PSO simulates the social behaviour of birds flocking or fish schooling, known for its simplicity and
ability to quickly converge to optimal or near-optimal solutions, with velocity and position update
mechanisms that enable efficient exploration of the solution space, making it suitable for dynamic and
large-scale optimisation problems.

3.2 EDA-GA

In this Hybridisation which combines the capabilities of Estimation of Distribution Algorithm
(EDA) and Genetic Algorithm (GA), is employed to address the intricate task scheduling problem
in cloud computing. The hybridisation process involves several key steps that collectively contribute
to its effectiveness. First, we initialise the population of solutions, representing different task-to-
virtual Machine (VM) assignments. Next, we employ EDA to create probability distribution models
that capture the relationships between tasks and VMs, allowing us to gain insights into the problem
structure. Subsequently, we use GA’s operators, including selection, crossover, and mutation, to evolve
the population of solutions, ensuring diversity and exploration of the solution space. Throughout this
process, we iteratively refine the assignment of tasks to VMs, aiming to minimise Makespan, achieve

248 JAI 2024, vol.6

load balancing, and optimise resource utilisation. The hybrid EDA-GA algorithm shows potential to
improve task scheduling efficiency in cloud computing environments.

The steps are as follows:
1-EDA Phase

e Initial Population: The first population is made up of solutions in which virtual machines (VMs)
are randomly allocated jobs. To simulate the initial population in our studies, we used the
CloudSim simulator to create 50, 100, and 150 jobs of random sizes. Ten virtual machines (VMs)
with predetermined computing capacities make up the second population.

e Probability Distribution Modelling: To estimate the probability distributions of task-to-VM
assignments, the chosen solutions are examined. If tasks are thought of independently, this
might entail creating simpler univariate distributions or multivariate distributions that describe
interdependence between several activities. For example, the likelihood of allocating a given
set of tasks to a certain virtual machine (VM) increases if the VM regularly produces shorter
Makespans for a given set of jobs. Methods that represent the likelihood of different task-VM
assignments, like as Bayesian Networks and Gaussian Mixture Models (GMMSs), can be used
to do this.

o Sampling New Solutions: The process of generating new task-to-VM allocations involves
sampling from the probability distribution model. By concentrating the search on the most
promising areas of the solution space, this phase takes advantage of the knowledge gathered
from the previous iteration. The procedure of sampling guarantees a diversity of solutions,
although with a bias towards configurations that are expected to provide lower Makespan
measurements.

2-GA Phase:

e Fitness Function: A fitness function, in this case intended to decrease Makespan while also
taking into account considerations like load balance and resource usage, is used to evaluate
each solution in the population.

e Selection Process: By using Roulette Wheel Selection technique, solutions are probabilistically
chosen according to how fit they are. According to each solution’s fitness, a chance of selection
is allocated. This guarantees that solutions that are more suited will be more likely to be chosen
for replication.

e Crossover: To create offspring, a crossover operation joins pairings of chosen parent solutions.
This process is essential for recombining the parent features to explore new regions of the
solution space. Two-Point crossover used which represented by two parents switch the section
that separates the two crossover spots they have chosen. This technique enables more intricate
combinations of work assignments, which could result in more creative solutions. Crossover
operations are used with a crossover rate of 0.8, indicating that 80% of the chosen pairings
undergo crossover and 20% stay unmodified to maintain population variety, in order to prevent
early convergence on poor solutions.

e Mutation Operation: Through crossover, mutation adds arbitrary alterations to the progeny.
In order to preserve variety within the population and investigate areas of the solution space
that crossover alone would miss, this procedure is crucial. Bit-Flip Mutation, in which the
assignment is reversed with a modest probability, might be employed for binary-encoded
solutions (where a job is either allocated or not assigned to a virtual machine). An equilibrium
between exploitation and exploration is achieved by using a mutation rate of 0.05 (5%). In order

JAI, 2024, vol.6 249

to keep the search process from being too random, a low mutation rate makes sure that only a
tiny percentage of the population experiences mutation.

The aforementioned stages are repeated by the EDA-GA hybrid algorithm until a termination
condition is satisfied, such as a certain number of generations or the point at which the Makespan
improvement between generations is no longer significant. The best solution in the population is used
to map tasks to virtual machines (VMs), minimizing Makespan and guaranteeing effective resource
use throughout the cloud system. The details are displayed in Fig. 3 and Table 3 below.

Algorithm Hybrid EDA-GA for Task Scheduling
Require: num_tasks, pop_size, num_vms
Ensure: Optimized task-to-VM mapping
1: EDA Phase:
2: Initialize population with random task-to-VM assignments
3: Model probability distributions for task-VM assignments (e.g., Bayesian
Networks, GMMs)
4: Sample new solutions from the probability model, emphasizing regions likely
to minimize Makespan
GA Phase:
: Evaluate fitness based on Makespan, load balancing, and resource utilization
. Apply Roulette Wheel Selection to choose solutions for reproduction
: Perform Two-Point Crossover with a rate of 0.8 to generate offspring
: Introduce mutations using Bit-Flip Mutation with a rate of 0.05 to maintain
diversity
10: while termination condition not met do
11: Iterate the EDA and GA phases to refine solutions
12: end while
13: return Best task-to-VM mapping in the population

=3B - -]

Figure 3: Hybrid algorithm EDA-GA

Table 3: EDA-GA parameters settings

Algorithm Parameter Value

EDA Population Size (PS) 50, 100, 150
GA Crossover rate 0.8

GA Mutation rate 0.05
EDA-GA Elite population size (E) 30% of PS
EDA-GA Learning rate (1) 0.1

3.3 HGA-ACO

In our investigation of task scheduling optimisation in cloud computing, we introduce the Hybrid
Genetic Algorithm-Ant Colony Optimisation (HGA-ACO) algorithm, a powerful hybridisation of
Genetic Algorithm (GA) and Ant Colony Optimisation (ACO). This hybrid algorithm is designed
to address multiple objectives, including Makespan reduction, load balancing, and efficient resource

allocation. The hybridisation process involves a series of well-defined steps that enable us to harness
the strengths of both GA and ACO.

Firstly, we start by creating a population of candidate solutions, each representing a potential
assignment of task-to-Virtual Machines (VMs). GA is used to carry out selection, crossover, and

250 JAI 2024, vol.6

mutation operations, enabling us to effectively explore and exploit the solution space. Meanwhile, ACO
plays a crucial role in creating and updating pheromone trails that guide the search for optimal task-to-
VM assignments. The pheromone trails imitate the foraging behaviour of ants, emphasising potential
paths to pursue in the solution space. During the optimisation process, we continuously improve the
task assignments, considering factors such as minimising Makespan, balancing the workload, and
ensuring cost-effectiveness. The combination of GA and ACO allows for a comprehensive exploration
and utilisation of the search space, resulting in enhanced task scheduling solutions that can fulfil a
range of objectives. This hybrid HGA-ACO algorithm showcases its ability to improve task scheduling
efficiency in cloud computing environments, offering a well-rounded and comprehensive approach to
task assignment.

1. Initialisation: Initial Population: Potential task-to-VM allocations make up the initial popu-
lation. When it comes to assigning duties to virtual machines, each person in this population
offers a potential solution. In our trials, 10 virtual machines (VMs) with present computing
capacity made up the second population, whereas 50, 100, and 150 jobs created with the
CloudSim simulator made up the first population.

2. GA Phase: Same GA structured and used in Fig. 3 (above used).

3. ACO Phase:

e Pheromone Initialization: During the Ant Colony Optimization (ACO) phase, pheromone
levels are initialized for every possible task-to-VM assignment. The pheromone value
represented as set to a small constant to indicate no prior preference for any specific
assignment. This initial pheromone value represents the attractiveness of assigning a
particular task to a VM, providing a baseline from which the search process begins.

e Ant Deployment: Ants (agents) are deployed to construct solutions using the current
pheromone levels and heuristic information such as task size and VM capacity. The
decision-making process for each ant is influenced by both the pheromone strength ¢
and the heuristic attractiveness n. The combined influence of t and n allows ants to
explore and exploit promising regions of the solution space. The probability Pij of an
ant assigning task 7 to VM j is typically calculated using (1):

Pij = (tij) o (nij) B/ D_ k (tik) o (nik) B (1)

where o and B are parameters that control the relative importance of the pheromone
trail and the heuristic information.

e Pheromone Update: After the ants have constructed their solutions, the pheromone levels
are updated. The amount of pheromone deposited on each path is proportional to the
quality of the solution, typically inversely related to the Makespan. For a path used in
a higher-quality solution, more pheromone At is deposited (2):

tij < (1 = p)tij + Atij 2)

where p is the pheromone evaporation rate (with p between 0 and 1) that ensures the
search remains dynamic and avoids premature convergence by gradually reducing the
influence of previous pheromone levels. The positive constant & is applied as part of
Atij to prevent any division by zero during the update process.
4. Combining the ACO and GA Phases:
e FElitism and Iteration: The best solutions identified by both GA and ACO are retained
through elitism, replacing the worst-performing solutions in the population. This

JAI, 2024, vol.6 251

step iterates, refining task-to-VM assignments to minimize Makespan, balance the
workload, and optimize resource utilization.

Termination: The HGA-ACO algorithm continues iterating through these phases until a termina-
tion condition is met (e.g., maximum number of iterations or solution convergence). The final output
is the task-to-VM mapping that achieves the best performance across all criteria. In accordance with
Fig. 4, please refer to Table 4.

Algorithm Hybrid HGA-ACO for Task Scheduling
Require: num_tasks (50, 100, 150), pop-size, num-vms (10)
Ensure: Optimized task-to-VM mapping
1: Initialisation:
2: Initialize the population with potential task-to-VM assignments, where each
individual represents a candidate solution.
3: Use CloudSim to generate tasks (num_tasks) and define the second popula-
tion as 10 VMs with preset computational capacities.
4: GA Phase:
5: Apply the Genetic Algorithm (GA) steps, including:
6: Selection: Apply Roulette Wheel Selection to choose solutions based on
fitness.
7: Crossover: Perform Two-Point Crossover with a crossover rate of 0.8 to
generate offspring.
8 Mutation: Introduce mutations using Bit-Flip Mutation with a mutation
rate of 0.05 to maintain diversity.
9: ACO Phase:
10: Pheromone Initialization: Initialize pheromone levels 7; for each task-
to-VM assignment with a small constant value.
11: Ant Deployment: Deploy ants to construct solutions based on current
pheromone levels 7 and heuristic information 7.
12: The probability P;; of assigning task i to VM j is calculated using:

S 1)l)
i = 5 el

13: Pheromone Update: After solutions are constructed, update pheromone
levels 7;; using:

Tij + (1 = p)73j + ATy

where p is the pheromone evaporation rate and Ar;; represents the
pheromone deposit, with £ as a positive constant to avoid division by zero.

14: Combining GA and ACO Phases:

15: Retain the best solutions from both GA and ACO through elitism, replacing
the worst-performing solutions in the population.

16: while termination condition not met do

17: Iterate the GA and ACO phases to refine the task-to-VM mappings.

18: end while

19: Termination: The algorithm concludes when the termination condition is
met, returning the task-to-VM mapping with the best performance across
all criteria.

20: return Best task-to-VM mapping in the population

Figure 4: Hybrid algorithm HGA-ACO

252 JAI 2024, vol.6

Table 4: HGA-ACO parameters settings

Algorithm Parameter Value

HGA Population Size (PS) 50, 100, 150

HGA Iteration number At max

HGA Crossover rate 0.8

HGA Mutation rate 0.05

ACO Pheromone evaporation rate 1—0p

ACO Constant (§) Positive integer to avoid division by zero
3.4 ID-PSO

The Improved Discrete Particle Swarm Optimisation (IDPSO) algorithm represents a significant
advancement in the field of task scheduling for cloud computing. This algorithm combines the
principles of Particle Swarm Optimisation (PSO) with innovative enhancements to tackle the complex
problem of task-to-Virtual Machine (VM) assignment efficiently. In this essay, we looked into the key
steps and features of the IDPSO algorithm, shedding light on its significance in optimising cloud-
based task scheduling. The IDPSO algorithm initiates its journey with the careful initialisation of a
population of particles. Each particle corresponds to a potential task-to-VM assignment, and crucial
parameters such as population size, maximum iterations, and various weighting factors are defined
to guide the optimisation process. The primary objective of the IDPSO algorithm is to minimise
the Makespan, which quantifies the total time taken to complete all tasks while adhering to VM
availability constraints. The fitness evaluation step is a crucial component of the IDPSO algorithm.
During every iteration, the fitness of each particle’s assignment is carefully calculated. The fitness
measure acts as a guide, directing the algorithm towards solutions that minimise the Makespan and
improve task scheduling efficiency. The IDPSO algorithm also incorporates a mechanism for updating
personal and global best assignments. The personal best assignment of each particle is updated when
the current fitness exceeds the previous one. In a similar vein, the top assignment on a global scale is
updated whenever a particle uncovers a better assignment. This encourages particles to work together
and effectively explore the solution space. The velocity and position update mechanism of the IDPSO
algorithm is a key feature. This step captures the core of PSO, as particles fine-tune their velocities
and positions to move toward improved solutions. In this case, the algorithm carefully considers
both the exploration of new assignments and the exploitation of promising ones. The particles’
movement is guided by a combination of factors, including the inertia weight, cognitive factor (based
on personal experience), and social factor (influenced by global knowledge). Boundary constraints
are strictly enforced to ensure the integrity of task-to-VM assignments. These constraints ensure
that particles do not exceed acceptable boundaries, preventing tasks from being assigned to VMs
with insufficient resources. The IDPSO algorithm employs an iterative optimisation process in which
particles continuously modify their assignments. This iterative nature allows the algorithm to explore a
wide solution space, seeking to converge towards an optimal task assignment that minimises Makespan
while respecting VM resource constraints. In the culmination of its efforts, the IDPSO algorithm yields
the best task-to-VM assignment it has discovered during the optimisation process. This assignment
represents the global best solution, characterised by the lowest Makespan, and is the outcome of the
algorithm’s rigorous exploration and refinement. The steps are as follows:

JAI, 2024, vol.6 253

1. Imitialisation: In the ID-PSO (Improved Dynamic Particle Swarm Optimization) algorithm,
the initial population consists of particles, where each particle represents a potential task-to-
VM assignment. In our experiments, we generated 50, 100, and 150 tasks of random sizes using
the CloudSim simulator, representing the first population. The second population consists of
10 VMs with predefined computational capacities. The initial position and velocity of each
particle are randomly initialized.

2. PSO Phase:

e Fitness Evaluation: Each particle’s fitness is evaluated based on Makespan, load balanc-
ing, and resource utilization. The fitness function is designed to minimize the Makespan
while ensuring efficient resource use across all VMs.

e Personal Best (pBest) and Global Best (gBest) Update:

1. Each particle keeps track of its personal best position (pBest)-the best task-to-VM
assignment it has achieved so far.

2. The algorithm also tracks the global best position (gBest)-the best task-to-VM
assignment found by any particle in the swarm.

3. The fitness of each particle is compared against its pBest and the gBest. If a particle’s
current position yields a better fitness, its pBest is updated. If this pBest is better than
the current gBest, the gBest is updated accordingly.

e Velocity and Position Update: The velocity vi of each particle is updated based on its
current velocity, the distance to its pBest, and the distance to the gBest, using the
Formula (3):

vi(t+ 1) =wvi(t) + clrl (pBesti — xi(t)) + c2r2 (gBest — xi (1)) 3)

where
e w is the inertia weight controlling the influence of the previous velocity.
e ¢l and ¢2 are acceleration coefficients representing the cognitive (pBest) and social
(gBest) components.
e 71 and r2 are random numbers uniformly distributed in the range [0, 1].
e The position xi of each particle is then updated using its new velocity as in (4):

Xi(t+ D) =xi(t) +vit+1) C))

e Dynamic Inertia Weight Adjustment:

1. The inertia weight w is dynamically adjusted during the iterations using a sinusoidal
strategy, allowing the algorithm to balance between exploration (searching new
areas) and exploitation (focusing on known good areas).

2. The inertia weight is varied as follows (5):

w(t) = wmax — (omax — wmin /itermax)t &)

where wmax and wmin are the maximum and minimum inertia weights, respectively, and
itermax is the maximum number of iterations.
3. Termination:

o Convergence Check: The ID-PSO algorithm continues iterating until a termination
condition is met, such as a maximum number of iterations or when the improvement
in the gBest fitness value becomes negligible.

e Output: The final output is the task-to-VM mapping that corresponds to the gBest
position, which minimizes the Makespan while ensuring efficient load balancing and
resource utilization across the cloud system.

254 JAI 2024, vol.6

Ultimately, the IDPSO algorithm proves to be a powerful solution to the complex problem of task
scheduling in cloud computing. By combining PSO principles with discrete assignment constraints
and prioritising Makespan minimisation, it achieves a careful equilibrium between individual particle
exploration and utilising global knowledge. This approach results in an optimal task assignment that
improves Makespan and respects resource limitations. The IDPSO algorithm represents a notable
advancement in enhancing task scheduling efficiency in cloud environments, positioning it as a
valuable asset in the field of cloud computing. As demonstrated in Fig. 5 and Table 5.

Algorithm Hybrid ID-PSO for Task Scheduling
Require: num- tasks (50, 100, 150), pop-size, num_vms (10)
Ensure: Optimized task-to-VM mapping
1: Initialisation:
2: Initialize the population of particles, each representing a potential task-to-
VM assignment.
3: Randomly initialize the position and velocity of each particle.
: Set the initial personal best (pBest) for each particle and the global best
(gBest) for the entire swarm.

[

5: PSO Phase:
6: for each iteration do
7: for each particle do
8: Evaluate the fitness of the particle based on Makespan, load balancing,
and resource utilization.
9: Update pBest if the current fitness is better than the particle’s previous
best.
10: Update gBest if the current pBest is better than the global best.
11: Update the velocity v; using:
vi(t+1) =w-vi(t) + c1 - 71 - (pBest; — zi(t)) + c2 - 2 - (gBest — z;(t))
12: Update the position z; using:
zi(t+ 1) = z;(t) +vi(t + 1)
13: Dynamically adjust the inertia weight w using:
Wmaz — Wmin
t) = - —mez—mm) g
w() Wmaz (itermcw)
14: Apply mutation with a probability of 0.05 to maintain diversity.
15: end for
16: end for

17: Termination:

18: The algorithm terminates when the maximum number of iterations (500) is
reached, or the improvement in gBest becomes negligible.

19: return Best task-to-VM mapping corresponding to gBest, minimizing
Makespan while ensuring efficient resource utilization.

Figure 5: Hybrid algorithm ID-PSO

JAI, 2024, vol.6 255

Table 5: ID-PSO parameters settings

Algorithm Parameter Value

IDPSO Population Size (PS) 50, 100, 150

IDPSO Iteration number 500

IDPSO Maximum velocity 1.0

IDPSO Mutation rate 0.05

IDPSO Inertia weight (Dynamic) Varies between 0.3 and 1.3 using a sinusoidal strategy

3.5 Task and VM Specifications

In this study, the task and virtual machine (VM) specifications are meticulously designed to reflect
realistic cloud computing environments. The length of each task is randomly generated to introduce
variability and simulate diverse computational requirements. Each task’s input and output file sizes
are randomly generated 100 to 300 MB, ensuring a consistent data flow that challenges the resource
allocation efficiency of the algorithms. The VM parameters are configured as follows: a mirror size
of 10,000 MB, a memory capacity of 512 MB, a computational speed of 100 Million Instructions Per
Second (MIPS), and a bandwidth of 100 Megabits per second (Mbps). These parameters are selected
to represent typical mid-range VMs used in contemporary cloud environments. Additionally, the host
machine parameters include a MIPS rating of 1000, 2 GB of Memory a storage capacity of 1,000,000
MB, and a bandwidth of 10,000 Mbps, with a time-shared processor sharing mode to optimise the
concurrent execution of tasks. This detailed specification ensures that the experimental setup is robust
and reflective of real-world cloud infrastructure.

3.6 Objective Function Definition

The objective function is crucial for our comparative analysis, as it allows us to quantitatively
evaluate the performance of the proposed scheduling algorithms. The main focus of this research is to
reduce the Makespan, which refers to the total time needed to finish all scheduled tasks. The efficiency
and responsiveness of cloud computing resources are directly impacted by the Makespan, which is a
critical metric. The fitness function (FF) as stated in (6) is utilised to assess the quality of each solution.

1

FF = Makespan ©

A higher fitness value is achieved when the Makespan is lower. This formulation guarantees that
the scheduling algorithm always gives priority to configurations that minimise overall completion
time, thus improving the throughput and efficiency of the cloud system. Through the explicit
definition and utilisation of this objective function, the study offers a clear and replicable framework
for performance assessment. This framework enables rigorous comparative analysis across various
scheduling strategies.

4 Results

Our experimentation results indicate a significant advantage for the hybrid models compared to
the standalone algorithms, specifically in reducing Makespan. The experiment was carried out in
three phases, where the number of tasks was gradually increased to 50, 100, and finally 150 tasks.

256 JAI 2024, vol.6

The simulation was performed using the CloudSim tool on a setup of 10 virtual machines (VMs).
The simulations were conducted on a system equipped with Windows 10, 512 GB of RAM (Random
Access Memory), a 2.6 GHz Core i7 CPU (Central Processing Unit), and a 500 GB hard drive. The
hybrid models demonstrated exceptional performance in the context of scheduling 150 tasks, achieving
Makespan values of 0.75, 0.77, and 0.64 milliseconds. In contrast, the Makespan values of 0.8, 0.84,
and 0.79 milliseconds were slightly higher for the standalone algorithms. This discrepancy emphasises
the hybridisation approach’s effectiveness in improving task scheduling efficiency, as evidenced by the
significantly shorter Makespan durations resulting from a comparable workload of 150 tasks. Fig. 6
illustrates that the hybrid models consistently outperformed the standalone algorithms in all phases
of the experiment, thereby highlighting their efficiency and robustness in a variety of task scheduling
scenarios.

0.9 5 0.84
! 0.79
0.8 0.75 0.77
0.7 0.64
0.59
06 :
05

0.45
— =

0.4 i 0.41
| EX:
03 025 [i 0.2
. 02
0.2 |
01 i)
0

EDA-GA HGA-ACO IDPSO

0.27

4
(| 0.3
1 | |
GA ACO PSO

m 50 Tasks m 100 Tasks m 150 Tasks

0
S

Figure 6: Comparison of Makespan reduction between hybrid and stand-alone algorithms

According to the findings presented, IDPSO multi-objective optimisation emerged as the most
effective combination for task scheduling in cloud computing. This hybridisation strategy was
designed to minimise makespan, enhance convergence, and improve load balancing throughout the
scheduling and execution processes, particularly when dealing with a large number of tasks. The
results indicate a noteworthy trend: as the number of input tasks increases, the overall completion
time decreases, leading to improved load balancing. This promising outcome suggests the feasibility
of implementing this approach in real-world scenarios, where optimising task scheduling efficiency is
paramount.

5 Discussion and Challenges

The previous discussion clearly shows that researchers have used a wide range of algorithms
to achieve their goals. These objectives can be accomplished by strategically applying hybridisation
techniques, which involve combining multiple methods to achieve the desired performance levels.
Table 1 presents a thorough analysis, highlighting the genetic algorithm as a frontrunner. This is
primarily attributed to its key components, Crossover and Mutation. These components collaborate
to create a large-scale population and practical solutions, effectively tackling the challenges of task
scheduling in cloud computing. Nonetheless, it is prudent to conduct additional research into the
specific goals that should be prioritised in the domain of cloud computing task scheduling. By tailoring
objectives to the research focus, researchers can make more informed decisions about which aspects

JAI, 2024, vol.6 257

to highlight. Table 2 highlights that completion time (Makespan) is the primary objective in the vast
majority of reviewed articles. Other objectives are important, but they are inextricably linked to and
dependent on Makespan.

There are two significant challenges that arise in the field of multi-objective scheduling
optimisation.

5.1 Mapping

The primary obstacle in multi-objective task scheduling in cloud computing is the development
of mapping solutions that minimise Makespan, maintain load balancing, consider resource utilisation
and cost-effectiveness, and integrate green energy data centres. A complex endeavour is the discovery
of the optimal balance among these factors.

5.2 Integration

Future research must investigate the integration of task scheduling with virtual machine con-
solidation methodologies to improve the efficiency of task scheduling. To augment conventional
scheduling strategies in cloud computing, it is imperative to develop innovative methods, including
economic models, heuristic algorithms, and nature-inspired algorithms.

Notably, there exists a viable opportunity to devise sophisticated job scheduling techniques in
cloud computing environments by integrating multiple methodologies and considering various input
criteria, including costs and energy consumption. Additionally, the convergence of Time-Sensitive
Networking (TSN) principles can play a pivotal role in ensuring timely and deterministic commu-
nication within cloud-based systems [20,21]. Further research should explore both single-and multi-
objective task scheduling, using a combination of existing methods to drive further improvements. This
comprehensive approach shows potential for advancing the field of cloud computing task scheduling.
By drawing inspiration from various interdisciplinary work and the principles of communication
progression, researchers in cloud computing can discover new methods to improve efficiency and
resource allocation in cloud-based systems.

6 Conclusion

In conclusion, researchers have extensively investigated the complex challenge of task scheduling
in cloud computing. It is now firmly established as a non-deterministic polynomial (NP-Complete)
issue characterised by stochastic behaviour. A multitude of methods and techniques have been
proposed to address these issues, taking into account various factors impacting service providers
and consumers. This paper has provided a comprehensive overview of task scheduling challenges,
classifying them as NP-Complete difficulties based on an in-depth survey of prior research. Through
an exhaustive review of established literature, we have identified effective methodologies for achieving
optimal implementations, with optimisation algorithms emerging as key solutions. Furthermore,
this research has heralded a new era of techniques by combining existing algorithms and refining
operations and procedures to meet diverse objectives. These advancements have the potential to
eliminate bottlenecks in cloud computing by taking into account the interests of both users and service
providers. The IDPSO hybrid approach is the most promising solution in our assessment of pertinent
studies, particularly in scenarios that involve a high volume of assigned tasks, while also ensuring
effective load balancing within the dynamic landscape of cloud computing. This is a substantial
stride toward resolving the intricate task scheduling issues that exist in the cloud and represents the
continuous development of this essential field.

258 JAI 2024, vol.6

Acknowledgement: The author acknowledges the contribution and support of the Faculty of Com-
puter Science and Information Technology at University Putra Malaysia (UPM).

Funding Statement: The author received no specific funding for this study.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Abdulrahman M. Abdulghani, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The author declares that they have no conflicts of interest to report regarding the
present study.

References

[11 X. Fu, Y. Sun, H. Wang, and H. Li, “Task scheduling of cloud computing based on hybrid particle
swarm algorithm and genetic algorithm,” Cluster Comput., vol. 26, pp. 2479-2488, Oct. 2023. doi:
10.1007/s10586-020-03221-z.

[2] S. Pang, W. Li, H. He, Z. Shan, and X. Wang, “An EDA-GA hybrid algorithm for multi-objective
task scheduling in cloud computing,” IEEE Access, vol. 7, pp. 146379-146389, 2019. doi: 10.1109/AC-
CESS.2019.2946216.

[3] C. Wu and L. Wang, “A multi-model estimation of distribution algorithm for energy efficient schedul-
ing under cloud computing system,” J Parallel Distr. Comput., vol. 117, pp. 63-72, 2018. doi:
10.1016/j.jpdc.2018.02.009.

[4] A. S. Kumar and M. Venkatesan, “Multi-objective task scheduling using hybrid genetic-ant colony
optimization algorithm in cloud environment,” Wirel. Pers. Commun., vol. 107, no. 4, pp. 1835-1848, 2019.
doi: 10.1007/s11277-019-06360-8.

[5S] C.Chandrashekar, P. Krishnadoss, V. K. Poornachary, B. Ananthakrishnan, and K. Rangasamy, “HWA-
COA scheduler: Hybrid weighted ant colony optimization algorithm for task scheduling in cloud comput-
ing,” Appl. Sci., vol. 13, no. 6, Mar. §, 2023, Art. no. 3433. doi: 10.3390/app13063433.

[6] S.Yin, P Ke, and L. Tao, “An improved genetic algorithm for task scheduling in cloud computing,” in /3th
IEEE Conf. Ind. Electron. Appl. (ICIEA), Wuhan, China, 2018, pp. 526-530.

[71 P. Zhu, J. Chen, and Y. Fu, “A power-aware scheduling algorithm for real-time workflow applications
in clouds,” in 3rd Int. Conf. Electron. Inform. Technol. Comput. Eng. (EITCE), Xiamen, China, 2019,
pp. 1870-1873.

[8] A. Alzagebah, R. Al-Sayyed, and R. Masadeh, “Task scheduling based on modified grey wolf optimizer
in cloud computing environment,” in 2019 2nd Int. Conf. New Trends Comput. Sci. (ICTCS), Amman,
Jordan, 2019, pp. 1-6.

[91 A.Alsmady, T. Al-Khraishi, W. Mardini, H. Alazzam, and Y. Khamayseh, “Workflow scheduling in cloud
computing using memetic algorithm,” in 2019 IEEE Jordan Int. Joint Conf. Electric. Eng. Inform. Technol.
(JEEIT), Amman, Jordan, 2019, pp. 302-306.

[10] S. Liu and Y. Yin, “Task scheduling in cloud computing based on improved discrete particle swarm
optimization,” in 2019 2nd Int. Conf. Inform. Syst. Comput. Aided Edu. (ICISCAE), Dalian, China, 2019,
pp. 594-597.

[11] D. Chaudhary and B. Kumar, “Cost optimized hybrid genetic-gravitational search algorithm for
load scheduling in cloud computing,” Appl Soft Comput., vol. 83, 2019, Art. no. 105627. doi:
10.1016/j.as0¢.2019.105627.

[12] Y. Shi, K. Suo, S. Kemp, and J. Hodge, “A task scheduling approach for cloud resource management,
in 2020 Fourth World Conf. Smart Trends Syst., Secur. Sustainability (WorldS4), London, UK, 2020,
pp- 131-136.

2

https://doi.org/10.1007/s10586-020-03221-z
https://doi.org/10.1109/ACCESS.2019.2946216
https://doi.org/10.1016/j.jpdc.2018.02.009
https://doi.org/10.1007/s11277-019-06360-8
https://doi.org/10.3390/app13063433
https://doi.org/10.1016/j.asoc.2019.105627

JAIL

[13]

[14]

[15]
[16]
(17]
(18]
[19]

(20]

[21]

2024, vol.6 259

M. S. Sanaj and P. M. Joe Prathap, “An Enhanced Round Robin (ERR) algorithm for effective and
efficient task scheduling in cloud environment,” in 2020 Adv. Comput. Commun. Technol. High Perform.
Appl. (ACCTHPA), Cochin, India, 2020, pp. 107-110.

V. A. Lepakshiand C. S. R. Prashanth, “Efficient resource allocation with score for reliable task scheduling
in cloud computing systems,” in 2nd Int. Conf. Innov. Mech. Ind. Appl. (ICIMIA), Bangalore, India, 2020,
pp. 6-12.

Z. Zong, “An improvement of task scheduling algorithms for green cloud computing,” in /5¢h Int. Conf.
Comput. Sci. Edu. (ICCSE), Delft, Netherlands, 2020, pp. 654-657.

B. Abed-alguni and N. Alawad, “Distributed grey wolf optimizer for scheduling of workflow applications in
cloud environments,” Appl. Soft Comput., vol. 102, 2021, Art. no. 107113. doi: 10.1016/j.as0¢.2021.107113.
A. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A litera-
ture survey,” Future Gener. Comput. Syst., vol. 91, pp. 407-415, 2019. doi: 10.1016/j.future.2018.09.014.
M. Kumar and S. Sharma, “PSO-COGENT: Cost and energy efficient scheduling in cloud environment
with deadline constraint,” Sustainable Comput.. Inform. Syst., vol. 19, pp. 147-164, 2018.

M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, “Cloud task scheduling based on ant colony
optimization,” in 8th Int. Conf. Comput. Eng. Syst. (ICCES), Cairo, Egypt, 2013, pp. 64-69.

B. O. Akram, N. K. Noordin, F. Hashim, M. F. A. Rasid, M. I. Salman and A. M. Abdulghani, “Joint
scheduling and routing optimization for deterministic hybrid traffic in time-sensitive networks using
constraint programming,” IEEFE Access, vol. 11, pp. 142764-142779, 2023.

B. O. Akram, N. K. Noordin, F. Hashim, M. A. F. Rasid, M. I. Salman and A. M. Abdulghani, “Enhancing
reliability of time-triggered traffic in joint scheduling and routing optimization within time-sensitive
networks,” IEEFE Access, vol. 12, pp. 78379-78396, 2024. doi: 10.1109/ACCESS.2024.3408923.

https://doi.org/10.1016/j.asoc.2021.107113
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1109/ACCESS.2024.3408923

	Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation
	1 Introduction
	2 Related Works
	3 Method and Experiment
	4 Results
	5 Discussion and Challenges
	6 Conclusion
	References

