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Summary
In the boundary element method (BEM), interior point solutions for the displace-
ments and the stresses at an interior point of an elastic body are obtained through
the numerical evaluation of the Somigliana’s identities. It is carried out as a sec-
ondary exercise in the BEM analysis, after the boundary integral equation (BIE)
has been solved for all the unknown displacements and tractions on the surface of
the domain. In the integrals of these identities, the integrands contain terms with
up to second order derivatives of the Green’s function for the displacements of the
elastic problem.

The Green’s function, or fundamental solution, for displacements and that for trac-
tions are necessary items for the direct formulation of the BEM for elastic stress
analysis. For 3D general anisotropic solids, the Green’s function for displacements
has been obtained by Lifschitx and Rozentsweig (1947) many years ago. In the
development of the BEM to treat such bodies, the numerical evaluation of these
fundamental solutions has remained a subject of investigation over the past few
decades; see, e.g. Wilson and Cruse (1978), Sales and Gray (1998), Phan et al
(2004), Tonon et al (2001), Wang and Denda (2007), Tan et al (2009). This is be-
cause of their mathematical complexity. In the BEM formulation presented by the
present authors very recently, Tan et al (2009), the fundamental solutions employed
in the BIE are expressed in algebraic, real-variable explicit forms, unlike those used
by the other authors previously. They were derived by Ting and Lee (1997) for dis-
placements, and Lee (2003) for their first derivatives which are then utilized for the
derivation of the traction solution, respectively. These Green’s functions were used
for the first time in a BEM formulation. Because of their algebraic forms, they can
be numerically evaluated in a fairly straightforward manner. Their implementation
into an existing BEM code which had been developed for 3D isotropic elastostat-
ics was also carried out without any difficulty. It was, however, discovered that a
significant proportion of the computational effort is spent on evaluating high-order
tensor terms which appear in Lee’s (2003) solution. Lee (2009) re-examined her
solution and showed how a simpler analytical form for the first derivatives of the
displacement Green’s function could be obtained without the high-order tensors.
This can be achieved by carrying out the partial differentiation in a spherical coor-
dinate system as an intermediate step; the explicit expressions are, however, pre-
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sented only for the special case of transverse isotropy. Following this development,
the present authors derived the corresponding fully explicit forms of the solution
for the displacement first derivatives in general anisotropy. Their validity and su-
perior efficiency of using these alternative fully explicit forms of the fundamental
solutions in the BIE is demonstrated very recently in Shiah et al (2010).

Of significance to note too is that Lee’s (2009) revised approach also lends itself
readily to obtaining higher order derivatives of the Green’s function for the dis-
placements without the need to introduce high-order tensor quantities. The present
authors have further derived the expressions, in fully explicit algebraic forms, of
the second derivatives of the displacement fundamental solution. This enables the
implementation of the BEM to obtain the displacements and stresses at an interior
point of a 3D generally anisotropic solid as well; it is the focus of the present paper.
To the authors knowledge, this development has never been reported previously in
the literature. Some examples are presented in which the numerical solutions ob-
tained are compared with those obtained using the FEM or by a finite difference
approach to demonstrate their validity.
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