
Copyright © 2010 ICCES ICCES, vol.15, no.2, pp.65-74

Numerical prediction and sequential process optimization
in sheet forming based on genetic algorithm

Schmidt1

Summary
Genetic algorithm is an emerging technique used in engineering design activities
to find an optimized solution which satisfy a number of design goals. Non-linear
direct method of goal search use successive linearization techniques, which are
sensitive to the chosen starting solution and quality of the objective function. The
proposed technique can solve programming problems having non-convex regions,
which are usually avoided in classical optimization problems. The efficacy of the
proposed novel method is demonstrated by solving a number of test problems. The
results suggest that the proposed method is effective and represents a practical tool
for solving sheet forming problems.

Keywords: Sheet forming optimization, genetic algorithms, goal program-
ming

Introduction
It is of interest to investigate the nature of the numerical prediction and optimization
scheme and how the blank is affected by varying its forming process and die param-
eters. The optimization objective in the forming process is archived using genetic
algorithms. These algorithms are known to be able to explore the entire functional
space, thus they can detect the global optimal solution. Incremental data is used
to further limit the space that is investigated. The gradient of the field calculated
for simplex method eliminates candidates from the possible optimal solutions to-
wards the global optimal solution and limits the scope of the data for the candidates
obtained from generic algorithms.

Literature review
The finite element is adopted for metal forming since it provides detailed informa-
tion about the domain being studied and is an essential component of computer-
aided design. Kobayashi (Kobayashi 1987)applied a finite-element based back-
ward tracing technique to design an optimized pre-form. However, this technique is
largely inefficient in determining the optimal solution due to the presence of diverse
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and multiple loading solution paths. John and Hwang (Joun and Hwang 1993)pro-
posed derivative based approach to solve process optimization problems. In spite
of potential of the proposed method, an initial guess required by this method can
influence the search, and often can be stuck in a sub-optimal solution.

The optimization problem of finding the solution for the function F (x) of the
problem can be solved using a well-known quasi-Newton method proposed by
physicist W.C. Davidon (Davidon 1991), which idea is based on the Newton’s
method where it is assumed that a function can be locally approximated around
the optimal solution, but requires that the optimized function is computed for each
iteration. The quasi-Newton method uses Hessian matrix and incremental analysis
of the successive gradient vectors by imposing a simple constraint onto Hessian
estimate.

The improved version, popularized by Fletcher and Powell known as method of
Davidon-Fletcher-Powell (Davidon 1991)is no longer in wide use, which is based
on the secant method, leads to a positive-definite matrix. Among the most common
quasi-Newton algorithms today is Broyden-Fletcher- Goldfarb -Shenno (BFGS)
(Nocedal and Wright 2006)method which uses McCormick criteria does not hold
against DFP method, where it can lead to difficulties because the search space is
unknown when multiple diverse loading paths are present. Geodesics by Rosen-
broke’s function and Himmelblau (Himmelblau 1972), which ideas are similar to
optimization lines, are important in global minimum search problem because the er-
ror cost involved is forming the multi-minima potential in weight parametric space.
Damped oscillator equation known as HBF is a widely-used technique to arrive at
global minimum.

To address limitations of the existing methods, a number of authors are adopt-
ing genetic algorithms with embedded finite-element solver to automate the search
of the optimized solution. Roy et al. (Roy 1996,) implemented an adaptive ge-
netic algorithm for shape optimization of sheet forming process. This method can
deliver good solutions, however, the GA-based approach using the finite element
solver as embedded optimizer incurs severe computational costs since it require
large number of solutions to converge.

Furthermore, we obtained a novel adaptive search using generic algorithm. To
investigate the performance and potential of this novel descent, we applied direct
method of descent based on simplex to the genetic functional space. The results
show that our method determined the global minimums in our test problems. Our
adaptive descent may be applied in different problems related to forming optimiza-
tion, such as sheet metal forming.
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Genetic algorithms in sequential process optimization
A review of the literature revealed that there is a growing interest in approaches
for dealing with the sequential process optimization problems using Genetic Algo-
rithms [(Deb 1998)]. Kobyashi[] at al. TODO: Add more. However, these attempts
tend to consider the entire space of possible solutions as candidates for the optimal
solution bounded by criterion space.

Methods of the sequential process optimization are assuming initial points of
the optimal solution are based on the knowledge of the physical problem and can
be derived for the set of optimizing constraints. This makes the optimization algo-
rithms susceptible to the correctness of the selection and whether the system can
converge to the optimal solution, including the number of stages required to achieve
the required convergence. In addition, this approach, while being exhaustive, re-
quires significant computation time to obtain the optimal solution. It seems feasible
to apply gradient descending method to a NSGA algorithm to the sheet forming
with multiple stages based on the ideas from (Fonseca and Fleming 1993)(Srinivas
and Deb 1994).

Moreover, the dependency between stages is modeled based on the results ob-
tained during previous stage such that the optimization algorithm evaluates alterna-
tives before moving into the next stage.

Given a matrix describing a problem and Dirichlet boundary conditions on an
optimizing domain ΩD, the goal is to solve the problem

−4u = F (x) in Ω, u = u0 on ∂ΩD

where F (x) is the function of the problem on a polygonal domain, which ∈Ω,
u is a solution on the domain Ω, u0 is an initial solution on the domain Ω.

Let vector f k
j denote a constraint of the objective functionF (x), and f be a

continuous function. Then

Fk
i (x) =

∫ n

j=1
f k
i j (x) |i = 1,2, . . . p

where

f j (x) =
{

fi j (x1 j,x2 j, . . .xm j,x1k,x2k, . . .xrk) |,k = j−1,r < m
}

i is the ith objective, p is the number of objectives, m is the number of design
variables at stage j, k is the constraint from the previous stage j−1, r is the number
of constraints from the stage j−1that is taken into consideration at stage j, and n
is the number of stages.
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Figure 1: String Structure of a Chromosome

The weighed pairing algorithm [(Courrieu 2009)] is used for selection of a
chromosome to produce new offspring. The rank weighting is evaluated according
to the following formula:

Pn =
Nkeep−n+1∫ Nkeep

n=1 n

Process of mating and producing offspring is performed from two parent’s chromo-
somes. A crossover point is selected stochastically between the first and last bits
of parents’ chromosomes. Consequentially the offspring contains binary codes of
both parents.

Mutation Operator
A polynomial probability distribution is used to derive next solution, based on a
parent solution. Let parent solution be y( j)

i . Then, the following process applies to
the procedure of obtaining each element for next solution y( j)+1

i . First, choose a
random number u between 0 and 1. Next, calculate a parameter of mutation δq as
follows:

δq =


[
2u+(1−2u)(1−δ )ηm+1

] 1
ηm+1 −1, if u≤ 0.5; ;

1−
[
2(1−u)+2(u−0.5)(1−δ )ηm+1

] 1
ηm+1

, otherwise

where δ = min
[(

y( j)
i − yl

i

)
,
(

uu
i − y( j)

i

)]
/
(
yu

i − yl
i
)

. Here parameter ηm is the
distribution index for mutation. Lastly, calculate the mutation as follows:

y( j)+1
i − y j

i +δq

(
yu

i − yl
i

)
.

The mutation probability pm is taken based on (Gao 1998)who evaluated it in the
context of Markhov chain models. He showed that the probability of mutation and
the smaller the population is reverse proportional to GA convergence rate. In our
case, it is varied from 1/P till 1.0, which results into least parameter mutation gets
in the beginning and most extensive parameter mutation get mutated at the end of
simulation.
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Algorithms of direct search.
Methods of the direct search of an optimal solution are based on the evaluation of
the objective function. These methods are usually based on the empirical deduc-
tions and don’t hold strong mathematical background. Also, characteristics of the
convergence of the direct methods and speed of convergence are not very well stud-
ied. However, these methods are carrying ideas similar to those in the methods of
first and second order [ (Abramson and Charles 2005) (Kolda, Lewis and Torczon
2003)]. In certain cases, this allows to assess the effectiveness of the algorithms
of direct search in the context of certain classes of function. We argue that it is
possible to perform the assessment by comparing experimental data with the data
obtained theoretically and to perform comparative analysis of those results.

In order to achieve the objective of optimization, the mathematical apparatus
of unconstrained method of BFGS used for the solution based on the Newton equa-
tion:

BiD j =−gradFk
i (x j)

where Bi is an approximation to the Hessian matrix, j is a stage of the optimiza-
tion, and D j is a search direction, Fk

i (x j) – function at stage j, -grad is antigradient
of the functionFk

i (x j).
The complete Hessian matrix is calculated at the first stage and is updated

iteratively at each stage. Finally, the next point x j+1 is obtained based on the line
search in the direction D j.

At first stage, the search direction Pk is calculated using the eigen matrix of the
order n. Note that in this case, p1 = w1 = −grad f (x0), that is first stage is cal-
culated similar to the one calculated for the method of fastest descent. On another
hand, let Ak = H−1(xk−1) and ksik = 1, then we are coming to the classic Newton
method.

Lemma 1
Let the objective function f (x) be a convex function and there exist a Hessian

matrix H(x) for every x,y ∈ Rn such that

H (x)−H (y) ≤ L |x− y|

then, Newton method converges as a quadratic function and the following formula
holds ∣∣xk− x∗

∣∣≤ L
λ1

∣∣xk−1− x∗
∣∣2, k ∈ N

Proof
Given λ1 is equal to minimal proper value of Hessian matrix H(x)of the ob-

jective function in the vicinity ofx∗, which containsxk−1. Then, H (x) is positive
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definite in this vicinity and we have

λ1|x|2 ≤ (H (x)x,x)

for each x ∈ vicinity of x∗.
The above concludes the optimization process at stagek. The Hessian matrix

at stage j is computed as B j+1 by the addition of two matrices according to the
following:

Bk+1 = Bk +Uk +Vk

where Bk– Hessian matrix at stage k, Uk and Vk are step-size matrices calculated at
each stage.

Moreover, the convergence ratio of the highly convex objective function is
described by quadratic function. Therefore, the algorithm of the quasi-Newton
method exhibits convergence rate, if for each stage matrix Ak is selected such that
it approximates to the matrix H − 1(xk−1) at xk−1?Rn.The construction of the
matrix H−1(xk−1) for matrix Ak considering gradient at xk−1 can be greatly sim-
plified. This can be achieved by following the next steps. The sequence of the
approximating matrices Ak is constructed according to

Ak+1 = Ak +4Ak, k ∈ N

where 4Ak – correction matrix of order n. Let f (x) = 1
2 (Qx,x) + (c,x) be

a quadratic function with positive define matrix Q. In this case, function f (x) is
highly convex function, and the following holds

grad f (x) = Qx+ c

∆ω
k = grad f

(
xk−1

)
−grad f

(
xk
)

= Q
(

xk−1− xk
)

Finally,
Q−1

∆ω
k =−∆xk,k ∈ N

where matrix Q coincides with the Hessian matrix H (x) of the function f (x).

Test Problem 1
We use the following goal programming problem:

goal ( f1 (∆,P) = x1 ≥ 230),
goal ( f2 (t) = x2 < 1.06) ,
Subject to 95≤ x1 ≤ 370, 1.0≤ x2 ≤ 1.06.
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Figure 2: Solution is shown on the problem space of thickness vs. stress depen-
dency.
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Figure 3: Solution is shown on the problem space of increment vs. thickness de-
pendency.
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The programming problem includes two goals, the first goal is of greater-than-
equal-to type and the second goal is of less-than-equal-to type.

The feasible decision space is shown in Fig. 2 and the criterion space is the line
between points A and B. Each discreet solution in this region corresponds to a goal
programming problem. The solutions to this problem for the function 1 represent
plastic deformation of the body. The varying problem for the function 2 represents
possible thickness of the deformable body undergoing plastic deformation, depend-
ing on the weight factors used. To solve the described problem using NSGA, it is
converted into an equivalent two-objective optimization problem as follows:

Minimize 〈230− f1 (x1)〉,
Minimize | f2 (x2)−1.06|,
Subject to 95≤ x1 ≤ 370,1.0≤ x2 ≤ 1.06.
The Fig. 3 and Fig. 4 shows that NSGA finds the potential optimal solutions,

which are converging to the global optimal solution.

Test Problem 2
The problem is to minimize the delta between the optimal blank and thickness
variation throughout the blank in the sheet forming process. The multi-objective
optimization problem is considered in two-dimensional space using Pareto front
for generic algorithm optimization. The programming problem includes two goals,
where the first is of less-than-equal-to type and the second is of greater-than-equal-
to type.

Where primary y-axis shows shape error µerror is defined as the mean value of
the shape difference between the current deformed contour of the flange and target
contour. The shape error is calculated by taking the arithmetic mean of the absolute
values of the difference between the nodes on the current deformed contour and the
nearest nodes on the target contour. The total value of the shape error therefore can
be expressed as follows:

µerror =
1
n

∫ n

i=1
|di|

where di- difference between the nodes of deformed contour on the current stage
and the nearest nodes on the target contour; n- total number of nodes located on the
contour of the blank at current stage. The thickness distribution is plotted against
the profile of the cup in the secondary y-axis. The distribution shows the effective-
ness of the modeling and goal is to minimize this parameter’s deviation. The blank
is drawn for 70 mm and initial thickness of the blank is taken as 1.0 mm.

Minimize 〈0.15− f1 (x1)〉,
Minimize | f2 (x2)−1.0|,
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Figure 4: Solution is shown on the problem space.

Subject to 0≤ x1 ≤ 0.15,0.85≤ x2 ≤ 1.15.
Since there exists no solution with error µerror greater than 0.15, and the thick-

ness distribution is less than 0.02, the resulting solution is supposed to be the opti-
mized solution. Fig. 5 shows that this solution converges to the following parame-
ters:

µerror=0.07, t = 1.0
The solution for these parameters is very close to the global optimal solution.

Conclusion
The method of the sequential optimization of a sheet forming process was re-
viewed and its limitations were brushed aside. It was shown that the generic al-
gorithms are capable to deliver better solution compared to the traditional iterative
approach based on the knowledge of the physical problem. Furthermore, the im-
proved NSGA algorithm can be applied to the investigated problem in anticipation
of optimal solution. The related portions of creating a chromosome, obtaining a
crossover, and performing a mutation were mapped into problem space. The direct
methods of global descent were used to improve the convergence speed. Finally,
two test problems were presented to prove the validity of the ideas described in
the paper. The results are these test problems indicated feasibility of the proposed
approach as their results converged nicely into optimized solutions.
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