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Geometry related treatments for three-dimensional
meshless method
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Summary
The meshless method has a distinct advantage that it needs only nodes without an
element mesh which usually induces time-consuming work and inaccuracy when
the elements are distorted during the analysis process. However, the element mesh
provides the geometric information for numerical simulation without the need to
judge if the nodes or integration points are inside the analysis domain as in the
meshless method, such as the boundary of the analysis domain which is defined
by the element’s edges or faces and that the integration points are intrinsically in-
side the elements. Because the analysis model with only nodes in the meshless
method lacks these types of geometry related information, some extra complicated
treatments are usually required during the numerical simulation, especially, in the
cases with three-dimensional irregular analysis domain. Therefore, two types of
boundary and domain schemes, say, triangulated surface boundary scheme and con-
structive solid geometry scheme, are employed in this work. Several demonstrative
cases prove the effectiveness of the proposed schemes.
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Introduction
One of the main disadvantages of the finite element method (FEM) is it requires a
mesh, including elements and nodes, which is usually tedious and time-consuming
to build. Moreover, the FEM usually gets into troubles with the distortion of the
elements in dealing with large deformation problems. The meshless method has an
inherent advantage that it doesn’t require any mesh but nodes only, and has become
one of the most promising numerical methods. Although there were many pioneer-
ing successes in the early research works, most of the cases were two-dimensional
problems. Till recent years, three-dimensional problems have then been success-
fully tackled [Chen and Guo (2001); Han and Atluri (2003); Li, Shen, Han and
Atluri (2003); Han and Atluri (2004); Chen and Chen (2005); Chen and Lee (2005);
Chen, Chi, and Lee (2009); Lee and Chen (2009)]. But most of those cases are
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dealing with regular geometry; part of the reason is the difficulty to handle three-
dimensional irregular domain. So far, irregular geometry issues in the meshless
method have not been elaborated yet.

Although the meshless method has the distinct advantage that it needs only
nodes without an element mesh and can avoid the disadvantages of the element
mesh. However, the element mesh provides some necessary information needed
by the numerical simulation, such as, the boundary of the analysis domain is rep-
resented by the element’s edges or faces, the integration points of all elements are
intrinsically located inside the analysis domain without the need to judge if those
are inside the analysis domain as in the meshless method. Because the analysis
model in the meshless method lacks these types of geometry related information,
some extra treatments are needed for the meshless method during the numerical
simulation especially in the cases of three-dimensional irregular analysis domain
for which the treatments will be much more difficult. Therefore, a triangulated
surface geometry is employed to represent the boundary surfaces of the analysis
domain. In this way, the boundary surfaces of the three-dimensional domain are
defined with triangular facets. Triangulated surface geometry is widely used by
most CAD/CAM/CAE fields and can be easily created whenever the geometry data
are available.

In addition to the triangulated surface geometry, another simpler representa-
tion, constructive solid geometry (CSG), is also employed. Although it has limi-
tation to represent irregular geometry models, it inherits some simple and efficient
advantages due to a much smaller amount of the faces involved. This type of model
can be utilized for some simulation fields in which the analysis models are regular
and fixed.

On top of the information of boundary and domain, there still are some types
of geometry treatments needed in the meshless method during the simulation pro-
cesses, such as, determining if certain integration points are located inside the anal-
ysis domain for numerical integration purposes [Belytschko, Lu, and Gu (1994)],
determining if the node inside the influence radius is blocked by any boundary
and cannot be included into the influence domain. Here, a checking mechanism is
proposed to handle these works

Treatments of analysis boundary and domain
Unlike the finite element method, i.e. the element model itself provides enough in-
formation of domain boundary either for two-dimensional or three-dimensional do-
main, the analysis model in the meshless method provides inadequate information
about the boundary and analysis domain. Therefore, it is needed to employ some
mechanisms to handle the boundary and domain issues which are actually geomet-
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rical issues. In two-dimensional cases, the boundary issue can be easily handled
just by connecting the boundary nodes with straight lines. It’s also easy to deter-
mine something inside or outside the domain [Belytschko, Lu, and Gu (1994)].
Nevertheless, in three-dimensional cases, the analysis domain and boundary are
much more complicated and difficult to define, especially for irregular sculptural
faces. Here, two types of boundary and domain representation, i.e. constructive
solid geometry and triangulated surface geometry, are proposed to employ. Based
on them, some checking schemes can then be further used to handle those geometry
related issues for the meshless method.

Constructive solid geometry (CSG) and set operations for regular three-dimensional
analysis domains
The CSG is one of the popular schemes to represent geometry models in CAD field.
The geometry models are constructed by combining primitives, such as, block,
sphere, cylinder, etc., with some set operations, such as union, intersection, sub-
traction. This scheme for domain definition is easy and simple to manipulate for
the meshless method. Although it has some limitations, such as difficult to create
irregular geometry and unable to be deformed during solution processes, it still can
be used for many simulation cases with the simplicity advantage. For example, in
linear structural analysis and Eulerian-formulation simulation, such as electrostatic
and flow analyses, in which the analysis domains are fixed in the space without any
change.

The typical primitives used by this scheme are block, sphere, and cylinder, as
shown in Fig. 1. It is easy to define the territories for those primitives, just by a set
of coordinate ranges or a simple analytical equation. For example [Zeid (1991)],

Block(L×W ×H) : {(x,y,z) : 0≤ x≤ L, 0≤ y≤W, 0≤ z≤ H} (0.1)

Sphere(r) : {(x,y,z) : x2 + y2 + z2 ≤ r2} (0.2)

Cylinder(r×H) : {(x,y,z) : x2 + y2 ≤ r2, 0≤ z≤ H} (0.3)

These basic shapes can be combined to represent some more complicated anal-
ysis domains by using set operations. For example, as shown in Fig. 1, the analysis
domain can be defined with two different blocks, a cylinder and a sphere by us-
ing set operations, i.e. union the two blocks first and then subtract the cylinder
and sphere from it. These operations can be easily programmed into the meshless
solvers without consuming much computing time.

For linear structural analysis and Eulerian-formulation analyses, this scheme
provides an easy and efficient way to handle the definition of analysis domain for
the meshless method. On judging if a point is inside the analysis domain, it can be
simply done by checking whether that point is in the model set or not.
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(b)  final domain after set 
operations 
 

(a)  combination 

 
Figure 1: Regular three-dimensional analysis domain by set operation

This type of representation can be used to solve those problems with regular
three-dimensional analysis domains and those simulations of which the analysis
domains are fixed during the simulation processes.

Triangulated surface geometry
For a three-dimensional irregular domain, a triangulated surface geometry is em-
ployed to represent the boundary surfaces of the analysis domain, i.e. the surfaces
of the three-dimensional domain are represented with triangular facets. This em-
ployment is also adopted by some other research [Han and Atluri (2004)]. The
triangulated surface geometry can be generated by most CAD packages and pre-
processors and widely used for rapid prototyping, CAM, and computer graphics.
The triangular facets are not triangular elements in the FEM and are used only for
geometry purpose. Fig. 3 shows an example. In addition to representing three-
dimensional irregular domain, the triangular facet which is simply defined by and
deflected with the three vertices, i.e. nodes, is so easy to be manipulated that the
complicated geometry represented by the triangular facets can be deformed and
updated with the moved nodes in accordance with the analysis results during the
simulation processes.

Inside/outside determination for analysis domain
In the meshless method, there are several occasions needing to determine if an ob-
ject inside the analysis domain. One is to determine if certain integration points are
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located inside the analysis domain for numerical integration purpose [Belytschko,
Lu, and Gu (1994)], because the integration cells and points are paved in the space
independently of the analysis domain. Another is to determine if certain nodes are
located inside the analysis domain when using the background grid scheme [Chen,
Chi, and Lee (2009)], because the background nodes are also paved in the space
independently of the analysis domain.

As mentioned above, when using the CSG scheme, the inside/outside determi-
nation can be simply done by checking if that point is in the model set.

When the object or analysis domain is alternatively represented by the triangu-
lated surface geometry, the model still lacks enough information for determining
whether a point is inside or outside the domain. Therefore extra judging operations
are needed to work for that. Here, a checking mechanism is proposed to handle
these works. At first, put a reference point inside the analysis domain. After the
reference point is created properly, when we want to check if an integration point
or a node inside the analysis domain, we connect the discussed point and the ref-
erence point with a connecting line as shown in Fig. 2 (b). Then, we check how
many times the connecting line crosses the boundary facets. A criterion is then set:
when the number of times that the connecting line crosses the boundary is odd, the
point is outside the analysis domain; when it is even, the point is inside the analysis
domain.
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Figure 2: Types of reference points: (a) external (b) internal

Alternatively, we can employ a reference point outside the analysis domain. It’s
easier to pick a point assured to be outside the analysis domain. First, we decide
the bounding box which is just big enough to cover the entire analysis domain by
checking the minimum and maximum of the coordinates of all the nodes of the
analysis model. The bounding box is constructed by the minimal and maximal
values in x, y, z direction, respectively. Then, create a reference point outside the
bounding box. After the reference point is created properly, we similarly connect
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the discussed point and the reference point with a connecting line. Then, we check
how many times the connecting line crosses the boundary facets as shown in Fig.
2 (a). For this case, i.e. external reference point, the criterion is opposite to the
internal-reference-point case. It is if the number of times is odd, the point is inside
the analysis domain; if it is even, the point is outside the analysis domain.

To compare the two kinds of reference points mentioned above, it is obvious
that the outer reference point is easier to choose without confusion. But for internal-
reference-point case, we can check the shortest distance to the boundary in the
beginning of the analysis process. The information is useful that we can check if
the length of certain connecting lines is shorter than that shortest distance, if yes,
we can directly pass those discussed points without further checking. This can save
a lot of computing time.

Determination of the node set for the influence domain
After above checking operations, the nodes inside the analysis domain will have
been determined. Another need for the meshless method is to determine if the
node which is inside the influence radius range [Belytschko, Lu, and Gu (1994)]
is blocked by any boundary; if yes, the node will not be included in the node set
which defines the influence domain.

In the case of triangulated surface boundary scheme, to determine if certain
node is blocked by any boundary, we use the similar way as mentioned above. We
connect the center point, an integration point or a node, and the discussed node
with a connecting line. In this case, if the connecting line crosses any triangular
facet, it means the two points have some boundary in between and the discussed
node should be excluded from the influence domain.

In the case of the CSG scheme, although there are more types of surfaces than
triangular facet, we can use the same mechanism, i.e. to check if the connecting
lines cross any boundary faces.

Numerical examples and results
Here, two analysis cases were conducted to demonstrate the effectiveness of the
proposed schemes. For comparison purposes, the FEM will also be employed to
solve the same problems.

First case is an electrostatically actuated comb-drive component. Here, an elec-
trostatic analysis of a pair of comb-drive fingers is carried out to obtain the electric
scalar potential distribution of the electrostatic field. The shape of the analysis do-
main is a regular three-dimensional geometry. To solve this case, the CSG scheme
was employed. The results are also shown in Fig. 3. The ANSYS results were also
obtained for comparison purpose.
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(a) CSG analysis model (b) electric scalar potential distribution 
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Figure 3: Electrostatic analysis of a comb drive case (one pair of fingers, unit: Volt)

The second case is about three ossicles, i.e. malleus, incus, and stapes, of
mouse’s middle ear [Sun, Gan, Chang, Dormer (2002)] as shown in Fig. 4(a).
They play the role of passing outside sound pressure on ear drum to inner hearing
nerves. Normally, the geometry data are obtained by computed tomography (CT)
and very irregular. Here, the triangulated surface boundary scheme can easily be
used to solve the stiffness of the bones. The Fig. 4(b) shows the deformation of the
analysis model.
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Figure 4: Structural analysis of osiccles of middle ear

Conclusions
In this work, we have proposed to employ two types of geometry representation,
the triangulated surface geometry and the CSG, to define three-dimensional analy-
sis domains for the meshless method. Combined with the domain representation, a
checking mechanism, the connecting line way, is also proposed to deal with some
location addressing issues needed for the meshless method. The CSG or triangu-
lated surface geometry either has different advantages. The CSG scheme is simpler
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and cheaper. Therefore it is good for regular-domain and Eulerian-formulation
problems. On the other hand, the triangulated surface geometry scheme can handle
any kind of irregular geometry. With these two schemes which both are compara-
tively simple and concise and have involved minimal geometrical calculation, the
meshless method can thus handle any three-dimensional irregular analysis domain
effectively. Above demonstrative cases prove the effectiveness of the proposed
schemes.
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