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Abstract: Semantic change detection is extension of change detection task
in which it is not only used to identify the changed regions but also to
analyze the land area semantic (labels/categories) details before and after the
timelines are analyzed. Periodical land change analysis is used for many real
time applications for valuation purposes. Majority of the research works are
focused on Convolutional Neural Networks (CNN) which tries to analyze
changes alone. Semantic information of changes appears to be missing, there
by absence of communication between the different semantic timelines and
changes detected over the region happens. To overcome this limitation, a
CNN network is proposed incorporating the Resnet-34 pre-trained model on
Fully Convolutional Network (FCN) blocks for exploring the temporal data
of satellite images in different timelines and change map between these two
timelines are analyzed. Further this model achieves better results by analyz-
ing the semantic information between the timelines and based on localized
information collected from skip connections which help in generating a better
change map with the categories that might have changed over a land area
across timelines. Proposed model effectively examines the semantic changes
such as from-to changes on land over time period. The experimental results on
SECOND (Semantic Change detectiON Dataset) indicates that the proposed
model yields notable improvement in performance when it is compared with
the existing approaches and this also improves the semantic segmentation task
on images over different timelines and the changed areas of land area across
timelines.

Keywords: Remote sensing; convolutional neural network; semantic
segmentation; change detection; semantic change detection; resnet; FCN

1 Introduction

Change detection (CD) task involves detecting the changes observed in land areas using satellite
images between given time intervals. CD task is very useful for many real-world applications like

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.



https://www.techscience.com/journal/jai
https://www.techscience.com/
http://dx.doi.org/10.32604/jai.2022.034931
https://www.techscience.com/doi/10.32604/jai.2022.034931
mailto:selizafemisherley@gmail.com

216 JAI, 2022, vol.4, no.4

planning and monitoring urban growth, managing resources pertaining to the urban areas, monitoring
environment activities, damage assessment after natural disasters and in many such social applications.
Even though the binary CD models allows the users to monitor and evaluate the regions of interest in
satellite images, the information observed is small and it doesn’t describe in elaborated manner. Most
of the CD applications tend to know what changes happened other than where the changes could
have been happened. To overcome this scenario, semantic change detection (SCD) task is defined
[1-7] which provides change information [§8,9] and detailed land change maps which includes change
information corresponding to each category. Recently with the development of CNN [10], massive
attainment has been achieved in the field of CD task. The CNNs learn to segment each category
based on the scene and generate SCD maps. CNNs have a bottom-up architecture design in which the
features of bi-temporal region [11, 12] are merged and downscaled through the stack of convolutional
layer blocks. The details of changes are recognized through the weights that have been computed and
feature transformations. In comparison with traditional approaches, CNN-based approaches tend to
be advantageous with features like improved robustness, effective to model more complex changes,
etc. With the interpretation of image processing, Binary Change Detection (BCD) task is known a
binary segmentation method where binary change map is produced to indicate the changed/unchanged
regions of interest. The conventional CNN-based methods don’t fit for SCD task since they are single-
ended in nature producing the CD map alone [13]. To fill the research gap in order to carry out SCD
task, a novel CNN-based model is been proposed. As a part of proposed methodology to perform
SCD task, two sub tasks of SCD are carried out: Semantic Segmentation (SS) of the land regions and
CD of the land regions in which the extracted features are shared and fused together. The loss functions
are used separately to monitor the SS and CD tasks of the SCD. The rest of this paper is organized
as follows. Section 2 presents the related works of CD carried out by processing the satellite images.
Section 3 & 4 explains the system architecture and implementation of proposed novel CNN model.
Section 5 describes the various experimental settings used in this study and the evaluation metrics used
and lists the results of the experiments. Section VI draws the conclusion.

2 Related Works

This section is presented with various approaches and the developments in CD tasks which are in
practice over years. It also comprises learning about how CNN-based methods are introduced in CD
approaches and recent methods used for SCD are reviewed.

Tomoyuki Suzuki et al. (2018) [14] have proposed a method to identify the semantic meaning from
changed regions. Their work mainly focused on semantic segmentation, along with the traditional
approaches to perform change detection. To achieve good performance, improvements are done to
hyper column representations which is commonly referred as hypermaps, using convolutional maps
derived from convolutional neural networks (CNNs). Image patches are processed to extract multi-
scale features which helps for the process of SCD. Tsunami Panorama Change Detection (TSUNAMI)
dataset is processed in which the modified parts are re-annotated through semantic classes. Problems
associated with those processes are usually because of the result of light source fluctuations and
changes in viewing angle.

Yuan et al. (2020) [15] in their work presented a pre-training technique under self-supervision
for initializing transformer based networks. Satellite Image Time Series (SITS) data is processed to
represent spectral-temporal information of land cover semantics. Pre-trained techniques which are
self—supervised in nature helps to address the problem of poorly labeled samples. Alternate approach
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to convolution and recurrent neural networks is introduced for classifying SITS data. This reduces the
risk of overfitting and also improves the model performance.

Yang et al. (2022) [16] in their work presented an Asymmetric Siamese Network (ASN) which
extracts pair of features from areas which is of different size to locate and identify semantic changes.
Model training and evaluation is improvised by introducing an adaptive threshold learning technique
which is tested using SECOND dataset. Impact of the model is evaluated using Segregated Kappa
(SeK) coefficient, where results show that the model consistently achieve better results.

Peng et al. (2021) [17] have proposed Siamese U-Net architecture based convolutional network
to perform large-scale SCD (SCDNet). With the encoder-decoder structure, additional unit is added
at the end of the encoder which exploits multi-scale information. Semantic change map which gets
generated as an output includes both binary and semantic change detection information. Attention
mechanism and monitoring strategies are incorporated in this network model to improve its perfor-
mance.

Sun et al. (2022) [18] have presented a technique with Conv-LSTM which provides end-to-end
spatiotemporal network, thereby it process both spatial and temporal information. Convolution and
recurrent structures are combined in a single layer which helps to improvise the model performance.
Experimentation is carried out with SZTAKI and Beichuan datasets.

Wang et al. (2022) [19] in their research proposed a densely connected functional aggregation mod-
ule (DCFAM) with the SwinTransformer as its base to extract multi-scale relationship information.
Decoder part of DCFAM module extracts contextual information and helps to restore resolution of
the images and generate accurate segmentation maps. Experiments are carried out on ISPRS Vaihingen
and Potsdam dataset to evaluate this model, thereby it is concluded that this model performs better
for segmentation task.

Hua et al. (2022) [20] have presented a framework to segment semantic information from aerial
images with incomplete annotations, where few pixels are annotated using easy-to-draw scribbles. With
the limited annotations drawn, FEature and Spatial relational regulArization (FESTA) method helps
to perform supervised task along with unsupervised learning signals by which spatial information and
features of neighborhood structures are analyzed. Numerically and visually results shows that this
method provide better results in segmenting semantic information.

In order to summarize the review of existing works, it can be concluded that the existing
approaches gave an outline to understand about the various approaches used to process the semantic
scene changes between two timeframe. Existing models faced the following drawbacks when perform-
ing SCD tasks: Few existing models were unable to retain significant convolutional features and extract
complex features, resulting in reduced performance and inaccurate results. Existing approaches’ high
model complexity and lack of attention mechanisms limit the performance of SCD tasks in real time.
Fluctuations in the light source, as well as a lack of labels in the dataset, limit the performance
in analysing semantic changes over time. The studies have helped to understand the underlying
disadvantages and advantages of the existing methods and it also helped to build a novel architecture
which overcome the limitations of the existing system by incorporating a ResNet based architecture
with FCN blocks to extract more features and this also supports with the localized changes which
relates between two timeframes. Hence, it produces the semantic scene change maps with precise
results.
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3 Proposed ResCD-FCN Model for SCD

The SCD task and its dependent subtasks such as Semantic Segmentation (SS) and Binary Change
Detection (BCD) tasks can be defined based on a given input image M, where SS does the task to find
function (q,) that maps the image M into a semantic map O (see Eq. (1)).

4qs (mu) = kf,j (1)
where m;; denotes a pixel on M, k;; is estimated as semantic class of satellite images. The BCD task q.q

evaluates two images M, M, [9,12] into a change map O (see Eq. (2)). The image pixels such as ml;;,
m2;; on M,, M, [9,12] are related to the same region, the calculation for this is given as follows:

Gpea (M1, M2) = IO’ kb =2 for each i,j )

1, kl#k2
where the signal estimated lists whether there is a change in the satellite image semantic classes or not.
The SCD function g, is a union of q, and q.s (see Eq. (3)):

0,0), kl =k2

hij 3
KLk, Kl 2k TOTeachi ®

qS(d (mla m2) = [

The result g4 provides two semantic change maps O, and O, which indicates the change location
and semantic classes of satellite images for the given region. The ground truth of the SCD tasks
includes G, and G.. In this proposed ResCD-FCN model, two FCN-CNN encoders T, and T, are used
to extract the semantic information from M, and M,. The extracted semantic features are combined
to train ResCD module (D), which draws the information about the difference between regions. The
calculation can be represented as follows (see Eqs. (4)—(6)):

LlaLZ = T1 (Ml)aTZ (Mz) (4)
O0=D[T\(M),T,(M)] (5)
Kla Kz = 0. (Ll, Lz) (6)

The function of FCN block is to extract features from the satellite images based on down-sampling
technique with more number of blocks which includes Convolution layer and BatchNorm layer. The
FCN block is constructed with dense layers in which the ResNet-34 pretrained model is added to fine-
tune its performance. The layers of pre-trained ResNet-34 model are used in constructing the FCN
block which consists of five layers as specified in the figure (see Fig. 4).

The head layer consists of a collection of convolutional layers with BatchNorm and ReLU
activation layers. Here, weights and bias of the model are initialized based on the convolutional
layer/linear layer or BatchNorm layer which is used in architecture of the model.

The ResCD block consists of a series of convolutional and BatchNorm layers in which we tend
to extract features down the way from the model and the model gets appended with the initial input
feature map as a skip connection which helps in identifying the localized features and ReLU activation
function is applied to get the corresponding result. The main use of ResCD-FCN block is to extract
maximum number of features with localized details from ResCD block and to extract features in more
detailed manner from FCN block. So, this process helps to identify the optimized features which
basically assist in building a better scene change detection map.
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The two satellite images are fed into ResCD-FCN block in which each satellite image will be
processed by FCN block independently to extract the features. The change detection map can be
identified based on concatenation of the extracted features of two satellite images and then fed into
ResCD-FCN block to get the localized information of the changes that may have happened between
the years and finally a collection of Convolutional and BatchNorm layers are used in constructing the
change map.

The semantic analysis of each year can be analyzed using a convolutional layer with the number
of classes as its output labels. Based on the maps created, up sampling is applied on the images using
bilinear interpolation technique to the required output dimension. The advantages of having ResCD-
FCN block includes 1) Helps in interpreting Semantic class and change information explicitly. 2) The
model perceives semantic changes in detailed manner using the features extracted from the temporal
partitions.

3.1 Loss Functions

Two loss functions are used while training the ResCD-FCN model, the semantic class related loss
W,, the binary change related loss W,. The semantic loss W, represents the multiclass cross entropy
loss between the semantic segmentation results O,, O, and the ground truth semantic change maps
G,,G,. The calculation of W; is as follows (see Eq. (7)):

1 N
W, = _ﬁzleyl' log (m,) (7

where N represents the number of classes as mentioned in the dataset which is used, y; and m; denote
the original Ground Truth and predictions of i class.

The change loss W, (see Eq. (8)) represents the binary-cross entropy loss between the change map
G, and predicted change map O. The G, is produced with G, or G, by replacing the non-changed
labels with changed labels. The W, is calculated as:

Wc = =) log (mc) - (1 _yc) log(l - mr) (8)

where y,. denotes the ground truth and m, denotes the prediction probability with respective to the
change. The training of feature partition blocks is directly dependent by G, and G, and is supported
by G, while training is carried out to perform CD task which is dependent by G..

The relationship between the three outputs M;,M,,0 and the ground truth maps G,,G, and G,
are given by the total loss W4, which is indicated as (see Eq. (9)):
H/scd = (Wml + WHZ)/Z + W? (9)

where, W,,, W,,, represents the semantic loss information which corresponds to each temporal
partition respectively. Finally, they are summed up and averaged to represent W,.

3.2 System Architecture

The following figures (See Figs. 1-4) represents the architecture of the proposed model. The
ResCD-FCN model (See Fig. 1)is made up of FCN blocks (See Fig. 4) that take in satellite images and
extract features before feeding them into the ResCD block, where the extracted features are used to
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calculate the difference between the regions. The main purpose of the ResCD-FCN block (See Fig. 2)
is to extract as many features as possible with localized details from the ResCD block (See Fig. 3)
and to extract features in a more detailed manner from the FCN block. As a result, this enables us to
recognize the optimized features that aid in the development of an improved scene change detection
map. The model’s classifier block generates the semantic map of T1 and T2 images, while the CD block
generates the overall semantic map of T1 and T2 with differences between regions.

Res CD
BLOCK
y ¥ v
Classifier CcD Classifier
block MAP block

Q@ oo § oo

—
= . =

Figure 1: Overview of ResCD-FCN

4 Implementation

The Semantic Change Detection Dataset (SECOND), is mapped to the number of classes as
mentioned in the dataset and each class is assigned with a unique colour corresponding to each label.
The pre-processing of training data includes data augmentation techniques such as Random Flip
and Random Rotation applied on the satellite images and also for the labels of two years in which
all the images are flipped based on a certain threshold. Then the augmented images are read in a
shuffled manner. The testing data of dataset includes satellite images of two years and it is read in
non-shuffled way.
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Figure 2: Detailed architecture of ResCD-FCN

The model is trained by feeding the satellite images and its labels of two years and backward
propagation is done to ensure that the model is trained by the optimum weights by adjusting its
learning rate, momentum and weight decay based on addition of half the value of Cross Entropy loss
function the outputs of first year and its corresponding ground truth label and outputs of second year
and its corresponding ground truth label. The Stochastic gradient descent (SGD) optimizer is applied
to adjust the training process in order to extract the optimum weights. The Binary cross entropy (BCE)
loss function is applied on the summative loss obtained then this is compared with the change detection
map generated from the model. The Change Similarity criterion is applied on the outputs of first year,
second year and output from labels in which the difference between the targets, that is the changed
image and unchanged image is computed in order to obtain more accurate prediction. Finally, all the
losses are summed up together and then back propagation is applied which helps in generalizing the
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model. The change map is generated as an output of the proposed model which identifies the changes
using thresholding approach. With threshold greater than 0.5, the pixel is assigned as it has a changed
region else it remains unchanged. This in turn is compared with the labels to reduce the loss developed

=

in training process.
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Figure 3: ResCD component
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Figure 4: FCN component
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The model is tested by feeding the satellite image features of two years. The loss is calculated
based on addition of half of Cross Entropy loss function, with the outputs of first year and its ground
truth label and outputs of second year and its ground truth label. The change map is generated and
the results identified from the model are either pixel is assigned to a changed region or it’s assigned as
unchanged region, also it is compared with the ground truth label to quantify and assess the metrics of
the validation process. The predictions of the bi-temporal semantic labels are generated by multiplying
each timeline individually with the change map and it gets stored.

5 Dataset Description and Experimental Settings
5.1 Dataset

The experiments in this work is carried out in the Semantic Change Detection Dataset (SECOND)
[12], a benchmark dataset to perform SCD. The SECOND dataset is well-annotated and it includes
HR optical (RGB channels) images of two years collected from a collection of aerial platforms and
sensors. The pair of images covers the regions in China, including Shanghai, Chengdu, Hangzhou,
etc. Each image has 512x512 dimensions and is annotated at the pixel level. The semantic class type of
the changed locations is also provided along with the dataset. It includes six land cover classes which
contributes to analyze the natural and man-made changes. This dataset includes the 2968 pairs of
images, its split into training and testing set with 2375 image pairs for training, 593 pairs for testing.

5.2 Evaluation Metrics

Three metrics are used to evaluate the proposed SCD model. Tasks in SCD are tested using
metrics like overall accuracy (OA), mean Intersection over Union (MIoU) and Separated Kappa (SeK)
coefficient. The confusion matrix is generated as, A = {a,,,,} where a,,, denotes the number of pixels
that are classified as ‘m’ and the ground truth index is denoted as ‘n’ (m, n € {0, 1, ...., N}). OA is
computed as (see Eq. (10))

04 = Z:;oamm / Z:;o Z:’:oam” (10)

Since OA is calculated by identifying the ‘no change’ pixels, this metric alone is insufficient to
evaluate the semantic segmentation of changed classes. The MIoU and SeK are the other two metrics
which assist to evaluate the ‘change/no-change’ regions and also semantic segmentation of classes
which are under ‘change’ category respectively. MIoU (see Eq. (11)) denotes the mean value of IoU
that is IoU of no-change regions (IoU,.) and IoU of the changed regions (IoU,) (see Eq. (12), Eq. (13)):

MIoU = (IoU,, + IoU.,) /2 (11)

IoU,. = ay / (Z:;Oamo + z:]_oam - aoo) (12)
o =33 e (55 ) z

The SeK coefficient is calculated based on the confusion matrix A’ = {a,,,’} where a,,,” = a,,, except
that a,,” = 0. The calculations are as follows:

N N N
E / E E ’
V= amm amn ( 1 4)
m=0 m=0 n=0
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N

X = Z::o (anoa;”” * Z:/:oa/”’”) / (Z::()ijoa:””)z (15)

SEK =% 1. (v—X)/ (1 -X) (16)

As part of SCD, the SS task and CD task are evaluated using MIoU and SeK.

5.3 Experimental Settings

The experiments are conducted on a Fujitsu Primergy RX2540 M1 server with CentOS 7, 128 GB
RAM, 3.6 TB storage space and Intel Xeon E5-2630 processor @2.40 GHz. The proposed model is
implemented using PyTorch library. The parameters set for the implementation includes: where batch
size is assigned as 2, total epochs run is 50 and initial learning is set as 0.1. The gradient descent
optimization method is SGD with Nesterov momentum.

5.4 Experimental Results

This section includes information about a series of tests are conducted to verify the efficacy of the
proposed model for SCD and is compared with the several existing methods. The proposed model
(ResCD-FCN) outperforms other models under observations because it uses attention like model
(Resnet-34 backbone and ResCD block), which is optimised and can capture complex features, and
because it uses FCN blocks, which are better at extracting features than standard methods using
simple convolutional blocks. The UNET++ model, while functional, suffers from overfitting as it
progresses down the model and may lose some important features, resulting in inaccurate results. The
ResNet-GRU model is limited in its ability to retain information as it passes through multiple passes
(timescales), which may result in inaccurate results. Although the ResNet-LSTM model outperforms
the others under consideration, it suffers from the same disadvantage as ResNet-GRU, which may
result in inaccurate results. The CNN-SCD model is limited in its ability to extract complex features
and store temporal information in order to predict accurate results. The quantitative findings are
shown in the following table (see Table 1). The results obtained by the proposed model are depicted
below in a qualitative manner (see Fig. 5)

Table 1: Comparison between proposed model with literature methods for SCD

Methods OA (%) mloU(%) SeK (%)
UNET++ 80.15 62.23 8.15
ResNET-GRU 79.97 60.38 7.75
ResNET-LSTM 82.84 63.76 13.57
CNN-SCD 79.86 61.65 7.65
ResCD-FCN 84.04 67.67 14.12

The labels specified in Fig. 5, T1, T2, GT1, GT2, S1, S2 corresponds to first year input satellite
image, second year input satellite image, ground truth of first year satellite image, ground truth of
second year satellite image, semantic change map of first year satellite image and semantic change
map of second year satellite image respectively. These comparison tests indicate that the proposed
model provides more precise results in SCD among the compared models. This model also has an
advantage in embedding the semantic details which are particularly dominant.
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Figure S: Results of the proposed model predicting semantic class changes

6 Conclusion

This research focuses to improve the semantic change detection task. The summarization of the
various existing CNN architecture for SCD and identification of the drawbacks of these existing
approaches are studied. The novel ResCD-FCN model, is proposed which merges the semantic
features in CD block. Through the tests and the findings that emerge shows that, the proposed model
outperforms other standard SCD architectures and State Of The Art (SOTA) methods and also
obtain the highest accuracy when tested on SECOND dataset. Output of SS and CD tasks along
with the loss function are merged and it helps to reutilize the semantic features in CD blocks which
alleviates the accuracy of CD. Though this comparison between the proposed model and literature
work architectures were carried out in CPU environment with batch-size of two, proposed model
tends to be efficient. There is certain significant computational complexity to perform experiments;
these limitations could be solved by working in a GPU environment with batch-size set as eight, by
which proposed model will outperform in accuracy than all other related existing approaches works
considered here.

One of the problems is to produce the time correlation between the semantic class changes
especially in changed areas. Learning semantic class change conversion types may aid in the effective
recognition of semantic classes. More connections between CDs and time partitions must be made to
bring out these conversions, which is left for future work.
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