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Surface reconstrucion by means of AI
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Summary
Surface reconstruction based on chaotic systems or exactly given point clouds is
very difficult area. Current algorithms such as Marching Cube or Voronoi Filtering
do not use methods based on artificial intelligence. In this paper, we investigate
solution of polygonal surface construction based on AI. The main purpose is to
generate complex polygonal mesh structures based on strange attractors with fractal
structure. Attractors have to be created as 4D objects using quaternion algebra
or using methods of AI. Polygonal mesh can have different numbers of polygons
because of iterative application of this system. Our main goal is to develop new
faster algorithm to generate 3D structures and apply its optimized computational
complexity for surface reconstruction and GPU benchmarking.
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Introduction
Computational ability of current personal computers is generally very high due to
powerful GPUs according to the amount of IPS. However, surface reconstruction
of complex surfaces still presents significant computational problem. There were
many applications of evolutionary algorithms that served as a tool to accelerate
complicated computations during last decade.

The construction of 3D surfaces from chaotic attractors or even from real sur-
faces described by large amount of points is a demanding task. Current determin-
istic algorithms like Marching Cubes or Voronoi Filtering do not use knowledge
gained from artificial intelligence theory.

Our target is to integrate methods from the field of artificial intelligence into
search for suitable connections between points that create surface of a 3D object.
Our algorithm will be tested on static objects created from “point clouds” and con-
sequently on strange attractors, due to their high complexity and demandingness.

As a result, different numbers of iterations and various attractor models may
provide effective computational power results including special effects such us
bump mapping, displacement, anti-aliasing, anisotropic filtering and ray-tracing.
Moreover, the main problem is to evolve specific algorithm that generates object
based on strange attractors and modifies it as a closed 3D mesh ready for real-time
visualization.
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Strange Attractors
Strange attractors are complicated sets with fractal structure which chaotic dynam-
ical systems evolve to after a long enough time. These attractors can be generated
in several ways – the most commonly used are quadratic map (1) and trigonometric
map (2) where parameters a, b, c, d, e, f, g, h, i, j, k, l define each strange attractor.

xn+1 = a+b · xn + c · x2
n +d · xnyn + e · yn + f · y2

n
yn+1 = g+h · xn + i · x2

n + j · xnyn + k · yn + l · y2
n

(1)

xn+1 = a · sin(b · yn)+ c · cos(d · xn)
yn+1 = e · sin( f · yn)+g · cos(h · xn)

(2)

The strange attractor can be revealed after several iterations of a map (1) or
(2). When the strange attractor is represented geometrically, it is obvious that fixed
points are locally unstable, but the system is globally stable.

The attractor is chaotic when Lyapunov exponent for that map is positive. Two
dimensional chaotic maps have not only a single Lyapunov exponent, but they have
a positive one, corresponding to the direction of expansion, and a negative one
corresponding to the direction of contraction. The signature of chaos is that at least
one of these exponents is positive and the magnitude of the negative exponent has
to be greater than the positive one.

For a map xn+1 = f (x) a small deviation δx0 of coordinate x0 leads to a small
change in x1.

δx1 = δx0 · f ′(x0) (3)

For n iterations:

δxn = δx0 ·
n−1

∏
i=0

f ′(xi) (4)

Then the Lyapunov exponent is determined as

Λ = lim
n=>∞

(
1
n
· log

∣∣∣∣δxn

δx0

∣∣∣∣)= lim
n=>∞

(
1
n
·

n−1

∑
i=0

ln
∣∣ f ′(xi)

∣∣) (5)

Deviation |δxn| grows with increasing n for a chaotic orbit and this leads to a
positive Lyapunov exponentΛ > 0.

Strange (chaotic) attractors are associated with motion which is unpredictable.
If we attempt to predict motion of a chaotic system then even the small deviation in
the initial conditions will be amplified exponentially over the time and will rapidly
destroy the accuracy of our prediction. Eventually, all we will be able to say is
that the motion lies somewhere on the chaotic attractor in phase-space, but exactly
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where it lies the attractor at given time will be unknown to us. These properties of
chaotic system, extreme sensitivity to initial conditions and unpredictability, can be
very helpful for the encryption purposes.

Strange attractors themselves are markedly patterned, often having elegant,
fixed geometric structures, despite the fact that the trajectories moving within them
appear unpredictable. The strange attractor’s geometric shape is the order underly-
ing the apparent chaos.

Quaternions
Quanternion algebra has been developed in 1843 by a mathematician William Rowan
Hamilton who was searching for extension of complex numbers from 2D to 3D
space. This extension is not possible to create. Only 4D structures are the closest
equivalents of complex numbers. The main difference between classic complex
numbers and the quaternions is that every quaternion can be described by a linear
combination of four orthogonal units: 1, i, j and k. Unit 1 is called scalar unit, units
i, j and k are vector units. Quaternion is defined according to (6).

q = x+ yi+ z j +wk (6)

 

Figure 1: Example of Clifford attractor

 

Figure 2: Basic cube configurations

Relations for mutual multiplications of the quaternion units are applied accord-
ing to Tab. 1.

Tab.1 shows that units of quaternion are not following a commutative law.
Thus, quaternions do not create algebraic structure. If we want to multiply two
quaternions.

q1 = x1 + y1i+ z1 j +w1k (7)
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Table 1: Multiplications of quaternion units
Multiplicative Result Multiplicative Result Multiplicative Result

operation operation operation
1×1 1 j×1 j k×j -i
1×i i k×1 k k×i j
1×j j i×j k i×k -j
1×k k j×i -k i×i=j×j=k×k k
i×1 i j×k i i×j×k -1

q2 = x2 + y2i+ z2 j +w2k (8)

we have to use the following scheme:

q1q2 = 1(x1x2− y1y2− z1z2−w1w2)+ i(y1x2 + x1y2 +w1z2− z1w2)+
j(z1x2−w1y2 + x1z2 + y1w2)+ k(w1x2 + z1y2− y1z2 + x1w2)

(9)

Quaternions are very often used in computer graphics for the representations of
objects, their rotations and orientations because of efficient computation in complex
algorithms.

Marching Cube Algorithm
Marching cube algorithm is an algorithm for creating a polygonal surface repre-
sentation of a 3D scalar field. This algorithm describes voxel-object by surface
of connected polygons. This method is most often used for the representation of
medical data, because of simple differentiation of its parts due to thresholding.

Let’s have a set of voxels. This set is browsed and processed. Values of vertices
of each cube (these means intensity of 8 voxels which the cube is created from) are
compared with a threshold. If the value of vertex is lower than threshold, vertex is
evaluated as “internal”, otherwise as “external”. Evaluation is expressed as an 8-bit
value which is then used for the representation of corresponding configuration of
the polygon of the resultant surface.

Fig. 2 shows basic configurations of the cube, the rest of configurations are
done by rotating of the basic configurations. The 8-bit value can be used as an
index of 2D array with 256 rows where each row contains a proper sequence of
vertices. Vertices in that table must be correctly organized in order to prevent light-
collisions when drawing our object.

Shortly, the pattern of each cube is compared with 256 patterns which were
previously generated by existence of measuring points and polygon is then rendered
corresponding to the pattern. This procedure must be done for every cube and the
3D model is obtained this way.
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Application of Artificial Intelligence and Network Theory
Complex network theory provides a large set of tools for analyzing, describing and
identifying different network types and topologies. Complex networks are often a
product of a complex system; thus the network theory can serve not only as a tool
for understanding these networks, but consequently also as an excellent instrument
for complex system analysis.

Complex system is a system composed of interconnected simple parts, that
together exhibit a high degree of complexity from which emerges a higher order
behavior. Complex systems cannot be described by a single rule and their charac-
teristics are not reducible to one level of description. They exhibit properties that
emerge from the interaction of their parts and which cannot be predicted from the
properties of the parts.

Differential Evolution (DE) algorithm can be considered a complex system.
It has many simple parts (individuals), which are interconnected through various
relationships (crossover, mutation).

Network theory
Network is defined as a system of nodes (vertex) interconnected by links (edges).
There many examples of networks in real life: food webs, electrical power grids,
cellular and metabolic networks, the World-Wide Web, the Internet backbone, the
neural network of the nematode worm Caenorhabditis elegans, telephone call graphs,
co-authorship and citation networks of scientists, etc.

All kinds of networks can be considered a subset of a set defined by two ex-
treme cases: n-dimensional lattice where every node connects with a well-defined
set of closest neighbors and a random graph, where every node has the same prob-
ability of being connected to any other node.

Random graphs
Since all the nodes in a random graph are statistically equivalent, each of them has
the same distribution, and the probability that a node chosen uniformly at random
has degree k has the same form as P(ki = k). For large number of nodes, the degree
distribution is well approximated by a Poisson distribution (1):

p(k) =
e−λ eλk

k!
(10)

Quantities used to quantitatively describe networks include:
The degree (or connectivity) ki of a node i is the number of edges incident with

the node, and is defined in terms of the adjacency matrix A as (2):

∑
i, j∈N

ai j (11)
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The minimum number of links that must be traversed to travel from node i to
node j is called the shortest path length or distance between i and j. A graph is
connected if any node can be reached from any other node; otherwise the graph is
disconnected. The average path length is the average of the minimum number of
steps necessary to connect any two nodes in a connected network (3).

L =
1

N (N−1) ∑
i, j∈N,i6= j

di j (12)

The local clustering is (roughly) the number of actual links in a local sub-
network divided by the number of possible links. It quantifies the fact that if Person
A is good friend with both B and C, then there is a good chance B and C are also
friends.

Small-world networks
A common characteristic of networks in complex systems is the small-world prop-
erty, which is defined by the co-existence of two relatively incompatible conditions,
(i) the number of nodes on a path between any pair of nodes in the network is sur-
prisingly small – usually referred to as the six-degrees of separation phenomenon—
and (ii) the large local redundancy of the network— i.e., the large overlap of the
circles of neighbors of two network neighbors. The latter property is typical of
ordered lattices, while the former is usual for random graphs.

Recently, Watts and Strogatz proposed a minimal model for the emergence
of the small-world phenomenon in simple networks. In their model, small-world
networks emerge as the result of randomly rewiring a fraction p of the links in
a d-dimensional lattice. The parameter penables one to continuously interpolate
between the two limiting cases of a regular lattice (p= 0) and a random graph (p=
1).

Scale-free networks
An important characteristic of a graph that is not taken into consideration in the
small-world model of Watts and Strogatz is the degree distribution, i.e., the distribu-
tion of number of connections of the nodes in the network. The Erdös-Rényi class
of random graphs has a Poisson degree distribution (1), while lattice-like networks
have even more strongly peaked distributions. Similarly, the small-world networks
generated by the Watts and Strogatz model also have peaked, single-scale, degree
distributions, i.e., one can clearly identify a typical degree of the nodes comprising
the network.

However, Barabási and coworkers found that a number of real-world networks
have a scale-free degree distribution with tails that decay as a power law. Barabási
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and Albert suggested that scale-free network emerge in the context of growing net-
work in which new nodes connect preferentially to the most connected nodes al-
ready in the network:

pi (n+1) =
ki (n)

∑
n
i=−n0+1 ki (n)

(13)

where n is the time and number of nodes added to the network, n0 is the number
of initial nodes in the network at time zero, ki is the degree of node i and pi(n+1)is
the probability of a new node, added at time n+1 linking to node i.

 
Figure 3: Three stages in the time
evolution of a minimal model for
generating scale-free networks

 

Figure 4: Network created by
“DE/best/2” strategy, test function
De Jong’s 1, NP = 10, G = 10, F = 0.7,
CR = 0.6, D = 5

Fig.3 illustrates time evolution of scale-free network:

(a) We start with a network comprising two nodes linked by a bi-directional con-
nection. Then, we add a new node which can link to either of the existing
nodes. Because both existing nodes have degree one, there is an equal proba-
bility of linked to each of them.

(b) At the following time step, we add a new node to the network. However, now
the probability of linking to each of the existing nodes is no longer identical
because one of the nodes has higher degree than the others.

(c) As times goes by, a heterogeneous degree distribution emerges because nodes
with higher degree have a higher probability of being linked to new nodes.

Classes of small-world networks
Question: How to connect small-world networks with the new finding of scale-free
structures. Specifically, one may ask Under what conditions will growing network
be scale-free?
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Preferential attachment is essential for creation of scale free networks. How-
ever, not every network, which is created by preferential attachment, is scale-free.
What are the reasons for such results? There are several factors, which prohibit
creation of scale-free networks in real world:

Aging – Represents situation, when even the most connected node stops receiv-
ing new nodes because of its age. In such case, the network will not have complete
scale-free topology.

Cost of adding a link and limited capacity – There are usually limits con-
cerning number of links to a single node – either the capacity is limited, or adding
new link is too “expensive”.

Limits on information and access – There may be constraints, which prohibit
connections between some nodes, based on access or information.

These three factors may cause, that network won’t have scale-free topology,
even though preferential attachment was present during its creation.

Differential Evolution
Differential evolution (DE) is an evolutionary algorithm. It works over D-dimensional
search space of considered problem. A population has NP number of individuals.
These individuals are D-dimensional vectors of parameters representing possible
solutions to the given problem. Initially, these parameters are randomly and uni-
formly set between pre-set boundaries (Hi,Lo). DE then evolves a population of NP
D-dimensional individual vectors from one generation to the next. These vectors
are candidate solutions. At each generation G, DE applies mutation and crossover
to all individuals to produce trial vectors.

There are various DE strategies differentiated by mutation operation.

Xi,G = {x1i,G,x2i,G, .....xDi,G} Vi,G = {v1i,G,v2i,G, ......vDi,G}

X ,V = target, mutant vectors at generation G.
The mutant vector is created at the generation G using one of many possible

DE strategies:
“DE/rand/1”:

ViG = Xr1,G +F(Xr2,G−Xr3,G)

“DE/best/1”:
ViG = Xbest,G +F(Xr2,G−Xr3,G)

“DE/current to best/1”:

ViG = Xi,G +F(Xbest,G−Xr1,G)+F(Xr1,G−Xr2,G)
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“DE/best/2”:

ViG = Xbest,G +F(Xr1,G−Xr2,G)+F(Xr3,G−Xr4,G)

“DE/rand/2”:

ViG = Xr1,G +F(Xr2,G−Xr3,G)+F(Xr4,G−Xr5,G)

“DE/rand to best/2”:

ViG = Xr1,G +F(Xbest,G−Xr2,G)+F(Xr3,G−Xr4,G)

r j random mutually different integer values generated in the range [1,NP], which
should also be different from the current trial vector’s index i.

Complex networks created by DE
Our first target was to study complex networks generated by DE algorithm. These
networks are created according to population history. Each new accepted individual
is connected to its parents, i.e. to individuals that were part of crossover operation,
which led to creation of this new successful individual (Fig 4).

The networks are based on crossover operation. In this case, “DE/best/2” strat-
egy was studied:

ViG = Xbest,G +F(Xr1,G−Xr2,G)+F(Xr3,G−Xr4,G) (14)

If the trial vector is accepted as a new individual, it is added to the network
as a new node, which is connected to individuals that were participating in its cre-
ation. In this case, Xnew (the new accepted individual) is connected toXbest,G, Xr1,G,
Xr2,G, Xr3,G, Xr4,G. The preferential attachment is obvious as Xbest,G takes part in all
crossovers. This fact implies that the currently best individual node is connected to
all new nodes added to the network. Consequently, each new node has five inward
links – it has five “parents.”

This study presented the complex networks generated by DE. Our next target
is to match DE (population, individuals) onto surface reconstruction problem.

Surface Reconstruction by Means of AI
This preliminary research serves as a ground for further experiments involving evo-
lutionary algorithms. Our main target is to develop algorithm based on fundamen-
tals gained from the evolutionary algorithms theory that will effectively solve sur-
face reconstruction problem. Strange attractors will provide highly complicated
surfaces, which will be used as a testing environment. Currently we are consider-
ing modifying DE algorithm. The population should consist of points that create
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the reconstructed surface. However, special ways to reduce the computational com-
plexity of such approach must be considered due to large number of these points.
This approach will probably lead into developing an entirely new evolutionary al-
gorithm, which will be fully optimized for these particular applications.

Conclusion
In this paper, possible methods how to solve the difficult problem of generating a
closed 3D mesh based on strange attractors using quaternions, marching cube al-
gorithm and especially artificial intelligence methods such as differential evolution
were briefly described. An increasing amount of parameters such as number of
iterations, generating attractor values or the usage of special effects will cause ex-
ponential growth of the complexity of created 3D object. Evolutionary algorithms
were successfully used for such complex tasks during last decade. Based on these
premises, we are searching for an algorithm based on artificial intelligence methods
that can effectively solve this problem.

Note that our algorithm is in development currently and final results are going
to be published in future.

Future Work
DE algorithm will be modified (if possible) for use on a surface reconstruction
problem. This algorithm will be tested on a set of problems consisting of “point
clouds” and consequently of strange attractors.
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