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Anisotropic elastic properties of Ni-Mn-In magnetic shape
memory alloy
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Summary
Designing magnetic shape memory materials with practicable engineering applica-
tions requires a thorough understanding of their electronic, magnetic, and mechan-
ical properties. Experimental and computational studies on such materials provide
differing perspectives on the same problems, with theoretical approaches offering
fundamental insight into complex experimental phenomena. Many recent com-
putational approaches have focused on first-principles calculations, all of which
have been successful in reproducing ground-state structures and properties such
as lattice parameters, magnetic moments, electronic density of states, and phonon
dispersion curves. With all of these successes, however, such methods fail to in-
clude the effects of finite temperatures, effects which are critical in understanding
how these properties couple to the experimentally-observed martensitic transfor-
mation. To this end, we apply the quasi-harmonic theory of lattice dynamics to
predict the finite-temperature mechanical properties of Ni-Mn-In magnetic shape
memory alloy. We employ first-principles calculations in which we include vibra-
tional contributions to the free energy. By constructing a free energy surface in
volume/temperature space, we are able to evaluate key thermodynamic properties
such as entropy, enthalpy, and specific heat. We further report the elastic constants
for the austenite and martensite phases and evaluate their role as a driving force for
martensitic transformation.

Keywords: Magnetism, Elasticity, Shape memory alloys, DFT, Active mate-
rials.

Introduction
Magnetic shape memory alloys (MSMAs) differ from traditional, thermally acti-
vated SMAs in that they are characterized by strong magnetoelastic coupling. The
Heusler-type metals, such as Ni-Mn-X (X:Al,Ga,In,Sn,Sb), undergo martensitic
transformations that are sensitive to alloy composition, external pressure, and ap-
plied magnetic field. Certain compositions display unique structural responses to
external magnetic fields, undergoing either magnetic twin reorientation or field-
induced phase transformations that lead to a macroscopic shape memory effect. In
Ni-Mn-Ga, this effect generates recoverable strains that are an order-of-magnitude
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larger than those associated with the most common commercial magnetostrictors1

Since this discovery, Mn-based Heusler compounds have been heavily studied, both
through experimental probing of structure-property relationships and theoretical
modeling of the underlying mechanisms.

In the Ni-Mn-In system, martensitic transformation has only been observed for
compositions with increased Mn content2,3 This magnetic-field-induced transition
is driven by the relative size of magnetization between the parent and martensite
phases, with stabilization of the austenite at high fields2 Alloys of Ni-Mn-In under-
going these transitions exhibit large magnetic-field-induced strains2, giant (some-
times inverse) magnetocaloric effect2,4−6, and high magnetoresistance6−8, making
them attractive materials for a myriad of engineering applications beyond merely
shape memory devices. Commonly cited uses include actuation, sensing, energy
harvesting, and magnetic refrigeration4,5,7

Some In-containing MSMAs undergo martensitic transformations in which the
sign of the magnetic exchange interaction flips, a so-called “metamagnetostruc-
tural” transition. Such a transition is sensitive to and can be driven by application
of an external magnetic field. The result is low-temperature kinetic arrest of the
martensitic transformation at high fields9,10

These physical behaviors indicate the presence of strong magneto-structural
coupling in the Ni-Mn-In system. Magnetic ordering is known to be a function
of Mn-Mn distance—with spins interacting via the RKKY exchange11—and more
recent investigations have shown that structural transitions can be controlled by an
effective “magnetic response” of the lattice to external fields. The latter is sensitive
to temperature, and, while some understanding of structure and magnetic ordering
has been obtained through first-principles studies12, a fundamental constraint of
traditional ab initio methods is the inability to include temperature effects.

For example, phonon calculations of the L21austenite structure of Ni2MnIn
show imaginary frequencies in the lowest acoustic mode. This indicates that vibra-
tional instability exists at 0 Kelvin but says nothing about lattice stability at elevated
temperatures13 In a first attempt to include thermal effects, Enkovaara et. al. cal-
culated the free energy of both the austenite and martensite phases of Ni2MnGa by
including vibrational energies determined from the Debye model. The martensitic
phase transformation was successfully captured, with a theoretical transition tem-
perature close to the experimental value14 In a more recent work, Uijttewaal, et. al.
have also considered the modulated premartensitic structure of Ni2MnGa. By in-
cluding quasi-harmonic phonons and fixed-spin-moment magnons, they have been
able to reproduce the full sequence of phase transitions (austenite→premartensite→martensite)
as a function of temperature15 To our knowledge, this is the first instance of using
first-principles methods to directly predict martensitic transformation and finite-
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temperature phase stability in any Mn-based MSMA.
In this work, therefore, we employ the quasi-harmonic theory of lattice dy-

namics to calculate the free energy of the austenite and martensite phases of sto-
ichiometric Ni2MnIn. We compare the relative energies in order to discuss phase
stability, predicting whether martensitic transformation will occur at this alloy com-
position. We also report thermodynamic properties such as entropy, enthalpy, and
specific heat. We further calculate the elastic constants for the austenite and marten-
site phases and evaluate their role as a driving force for martensitic transformation.

Theory
We calculate ground-state total energies and phonon spectra for the L21 austenite
and non-modulated L10 martensite of Ni2MnIn using the Vienna ab initio simu-
lation package (VASP)16 and the implemented projector augmented wave (PAW)
pseudopotential formalism17 The electronic exchange and correlation functions are
treated within Density Functional Theory using the generalized gradient approxi-
mation (GGA)18.

For the austenite phase, we use a cubic unit cell with lattice parameter a = 6.07.
The martensite is taken to be a tetragonal cell with c/a=

√
2 ≈ 1.41. All calcula-

tions are spin-polarized with an energy cut-off of 400 eV and an 8×8×8 k−point
mesh for Brillouin-zone integrations (12×12×8 for the tetragonal cell). Phonon
dispersions are calculated for each phase by diagonalization of the corresponding
dynamical matrix. Composed of all pairwise interatomic forces, this matrix is cal-
culated for each linearly independent atomic displacement in a 2×2×2 supercell
of the relaxed, ground-state structure. The tetragonal supercell results in six such
displacements, while the cubic only requires three.

Free energies for each phase are calculated by extension of the harmonic ap-
proximation to several points on the potential energy curve. These points, or quasi-
harmonic steps, are represented by scaling the volume of the ground-state struc-
ture so as to simulate thermal expansion with temperature. To generate the free
energy surface, we consider a total of five quasi-harmonic steps: the equilibrium
volume, V 0 (determined from relaxation of the unit cell), and four volume expan-
sions, V 0±1% and V 0±2%. The free energy at each quasi-harmonic step is given
by

F(V,T ) = E(V )+Fvib(V,T ), (1)

where E(V ) is the energy of the motionless lattice, and Fvib(V,T ) is the vibrational
energy of the harmonic system, both at the fixed volume V . We have neglected
other thermally-excited degrees of freedom, i.e. the electronic and anharmonic
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corrections to the free energy. Magnetic contributions are not treated explicitly,
either. Rather, magnetization is allowed to vary with volume.

The vibrational term for a given volume is found by integrating over the phonon
density of states, g(υ), according to the expression

Fvib(V,T ) = kBT
∫

∞

0

{
ln
[

2sinh
(

hυ

2kBT

)]
g(υ)

}
dυ , (2)

where kB is Boltzmann’s constant, and h is Plank’s constant. A review by van
de Walle and Ceder19 is recommended for further reading on the quasi-harmonic
theory within the framework of alloy thermodynamics. The 0K elastic constants
for each phase are calculated using the method described in a previous work20

Discussion
Free energy surfaces and thermodynamics
The free energy surfaces for both the austenite and martensite phases are plotted
together in Figure 1. For temperatures up to 400 K, we see that the martensite
phase has the lowest energy at each reduced volume. Furthermore, the surfaces
do not intersect at any point, indicating that one phase remains energetically favor-
able at all temperatures. This is consistent with the experimental observation that
stoichiometric Ni2MnIn does not undergo a martensitic transition upon cooling

Other thermodynamic properties for each phase are obtained from the free en-
ergy; namely entropy is defined as

S =
∂F(T )

∂T
, (3)

and specific heat is given as

CP = T
∂S
∂T

. (4)

These are plotted for each volume in Figure 2. We see that the entropy is
lowest for the austenite structure at all temperatures. This suggests that the tetrag-
onal structure will be most stable at room temperature and will remain favorable
over the cubic structure as temperature is lowered. No intersection of the entropy
curves again indicates that no phase transformation will occur. However, this re-
sult contradicts the observation that cubic L21 is the most stable structure at room
temperature. This suggests that other contributions to the free energy (i.e. elec-
tronic or anharmonic) may play a role in stabilizing the austenite phase. Certainly
more calculations, to include explicit treatment of magnetic degrees of freedom,
are needed.
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Figure 1: (a) Free energy surface as a function of temperature and reduced volume
for both the austenite and martensite phases of Ni2MnIn. Energies were calculated
according to Equation (1). (b) Projection of each energy surface onto the F(V,T)-T
plane.
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Elastic Constants
TThe 0K elastic constants of the cubic austenite and tetragonal martensite of Ni2MnIn
are listed in Table I. The bulk modulus of each phase is found by fitting the curve
of total energy vs. volume to the third-order Birch–Murnaghan equation of state.
The previously calculated values for the Ni2MnGa system are also included for
comparison.
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Figure 2: Values of (a) entropy and (b) specific heat calculated from the total free
energy surfaces in Figure 1.

Table 1: Elastic moduli calculated for each phase. All values are reported in GPa.
austenite phase martensite phase

B C′ C11 C12 C44 B C′ C11 C12 C13 C33 C44 C66

Ni2MnIn 133 32.9 208 142 21.4 132 85.5 219 47.5 129 140 105 12.7
Ni2MnGa20 155 6.1 163 151 110 155.6 89 249 71 141 193 101 56

Conclusions

We have used the quasi-harmonic approximation of lattice theory to evaluate the
phase stability of stoichiometric Ni2MnIn. We have considered two possible struc-
tures: cubic and tetragonal with c/a≈ 1.41. From the calculated free energy sur-
faces, we evaluated the entropy of each phase, finding theoretical contradiction to
the stability of L21 Ni2MnIn. Future work will focus on similar calculations for
other phases of the Ni-Mn-In alloy system, namely an alternative L10 structure
(tetragonal with c/a< 1) and modulated phases. Attention will be given to magnetic
degrees of freedom in an attempt to find better agreement with experiment.
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