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The fracture mechanics theories have been developed actively for several decades, and have been 

successful for many specific engineering applications and serves as the fundamental for damage tolerant 

design of structures. In 1957, William and Irwin obtained the stress intensity factor K dominated solution 

of the singular stress and strain fields near crack tip in linear elastic plate, provided the theoretical basis 

for linear elastic fracture mechanics. In 1968, the famous J-integral dominated HRR solution for plane 

stress and plane strain cracked plates of power law hardening materials has long served as the 

fundamental of elastic-plastic fracture mechanics and similar solution has been developed for power law 

creeping cracked plates in 1980s. In 1986, Li and Wang solved the higher terms to the HRR solution and 

proposed that the J-dominated plane strain HRR solution is not enough for finite sized plates. Discussions 

about the higher order solutions widely attracted the attention of the fracture community in the world 

during 1990s and developed into constraint theories to consider the in-plane constraint effects. However, 

all the HRR solution based higher order solutions and constraint theories are mainly limited to 

two-dimensional cracked plates at the two limits of out-of-plane constraint zz
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stress and 0.5 for ideal plane strain states. In 1993, we developed the two parameter J-Tz dominated 

singularity solution for cracks in power law hardening materials under general out-of-plane constraints 

ranging from 0 to 0.5, filling the gap between the plane stress and plane strain states [1]. We have also 

developed the J-Tz solution to three parameter J-Tz-QT solutions to consider both the in-plane and 

out-of-plane constraints, and recently to C*-Tz-Q* solution for power law creeping solids [2-4].  

Based on this three-dimensional (3D) theory, we have made great efforts in the past 20 years to bridge the 

gap for fracture and fatigue from laboratory standard specimens to complex engineering structures [5-12]. 

In this talking, we will address the advances in the following critical issues and introduce our most recent 

works along the line. 

1) From 2D fracture mechanics to 3D fracture mechanics; 

2) From tensile to mixed mode loadings; 

3) From static/toughness to fatigue/durability; 

4) From ambient to high temperature environments; 

5) From empirical design to predictive design; 

6) From continuum methodology to multiscale simulations. 
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