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Summary
Cardiovascular disease is the leading cause of death worldwide. Many victims
of the disease died suddenly without prior symptoms. It is a great challenge for
clinicians and researchers to develop screening techniques and assessment method-
ologies to identify those patients for early treatment and prevention of the fatal
clinical event. Considerable effort has been devoted investigating mechanisms gov-
erning atherosclerotic plaque progression and rupture [Friedman, Bargeron, De-
ters, Hutchins and Mark (1987); Friedman and Giddens (2005); Giddens, Zarins,
Glagov, S. (1993); Ku, Giddens, Zarins and Glagov (1985); Gibson et al. (1993);
Liu and Tang (2010); Stone et al. (2003); Yang, Tang, Atluri et al. (2008,2010)].
Previously, we introduced a computational procedure based on three-dimensional
meshless generalized finite difference (MGFD) method and serial magnetic reso-
nance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque
growth functions and simulate plaque progression. Structure-only models were
used in our previous report [Yang, Tang, Atluri et al. (2010)]. In this paper, a
meshless modeling procedure for fluid-structure interaction (FSI) human carotid
plaque progression simulation using 3D generalized finite difference (GFD) mod-
els was introduced based on multi-year patient-tracking in vivo magnetic resonance
imaging (MRI) data. Multi-year patient-tracking data was obtained three times (T1,
T2, and T3, at intervals of about 18 months) to obtain plaque progression data af-
ter informed consent. Blood flow was assumed to laminar, Newtonian, viscous
and incompressible. Plaque material was assumed to be uniform, homogeneous,
isotropic, linear, and nearly incompressible. Meshless GFD FSI models were con-
structed and validated by ADINA for the plaque at T1, T2 and T3 to obtain plaque
wall (structure) stress and flow shear stress to determine plaque growth functions
which were used in progression simulation. Four growth functions with various
combinations of morphology, plaque wall stress (PWS) and flow shear stress (FSS)
were quantified using least-squares approximation and T1 and T2 data to fit T3
plaque morphology.
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Starting from the T2 plaque geometry, plaque progression was simulated by solv-
ing the FSI model and adjusting plaque geometry using plaque growth functions
iteratively until T3 is reached. Numerically simulated plaque progression agreed
very well with the target T3 plaque geometry with errors ranging from 8.62
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