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Abstract: For the linear differential operator equation equipped with boundary 

conditions we derive an energy identity. Then we propose an energy regularization 

technique to choose the energetic bases in the numerical solution of linear 

differential operator equation. In many meshless methods with some trial functions 

as the bases of numerical solution, there exist certain parameters in the numerical 

method. We derive a very simple energy gap functional and minimize it to 

determine the optimal parameters. The new methodology upon adopting optimal 

parameters by minimizing the energy gap functional can improve the accuracy of 

the meshless methods in the numerical solutions. 
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1 Methodology 

We consider 

L[𝑢(𝐱)] = 𝑓(𝐱), 𝐱 ∈ Ω,      (1) 

B[𝑢(𝐱)] = 𝑔(𝐱), 𝐱 ∈ Γ ≔ ∂Ω,     (2) 

where L is a linear differential operator, and B is a boundary operator to specify the boundary conditions. 

The Galerkin method assumes that the trial solution u(x) can be expressed by 

𝑢(𝐱) = ∑ 𝑎𝑗𝜙𝑗(𝐱)𝑛
𝑗=1 ,        (3) 

where 𝜙𝑗(𝐱), 𝑗 = 1, … , 𝑛 are n given trial functions used as the bases, and then the expansion coefficients 

𝑎𝑗, 𝑗 = 1, … , 𝑛 are determined from the weak-form formulation of Eqs. (1) and (2) by using 𝜙𝑗(𝐱) as test 

functions. 

Multiplying Eq. (1) by u(x), and integrating it over Ω: 

∬ 𝑢(𝐱)
Ω

L[𝑢(𝐱)]ds = ∬ 𝑓(𝐱)𝑢(𝐱)𝑑𝑠.
Ω

       (4) 

Then by using the integration by parts, and the Gauss divergence theorem, etc., we can derive 

∫∫ΩI[𝑢(𝐱)]ds =∫ΓB*[𝑢(𝐱)]𝑔(𝐱)dl +∫∫Ω 𝑓(𝐱)𝑢(𝐱)𝑑𝑠,      (5) 

which is an energy identity, including internal energy, boundary work and external work. B* is another 

boundary operator. 

If u is a real solution of problem (1) and (2), it must satisfy the energy identity (5), and hence, the 

internal energy is balanced by the boundary work and external work. Due to numerical approximation and 
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error, the numerical solution of problem (1) and (2) usually does not satisfy the energy identity (5). There-

fore, we can define the following energy gap functional: 

G:= ∫ΓB*[𝑢(𝐱)]𝑔(𝐱)dl +∫∫Ω 𝑓(𝐱)𝑢(𝐱)𝑑𝑠-∫∫ΩI[𝑢(𝐱)]ds ≠ 0,                                                    (6) 

which means that the work done in the system is not fully transformed to the internal energy, and there is 

an energy gap G≠0. The energy gap functional can help us to find the optimal parameters involved in the 

existent numerical method by minimizing | G |: 

min
parameters

 | G |.                                                                     (7) 

It would be a very interesting topic for the numerical methods to be developed from this new idea.  

The linear space V of all trial functions 𝜙𝑗(𝐱) is complete and satisfies: 

𝜙𝑗(𝐱) ∈ V, 𝜙𝑘(𝐱) ∈ V⇒ 𝜙𝑗(𝐱) + 𝜙𝑘(𝐱) ∈ V,     (8) 

𝜙(𝐱) ∈ V ⇒ γ𝜙(𝐱) ∈ V.        (9) 

Unfortunately, V as a linear space is usually too large for 𝑢(𝐱) ∈ V, such that the difficulty of Eq. (3) 

might appear. 

We search the new bases by 

𝐸𝑗(𝐱) = 𝛾𝑗𝜙𝑗(𝐱) ∈ V, j not summed,    (10) 

where the weighting factor 𝛾𝑗 is to be determined, and at the same time, instead of Eq. (3), we assume that 

𝑢(𝐱) can be expanded by 

𝑢(𝐱) = ∑ 𝑏𝑗
𝑛
𝑗=1 𝐸𝑗(𝐱).          (11) 

Inserting 𝐸𝑗 for u into Eq. (5) we have 

∫∫ΩI[𝐸𝑗(𝐱)]ds =∫ΓB*[𝐸𝑗(𝐱)]𝑔(𝐱)dl +∫∫Ω 𝑓(𝐱)𝐸𝑗(𝐱)𝑑𝑠,       (12) 

and thus, by Eq. (10): 

∫∫ΩI[𝛾𝑗𝜙𝑗(𝐱)]ds - ∫ΓB*[𝛾𝑗𝜙𝑗(𝐱)]𝑔(𝐱)dl - ∫∫Ω 𝛾𝑗𝑓(𝐱)𝜙𝑗(𝐱)𝑑𝑠 = 0.       (13) 

Because 𝜙𝑗(𝐱), 𝑗 = 1, … , 𝑛, f(x) and g(x) are given, we can solve 𝛾𝑗 , 𝑗 = 1, … , 𝑛 from the above equation. 

Consequently, 𝐸𝑗(𝐱) in Eq. (10) after inserting 𝛾𝑗 is an energetic basis, which shares a common property 

with 𝑢(𝐱), being both located on the same energy manifold M, defined by Eq. (5): 

𝑢(𝐱) ∈ M, 𝐸𝑗(𝐱) ∈ M.        (14) 

The purpose of the present issue is to enhance the meshless method by considering the energy derived 

from Eqs. (1) and (2), such that we have a better meshless method: more stable, more efficient and more 

accurate, etc. 

Basically, the new idea of energetic bases can be applied to the meshless methods which are based on 

the basis functions to expand the solutions, like as the boundary type method, the domain type method, as 

well as the Kansa type method.  

2 Literature Survey 

We have employed the new concept of energy gap to determine the optimal shape parameters in the 

MQ-RBF to solve the Cauchy problem of the Laplace Eq. [1]. On the other hand, we also used it to deter-

mine the optimal sources in the method of fundamental solutions (MFS) to solve the Cauchy problem of 

the Laplace Eq. [2]. 
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We may expect that the energy plays a dominated role in the regularization of numerical solutions. 

The progress of this kind methods is revealed in [3-11], which include the boundary functions method, the 

Trefftz method, the MFS, and the MQ-RBF. 
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