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Magneto-electric laminates free vibration characterization
by dual reciprocity BEM
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Summary
A dual reciprocity based boundary element approach for the analysis of magneto-
electric laminates free vibration behavior is presented. The problem is formulated
employing generalized displacements, that is displacements and electric and mag-
netic scalar potentials, and the corresponding generalized tractions. The general-
ized boundary integral representation is deduced by extending the reciprocity theo-
rem to magneto-electro-elasticity problem and the multidomain boundary element
technique is used to model multilayer structures. The magneto-electro-elastic static
fundamental solutions are used jointly with the dual reciprocity method to trans-
form the inertia domain integral into a boundary integral. Numerical results are
presented focusing on the effects of the electro-magnetic poling directions.

Keywords: magneto-electric composites, boundary integral, free vibration,
dual reciprocity BEM.

Introduction
Magneto-electric laminates have lately emerged as suitable for realizing advanced
smart devices having valuable performances with respect to standard actuation ma-
terials, Priya Islam Dong and Viehland (2007). They show a wide range of potential
applications including strain sensing/actuating devices, Ueno and Higuchi (2006),
micro-power wireless generators, Bayrashev Robbins and Ziaie (2004), magnetic
field sensor, Duc and Giang (2008), miniaturized antenna, Petrov et al. (2008),
energy harvesters, Li et al. (2010), and much more, Bichurin Viehland and Srini-
vasan (2007). The feature of magneto-electric composites is the ability to con-
vert energy among three distinct forms: the elastic, the electric and the magnetic
one. It stems from the coexistence of the piezoelectric and piezomagnetic phases
binding together in particulate or laminate configurations which leads to an elastic-
mediated coupling between the electric and magnetic fields. Due to this inherent
multi-physics nature, these composites demand efficient analysis and design tools
to accurately predict the coupling effects and then take full advantage from their
smart behavior.

In the present work, a boundary element model and its numerical implementa-
tion for the analysis of magneto-electro-elastic composites are presented with the
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aim to exploit their features in linear magneto-electro-elastic free vibration analy-
sis. The multifield problem is formulated employing generalized variables whose
corresponding boundary integral representation is obtained by the reciprocity the-
orem for magneto-electro-elasticity problem. The static fundamental solutions for
magnetoelectroelasticity are used and the inertia terms are treated as body forces.
The dual reciprocity method is used to transform the domain integral into equiv-
alent boundary integral by employing radial basis functions as particular solution.
The multidomain boundary element technique is implemented to deal with the anal-
ysis of multilayer configurations. Numerical results are presented focusing on the
effects of magnetic and electric poling arrangements.

Boundary Element Model
The boundary integral formulation is developed for magneto-electro-elastic plane
problems. To maintain a compact notation the Barnett and Lothe’s formalism for
piezoelectrics, Barnett and Lothe (1975), is extended to the magneto-electro-elastic
problem by defining a generalized displacement vector U, collecting the displace-
ment components, the electric potential and the magnetic potential. Consistently,
the generalized compatibility operator D and the generalized constitutive matrix R
are introduced, see for more details Milazzo Benedetti and Orlando (2006). By so
doing a generalized Navier-like governing equation is obtained for magnetoelec-
troelasticity

DT RD U+F = 0 (1)

where F are the generalized body force.
By applying the reciprocity theorem to the generalized magneto-electro-elastic

problem with the static magneto-electro-elastic fundamental solutions, the follow-
ing boundary integral representation for the generalized displacements at the point
P0 is obtained, Milazzo Benedetti and Orlando (2006),

c∗U(P0)+
∫

∂Ω

(T∗U−U∗T)d∂Ω =
∫

Ω

U∗FdΩ (2)

where T is the generalized traction vector, U∗ and T∗ are the fundamental solution
kernels, c∗ is the free term coefficient and ∂Ω is the boundary of the magneto-
electro-elastic domain Ω. When collocated at the boundary, Eq. 2 provides the
boundary integral equation which, coupled with the essential and natural boundary
conditions, allows the problem solution.

In magnetoelectroelastic dynamic problems, assuming that the electric and
magnetic potentials are quasi-static, the nonvanishing generalized body forces com-
ponents are given by the inertial forces. Therefore, denoting by ρ the product of
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the material density by the 4×4 identity matrix in which the last two diagonal term
are replaced by zeros, the generalized body forces are written as

F =−ρÜ (3)

where the overdot indicates time derivatives.
The boundary integral formulation is numerically implemented by using the

Boundary Element Method, Aliabadi (2002), and the Dual Reciprocity technique,
Dziatkiewicz and Fidelinski (2007), which lead to the following equations of mo-
tion

M∆̈+H∆ = GP (4)

where ∆ and P are the vectors of the generalized displacements and boundary trac-
tions nodal values, respectively. In Eq. 4, H and G are square influence matrix
computed by integrating the fundamental solution kernels weighted by the shape
functions Ψ employed to express the generalized displacements and tractions on
the boundary, while M is the mass matrix whose computation is described in the
next section. Eventually, in order to model magneto-electric laminated structures,
the multidomain approach is implemented, Davì and Milazzo (2001). It requires to
write the equation of motion for each of the N homogeneous sub-region

M(k)
∆̈

(k) +H(k)
∆

(k)= G(k)P(k) k = 1,2...,N (5)

and the compatibility and equilibrium conditions along all the sub-region interfaces

∆
(i)
∂Ωi j

= ∆
( j)
∂Ωi j

; P(i)
∂Ωi j

=−P( j)
∂Ωi j

i = 1, ...,N−1; j = i+1, ...,N (6)

where the superscript (k) denotes quantities pertaining to the k-th sub-region and
the subscript ∂Ωi jindicates quantities associated with the nodes belonging to the
interface between the i-th and j-th sub-regions.

Mass Matrix Computation
To compute the mass matrix M the dual reciprocity technique is employed, Part-
drige, Brebbia and Wrobel (1992). Let us assume that the generalized displace-
ment components can be approximated as a sum of the product of spatial functions
FFF multiplied by time-dependent unknown functions α . The acceleration vector is
written as

Ü = FFF α̈ (7)
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The selection of the spatial functions FFF is carried out so that they satisfy the
Navier-type equation

DT RDGGG+FFF= 0 (8)

where the auxiliary function GGG is supposed to be a-priori assigned; a typical selec-
tion for the auxiliary function is given by third order radial basis functions depend-
ing on the distance between collocation and integration points, see Dziatkiewicz
and Fidelinski (2007). It follows that the domain integral related to inertial terms
in Eq. 2, reads as ∫

Ω

U∗FdΩ =
∫

Ω

U∗
ρDT RDGGGdΩ α̈ (9)

where Eqs. 2, 7 and 8 have been taken into account. The right-hand-side domain
integral of Eq. 9 is transformed into a boundary integral by applying the reciprocity
theorem ∫

Ω

U∗FdΩ = c∗GGG(P0)+
∫

∂Ω

(T∗GGG−U∗HHH)d∂Ω ρα̈ (10)

where HHH are the boundary tractions associated to the auxiliary displacements GGG; if
the shape functions Ψ used to express the generalized displacements and tractions
on the boundary are employed to approximate GGG and HHH by means of their nodal
values γ and η , respectively, it follows that Eq. 10 can be rewritten as∫

Ω

U∗FdΩ =ρ (Hγ −Gη) α̈ (11)

By collocating Eq.7 at the discretization nodes one obtains

α̈ = F̄FF−1
∆̈ (12)

where F̄FF is the collocation matrix. Finally, substituting Eq. 12 into Eq. 11 leads
to the expression of the mass matrix involved in the BEM equation of motion for
magneto-electro-elastic domains

M = ρ (Hγ −Gη) F̄FF−1 (13)

Results
The analysis of a bimorph configuration is presented to show the soundness of the
proposed approach in terms of accuracy and effectiveness. The laminate is real-
ized by stacking a piezoelectric BaTiO3 layer and a piezomagnetic CoFe2O4 layer,
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whose properties are given in Milazzo Orlando and Alaimo (2009). The bimorph
length is L = 0.3m while its overall thickness is h = 0.02m. Natural frequencies
computed for the cantilever configuration are reported in Tab. 1 in comparison with
finite element results, taken from Annigeri Ganesan and Swarnamani (2007), and
with analytical results obtained by Milazzo Orlando and Alaimo (2009).

Table 1: Cantilever bimorph natural frequencies [Hz]

Mode DRBEM FEM 100×
(
1 − DRBEM

FEM

)
Analytic 100×

(
1 − DRBEM

Analytic

)
1 188.62 188.70 0.0424 189.63 0.5326
2 1138.13 1154.65 1.4307 1159.42 1.8363
3 2904.15 3120.80 6.9421 3129.14 7.1902
4 4093.75 4335.11 5.5676 4420.84 7.3988
5 5857.47 5838.36 -0.3273 5841.67 -0.2705

It appears from Tab.1 that the proposed approach is accurate in computing the
natural frequencies of the magnetoelectric laminates. The maximum percentage
discrepancy between the DRBEM simulation and other results is always about 7%.
The same stands for higher order modes, not reported for the sake of conciseness.

The second application deals with a tri-layered piezomagnetic/piezoelectric/pie-
zomagnetic composite. The attention is focused on the influence of the smart layer
poling directions on the laminate free vibrations. A sketch of the four magnetization-
polarization arrangements, characterizing the laminate (longitudinal L–L, trans-
verse T–T, or longitudinal-transverse L–T or T–L) working modes, is reported in
Fig.1.
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In Fig.1 the arrows represent the magnetization (PM) and the electric polarization (PE) 
directions. The natural frequencies of the first five modes of vibration are given in Tab.2 
for all the plies polarization arrangements. It gathers that a longitudinal magnetization of 
the piezomagnetic plies affects the magnetoelectric composite behavior by slightly 
reducing the fundamental frequencies. 
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1 278.59 279.54 271.12 272.02
2 1671.97 1675.43 1625.95 1628.83
3 3736.29 3757.14 3644.04 3667.14
4 4748.26 4781.86 4629.22 4671.98
5 7939.65 7988.07 7754.79 7805.22
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Figure 1: Tri-layered magnetoelectric composite working modes arrangements

In Fig.1 the arrows represent the magnetization (PM) and the electric polariza-
tion (PE) directions. The natural frequencies of the first five modes of vibration are
given in Tab.2 for all the plies polarization arrangements. It gathers that a longitudi-
nal magnetization of the piezomagnetic plies affects the magnetoelectric composite
behavior by slightly reducing the fundamental frequencies.
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Table 2: Natural frequencies [Hz] for the tri-layered device
Mode T-T T-L L-T L-L

1 278.59 279.54 271.12 272.02
2 1671.97 1675.43 1625.95 1628.83
3 3736.29 3757.14 3644.04 3667.14
4 4748.26 4781.86 4629.22 4671.98
5 7939.65 7988.07 7754.79 7805.22

Conclusion
In this paper a boundary element method for the free vibration analysis of magneto-
electroelastic laminates has been presented. The static fundamental solutions of the
plane magneto-electro-elasticity problem have been employed and the inertia loads
have been treated as body loads. The arisen domain integral has been transformed
to boundary integral by using the dual reciprocity method and the multi-domain
technique has been implemented to model multilayer configurations. The results
obtained show the accuracy and effectiveness of the proposed method to character-
ize the dynamic behaviour of magneto-electric laminated composite.
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