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Summary
The applications of a finite element scheme to one-dimensional linear advection-
diffusion equation, the incompressible Navier-Stokes equations, and compressible
Euler system of equations are presented. The mesh-based scheme is the Petrov-
Galerkin weak formulation with exponential weighting functions. Some numerical
results demonstrate the workability and the validity of the present approach.
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Introduction
From a simulation-based design’s point of view, computational fluid dynamics
(CFD) is now indispensable in the fields of engineering and science. Numerical
instabilities have been experienced in the solution of the advection-dominated sys-
tem of equations in fluid flow [Brooks and Hughes (1982)]. Various robust schemes
have been successfully presented in the mesh-based and meshless-based frame-
works for CFD.

In our previous work, we have proposed a finite element-based scheme for
solving effectively the problems of incompressible viscous fluid flow [Kakuda and
Tosaka (1992)]. The scheme is based on the Petrov-Galerkin weak formulation
using exponential weighting functions.

The purpose of this paper is to apply the Petrov-Galerkin finite element-based
scheme to one-dimensional linear advection-diffusion equation, the incompressible
Navier-Stokes equations, and compressible Euler system of equations. The work-
ability and the validity of the present approach are demonstrated through some
numerical results.

Linear advection-diffusion equation
Statement of the problem
Let us first consider the one-dimensional advection-diffusion equation in spatial
coordinate, x, given by

uϕ,x = kϕ,xx (1)
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with the adequate boundary conditions, where u and k are the given velocity and
diffusivity, respectively. Now, we define the flux f = uϕ in Eq. (1). With this
definition, Eq. (1) is given as follows :

f,x = kϕ,xx (2)

Petrov-Galerkin finite element formulation
In order to solve the flux in a stable manner, we shall adopt the Petrov-Galerkin
finite element formulation using exponential weighting functions [2]. On the other
hand, the conventional Galerkin finite element formulation can be applied to solve
numerically Eq. (2).

First of all, we start with the weighted integral expression of the flux in a sub-
domain Ωi = [xi−1,xi] with respect to weighting functions Mα . By applying the
divergence theorem to the weighted integral expression, we obtain the following
integral form : ∫

Ωi

MαNβ dx fβ −u
∫

Ωi

MαNβ dxϕβ = 0 (3)

The weighting function Mα can be chosen as a general solution which satisfies

uMα +∆xiσ(u)Mα,x = 0 (4)

where ∆xi = xi−xi−1, and σ(u) denotes some functions described by Yee et al.[3],
which is sometimes referred to as the coefficient of numerical viscosity. The solu-
tion of Eq. (4) is

Mα = e−a(x−xα ) (α = xi−1,xi) (5)

where a = u
∆xiσ(u) .

Here, applying an element-wise mass lumping to the first term of the left-hand
side of Eq. (3), and carrying out exactly those integrals in Eq. (3), we have the
following finite element equation

c̃δαβ fβ =−uHαβ ϕβ (6)

where δαβ is the Kroneker’s delta, and

c̃ = e−γ − eγ , Hαβ =

[
(eγ + c̃

2γ
) −(e−γ + c̃

2γ
)

(eγ − c̃
2γ

) −(e−γ − c̃
2γ

)

]
, γ =

u
2σ(u)

(7)

From Eq. (6) we can obtain the following numerical flux fi−1/2 in the subdomain
Ωi

fi−1/2 = fi +
u
2
[1+{sgn(γ)coth|γ|− 1

γ
}](ϕi−1−ϕi) (8)
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and similarly in another subdomain Ωi+1, we have

fi+1/2 = fi +
u
2
[−1+{sgn(γ)coth|γ|− 1

γ
}](ϕi−ϕi+1) (9)

where sgn(γ) denotes the signum function.
Let us now consider the Galerkin finite element model for the weighted integral

form of Eq. (2). After that, we assume a uniform mesh ∆xi = ∆x for simplicity of
the formulation. Taking into consideration the continuity of ϕ,x at nodal point i, we
can obtain the following discrete form :

fi−1/2− fi+1/2 +
k

∆x
(ϕi−1−2ϕi +ϕi+1) = 0 (10)

Substituting Eq. (8) and Eq. (9) into Eq. (10) and after some manipulations, we
obtain the following finite difference form :

u
2∆x

(ϕi+1−ϕi−1) = (k + k̃)
ϕi−1−2ϕi +ϕi+1

∆x2 (11)

where for any velocity u

k̃ =
|u|∆x

2
{coth|γ|− 1

|γ|
} (12)

There exist some cases for possible choice of σ(u) in Eq. (4). Now if we assume
σ(u) = |u|/α in which an adhoc parameter α = ∆x|u|/k, then γ in Eq. (12) is given
as

γ =
u

2σ(u)
= Pe (≡ ∆xu

2k
: element Peclet number) (13)

Using the element Peclet number Pe as γ , we reduce Eq. (11) to the following form
:

{sgn(Pe)− coth|Pe|}ϕi+1 +2coth|Pe|ϕi−{sgn(Pe)+ coth|Pe|}ϕi−1 = 0 (14)

This equation has the same structure as the SUPG scheme developed by Hughes et
al.[1], and it leads to nodally exact solutions for all values of Pe.

Incompressible Navier-Stokes equations
Petrov-Galerkin finite element formulation
The motion of an incompressible viscous fluid flow is governed by the Navier-
Stokes equations in dimensionless form. By applying the time splitting technique



40 Copyright © 2010 ICCES ICCES, vol.14, no.1, pp.37-42

to the set of equations, we can split formally the problem into the nonlinear system
of advection-diffusion equations and the linear Euler’s system of equations.

It is well known that the conventional Galerkin finite element scheme using
coarse meshes leads to spurious oscillatory solutions for flow simulations at high
Reynolds number. Therefore, let us now consider the Petrov-Galerkin finite ele-
ment formulation using exponential weighting functions [2] to the nonlinear advection-
diffusion equations with a Reynolds number Re. By applying the divergence theo-
rem to the weighted residual form in a subdomain Ωe of the whole domain Ω, and
after some manipulations, we have the following weak form:∫

Ωe

{
u̇i(ũi,un

i )+u jui, j
}

MαdΩ+
∫

Ωe

1
Re

ui, jNα, jdΩ =
∫

Γe

τiNαdΓ (15)

in which τi ≡ ui, jn j/Re, Γe is the boundary on the subdomain, and Mα denotes the
weighting functions given by

Mα(xxx) = ∑
γ,i

Nα(xxx)e−ai(Nγ xγ

i−xα
i ) , ai =

αi

| Li |
sgn(vi) (16)

where Nα is the shape function in three dimensions, vi is the velocity vector av-
eraged in Ωe, Li is the reference length for xi-directions, and αi is the upwinding
parameters which control an effect of the upwinding.

Numerical example
As a numerical example, we shall consider the flow around a building in Japan.
Fig. (1) shows the geometrical configuration and the numerical results at Re =
7,900. The number of nodes is 473,964, ∆t = 0.01, and αi = 0.2.

(a) Geometry (b) Streamline (c) Pressure

Figure 1: Geometrical configuration and numerical results

Compressible Euler system of equations
Statement of the problem
In this section, in order to develop a high-resolution scheme based on the TVD we
have an adhoc function GGG. As a result, we obtain the following modified hyperbolic
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systems of conservation laws :

W = S−1U , GGG = hWWW ,x (17)

F̃FF = ΛΛΛWWW + Σ̂ΣΣGGG (18)

F̃FF∗ = SSSF̃FF , UUU ,t + F̃FF∗,x = 000 (19)

where Σ̂ΣΣ is a m×m diagonal matrix associated with the limiter functions.

Petrov-Galerkin finite element formulation
As before, the weighted integral form of Eq. (18) in the subdomain Ωi = [xi−1,xi] is
given by

∫
Ωi
{F̃FF −ΛΛΛi−1/2WWW − Σ̂ΣΣi−1/2GGG}MMMαdx = 000 in which MMMα is the exponential

weighting functions as follows :

MMMα = e−aaai−1/2(x−xα ) , aaai−1/2 =
ΣΣΣ
−1
i−1/2ΛΛΛi−1/2

hi−1/2
(20)

By calculating the integrals and using the flux lumping technique such as the mass
lumping one, we find the solutions of F̃FF i−1/2 in Ωi as follows :

F̃FF i−1/2 = F̂FF i−1/2 + Σ̂ΣΣi−1/2[GGGi +
1
2
{III + ζ̃ζζ i−1/2}(GGGi−1−GGGi)] (21)

and similarly in an adjacent subdomain Ωi+1

F̃FF i+1/2 = F̂FF i+1/2 + Σ̂ΣΣi+1/2[GGGi−
1
2
{III− ζ̃ζζ i+1/2}(GGGi−GGGi+1)] (22)

Numerical example
Let us now consider a Riemann problem, namely the shock-tube problem, for
the above Euler system of equations in order to demonstrate the workability and
the validity of the present approach. The initial data in a field {x|0 < x < 14}
is given as follows : UUU(x,0) = UUUL i f x < 8 = UUUR i f x > 8, where UUUL =
(0.445,0.311,8.928)T , UUUR = (0.5,0.0,1.4275)T .

In Fig. (2) we show the numerical results obtained by the finite element scheme
with the Harten’s limiter [Yee, Warming and Harten (1985)] and the Roe’s lin-
earization. The calculations were performed with 100 time steps under the CFL
restriction of 0.95. The number of elements is 140.

Conclusions
We have presented a finite element-based scheme using exponential weighting
functions for solving numerically the system of equations in fluid flow, such as
incompressible Navier-Stokes equations and compressible Euler’s equations. The
numerical results demonstrated that the present approach was capable of solving in
a stable manner the system of equations.
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(a) Density (b) Velocity (c) Pressure

Figure 2: Numerical results
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