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Abstract: In order to acquire the degradation state of rolling bearings and achieve 

predictive maintenance, this paper proposed a novel Remaining Useful Life (RUL) 

prediction of rolling bearings based on Long Short Term Memory (LSTM) neural net-

work. The method is divided into two parts: feature extraction and RUL prediction. 

Firstly, a large number of features are extracted from the original vibration signal. After 

correlation analysis, the features that can better reflect the degradation trend of rolling 

bearings are selected as input of prediction model. In the part of RUL prediction, LSTM 

that making full use of the network’s memory in time is used to improve the accuracy of 

RUL prediction. The proposed method is validated by life cycle experimental data of 

bearings, and the RUL prediction results of LSTM model are compared with Support 

Vector Regression (SVR) and Light Gradient Boosting Machine (LightGBM) models 

respectively. The results show that the proposed method is more suitable for RUL 

prediction of rolling bearings. 
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1 Introduction 

Rolling bearings are the key parts to support and transfer torque, which have prompted its 

extensive us in rotating machinery, such as bearings in Wind Turbine Drive Train. 

According to statistics, 30% of the rotating machinery failures are caused by rolling 

bearings [Yu (2001)]. The reason is that the most of rolling bearings run in a harsh 

environment. Take rolling bearings in wind turbines for example, due to the intermittent 

and fluctuation of wind energy, the loads on the bearings have a strong time-varying and 

impact, resulting in high failure rate. Therefore, it is particularly important to predict the 

RUL of rolling bearings. Degradation state assessment and RUL prediction can not only 

effectively prevent sudden failure of mechanical equipment, but also maximize the use of 

the working capacity of key components, reduce maintenance costs and reduce 

unnecessary waste of resources. In recent years, it has become a research hotspot. 
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RUL prediction is an important part of degradation analysis and failure prediction. The 

key issues are health feature extraction, degradation analysis and RUL prediction. 

Limited by the difficulty of dynamic model modeling [Wang (2018)], RUL prediction 

based on dynamic model has been unable to make a breakthrough. Data-driven method, 

which relies on the operation data collected by sensors, has a wide range of applications. 

Because there is no essential to further study the failure mechanism and accumulate a 

large number of expert experience. NASA proposed two strategies for RUL prediction 

based data-driven method: one is mapping n-dimensional features to 1-dimensional 

health indicator, and then using curve fitting and extrapolation to predict; the other is 

constructing degenerate feature vectors containing n-dimensional data, giving the residual 

life of the target, which can help achieving pattern matching [Liu and Li (2017)]. 

Considering that the health indicators obtained by feature fusion have no clear physical 

meaning, the second strategy is adopted in this paper. The data-driven RUL prediction 

methods that are commonly used include regression model, Bayesian reasoning [Zhao, 

Jiang and Long (2018)], Gauss mixture model [Zhang, Kang and Zhao (2014)] and other 

statistical analysis methods, as well as artificial intelligence methods such as Fuzzy 

Decision Tree, Artificial Neural Network (ANN) [Gebraeel, Lawley, Liu et al. (2004); 

Huang, Xi, Li et al. (2007)], SVR [Lei, Chen, Li et al. (2016); Loutas, Roulias and 

Georgoulas. (2013); Tse and Shen (2015)] and Hidden Markov Model (HMM) [He and 

Wang (2014)]. 

In recent years, with the continuous development of deep learning technology, some deep 

learning models have been gradually applied [Zhao, Wu, Zhang et al. (2018)]. Deep 

learning model is a kind of deep neural network model with multiple levels of non-linear 

mapping, which can abstract input signal layer by layer and extract features, and excavate 

deeper potential laws. In many deep learning models, Recur-rent Neural Network (RNN) 

introduces the concept of time series into network structure design, which makes it more 

adaptable in time series data analysis. In order to solve the problems of gradient 

disappearance and gradient explosion in RNN, LSTM, Gated Recurrent Unit (GRU) and 

Bi-directional Recurrent Neural Network (BRNN) which are all variants of RNN are 

widely used. 

The aim of RUL prediction is to obtain the deterioration trend of bearings at the current 

moment. As a result, it is necessary to have a certain memory of features of the historical 

moment. Therefore, this paper presents a method of rolling bearing RUL prediction based 

on LSTM, which mainly includes feature extraction and RUL prediction. Firstly, the 

feature vectors of the original vibration signal are extracted, including variance, root 

mean square value, kurtosis, skewness, peak value, entropy and wavelet coefficients. 

After correlation analysis, the feature vectors which can better reflect the trend of bearing 

degradation are selected to be input of the prediction model. In the part of RUL 

prediction, some samples are input into LSTM net-work in batches as training sets to 

complete model training and network parameter adjustment. After the model is 

constructed, the model is tested with test sets, and the RUL prediction values of test sets 

are obtained. In addition to LSTM network model, SVR and LightGBM methods are also 

used to compare and prove the effectiveness of the proposed method.  
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2 Long short term memory 

Different from the ANN, there are some ring structures existing in RNN. As shown in the 

Fig. 1, the output state ŷt of the network is not only related to the input xt, but also to the 

network state ht-1. The mathematical expression is as follows (1) (2). RNN extends the 

time dimension on the basis of space, which can make correct prediction by using the 

correlation information of sequence data. With the increase of time interval, the gradient 

norm of back propagation parameters decreases exponentially, which easily leads to the 

disappearance of gradient. 
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Figure 1: The network structure of RNN 
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Where xt is the input of the input layer at time t; ŷt is the output of the output layer at time 

t. ht-1 is the output of the hidden layer at time t-1. ht is the output of the hidden layer at 

time t. wxh is weight values between an input layer xt and a hidden layer ht at time t. whh is 

weight values between an hidden layer ht-1 at time t-1 and a hidden layer ht at time t. why 

is weight values between an hidden layer ht at time t and a output layer ŷt at time t. bh and 

by are bias of hidden layer and output layer, respectively. 
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Figure 2: The structure of LSTM memory unit 

LSTM is a variant of RNN. RNN can only have short-term memory due to the 

disappearance of gradient. However, LSTM network combines short-term memory with 

long-term memory by introducing “gate” structure, which can increase or forget 

information to the cell state. As a result, information can selectively pass through, and 
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solve the problem of gradient disappearance in a manner. 

As shown in Fig. 2, each LSTM memory unit contains input gate, forget gate and output 

gate. First, the forget gate outputs the number between 0 and 1 through sigmoid layer 

(forgetting threshold). The output multiplies the cell state of the previous moment to 

control information forgetting. Then, the pointwise multiplication of the input threshold 

layer (sigmoid layer) and the temporary cell state is output through input gate to control 

information input, and complete the update of cell state. Last, the cell state was processed 

by tanh layer, and the output of cell state was controlled by sigmoid layer. The output 

equations of each gate are as follows: 
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where  xt is the input of LSTM cell unit at time t. ht-1 is the output of LSTM cell unit at 

time t-1. ht is the output of LSTM cell unit at time t. Ct-1 is the cell state at time t-1. Ct is 

the cell state at time t. Ĉt is the temporary cell state at time t.  it, ft and ot are output values 

of the input node, the input gate, the forget fate and the output gate, respectively. bi, bf, bo 

and bC are bias of the input node, the input gate, the forget gate and the output gate, 

respectively. wxi, wxf, wxo and wxC are weight values between an input layer xt and a hidden 

layer ht at time t, respectively. whi, whf, who and whC are hidden layer weight values 

between time t and t-1, respectively. 

3 Experiments and result analysis 

The life cycle data of rolling bearings used in this paper are derived from IEEE PHM 

2012 Data Challenge [Nectoux, Gouriveau, Medjaher et al. (2012)]. The experimental 

data are from the PRONOSTIA test rig, and the structure is shown in Fig. 3. By adding 

additional load or increasing speed to bearings, the purpose of accelerated failure can be 

achieved. The experimental bearings are all running at 1800 r/min speed and 4000N load. 

Acceleration sensors collected data every 10 seconds. The time length of each data 

acquisition is 0.1 seconds, that is to say, 2560 data points are collected each time. When 

the acceleration amplitude exceeds 20g, it is considered invalid, and the experiment is 

finished. Seven bearings under this working condition are running from normal state to 

failure. The number of bearing samples are shown in Tab. 1. 
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Figure 3: The structure of PRONOSTIA test rig 

Table 1: Number of bearing samples 

 No.1 No.2 No.3 No.4 No.5 No.6 No.7 

Number 

of 

samples 

2801 871 2375 1428 2463 2448 2259 

As shown in Fig. 4, a full life cycle waveform of No. 1 bearing is presented. It can be 

seen that in the early stage of bearing running, the vibration amplitude fluctuates 

smoothly, then the fluctuation buoyancy increases. At last, the amplitude increases 

sharply in the final stage. The whole degradation trend accords with the degradation 

process of equipment operation. 

 

Figure 4: The full life cycle waveform of No. 1 bearing 
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Figure 5: Feature sequence diagram of standard deviation and kurtosis for No. 1 bearing 

3.1 Feature extraction 

Taking samples as units, feature extraction is carried out one by one, i.e., extracting 

corresponding features from each sample, and then combining the features from each 

sample into a new feature sequence. The extracted features include variance, root mean 

square value, kurtosis, skewness, peak value, entropy, wavelet coefficients, FFT 

coefficients and so on. As shown in Fig. 5, there are feature sequence diagrams of standard 

deviation and kurtosis for No.1 bearing. Compared with the waveform of bearing life cycle, 

it is found that the standard deviation is more consistent with the degradation trend of 

bearing. Because the kurtosis characteristic whose feature values at early stage even exceed 

the values in later stage is more sensitive to impact, burrs can be observed in the initial 

stage of bearing operation, which will affect the RUL prediction accuracy. 

Therefore, based on the extracted features, feature selection is carried out, and correlation 

analysis is used to calculate the correlation between feature series and time series, then 

the trend indicator of feature is obtained. For a feature sequence F=[g(t1), g(t2),… , g(tK)] 

and time sequence T=[t1, t2,… , tK]，the trend indicator Corr(F, T) can be get through 

formula (4). Where g(tk) is feature value at time tk, K is the length of sample time. 
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                                                           (4) 

3.2 RUL prediction 

In addition to No. 3 bearing, the full life cycle samples of remaining bearings are taken as 

training sets to construct the RUL prediction model. The samples of No. 3 bearing are 

taken as test sets, and the accuracy of prediction results is characterized by Root Mean 

Square Error (RMSE). The RMSE is defined as: 
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Where 
ny  is the real RUL of nth samples of  bearing; ˆ

ny  is the predicted RUL of nth 

samples of  bearing; N is the number of samples. 

For training sets  
1

,
N

n n n
x y

=
 ，where 1m

nx R   is selected m features of nth, yn∈[0, 1] is 

its associated label which indicates normalized RUL of nth. Except for building LSTM 

network prediction model, SVR and LightGBM models are used to compare. There is the 

comparison of the actual and predicted values of these three methods in Fig. 6. LSTM 

network has 3 layers, 30 hidden layer units, learning rate is 0.1, time step is 30, 

batch_size is 100, and iteration step is 20,000. In SVR model, penalty parameter C=32, 

g=1. The parameters settings of LightGBM are: the learning rate ƞ=0.1, the num_leaves 

α=100, the max_depth h=12 and the number of trees is n_estimators=3000. 

As can be seen from the Fig. 6: (1) The results predicted by the three methods are all the 

same as the bearing degradation trend. (2) In general, the prediction results in the mid-

term operation of bearings are better than those in the early and later stages. As we know 

from Fig. 5, most of the features have the characteristics of basically unchanged in the 

early stage, slow change in the middle stage and drastic change in the later stage. 

However, the RUL is the time interval between sample sampling time and the end of the 

experiment, i.e., it is a straight line with slope of -1. The change of vibration amplitude, 

which basically coincides with the trend of residual life change, is slow in the mid-

operation period. Therefore, the three methods all get better prediction results in the 

intermediate stage. (3) The comparison of the three methods shows that the RUL 

prediction results based on LSTM network are the best, not only in the intermediate stage, 

but also in the early and later stages of bearing operation. The RMSE of LSTM network 

is 0.050, which is half of LightGBM, and one-third of SVR. Therefore, the method 

proposed in this paper can accurately predict the RUL of rolling bearings and provide a 

basis for predictive maintenance. 

 

Figure 6: The comparison of the actual and predicted values of these three methods 

4 Conclusion 

In this paper, a novel method for predicting the RUL of rolling bearings based on LSTM 

is proposed. Firstly, feature selection is conducted through trend indicator, and then a 

feature vector reflecting the degradation trend of rolling bearings is constructed, which 

can be as input of LSTM prediction model. Making full use of the memory of LSTM 
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network for historical moment features can improve the accuracy of prediction. 

Compared with SVR and LightGBM, it is proved that LSTM network model can 

accurately predict the RUL of bearings in the whole life stage. Monitoring the 

degradation trend of rolling bearings and the stability of rolling bearings in the whole life 

cycle can not only ensure the ideal utilization rate, but also avoid major accidents, which 

has significant application value. 
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