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Coarse-grained molecular dynamics simulation on Cu
(100) nano-indentation
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Summary
Mechanical properties of materials in the micro- and nano-meter scale have

been successfully obtained by using the indentation technique. Up to now, large-
scale atomistic models to simulate the experimental condition, however, still remain
computationally demanding. In this article, a simple and accurate method is pro-
posed to derive the intermolecular potential functions of coarse-grained molecular
dynamics (CGMD) suitable for various single crystalline materials. This CGMD
technique is then provided to simulate nano-indentation process to verify its accu-
racy and reliability. Simulation results evaluated by CGMD approach are obtained
and compared to those predicted by MD. It is found that the results predicted by
these two approaches are well consistent in various aspects such as the deformation
patterns, the force-displacement curves as well as the Young’s modulus and the
hardness. Moreover, the computational time of CGMD can be saved significantly.
It takes only about one-fifth in comparison to MD. Consequently, this methodol-
ogy can be utilized to simulate larger systems with more atoms required in various
nanometer-scale processes.

keywords: Coarse-grained molecular dynamics, multi-scale, finite element
method, nano-indentation.

Introduction
State-of-the-art atomistic molecular-dynamics simulations are capable of deal-

ing with the system up to millions of atoms by using advanced parallel computer
architectures. However, a significant gap in size-scale still exists and needs to
bridge between atomistic simulation and experiment. For instance, a MD simu-
lation on indentation-induced structural phase transformations in mono-crystalline
silicon using very large cell has been conducted recently by Kim and Oh [1]. In
their model the substrate consisted of about 1.6 × 106 silicon atoms in total with a
size of 38 nm × 38 nm × 21 nm. The maximum indentation depth has reached to
7.5 nm. Although long-range crystalline order and the mechanism of overall phase
transformation within the subsurface have been obtained in this study, the maxi-
mum indentation depth in simulation, however, was still less than the experimental
data by two to three orders in magnitude.

Consequently, a large-scale atomistic model to approximate the experiment
condition still remains computationally demanding. Some alternatives that com-
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bine atomistic simulation with coarse-grained scheme have been resorted to. Quasi-
continuum (QC) method, based on a zero-temperature energy minimization tech-
nique, is one of main trends [2-6]. In this method an approximation to the total
potential energy is obtained by using finite element constraints to remove atoms
where the deformation field varies slowly on the scale of lattice parameter. Not
only the total number of degrees of freedom that must be considered to simulate
the deformation of the system can be significantly reduced, but also an attractive
feature of seamlessness can be achieved. In other words, the same underlying atom-
istic model can be used in both the coarse-grained and fully-atomistic regions. Al-
though QC method can simulate nano-indentation process up to several tens of
nanometers, many disadvantages, however, may be introduced due to simple and
unrealistic phenomenological constitutive models. Moreover, this approach cannot
capture the important features of experimental results in atomistic aspects such as
defect formation and hysteretic loop.

In the past decade a number of hybrid atomistic continuum schemes have been
developed. Tadmor et al. [7, 8] first proposed the concept of finite-element coarse
graining to investigate the quasi-static propagation of defects in crystalline solids.
In their procedures the atoms underlying a given element moved instantaneously
in unison with the nodes of that element. The temperature was implicitly assigned
to zero K and then the potential energy of the system was minimized under spec-
ified boundary conditions to yield the optimal static nodal configuration and an
estimation of the configuration energy of the stable state. On the other hand, Rudd
and Broughton [9, 10] proposed a coarse-grained molecular dynamics (CGMD)
based on finite-element technique. In their theory, the coarse-grained Hamilto-
nian is dependent on temperature, containing a term representing the mean thermal
energy of non-nodal atoms introduced due to the loss of degrees of freedom in
coarse graining. Some studies [11-12] proposed an alternative static finite-element
coarse-graining description, which was an extension to nonzero temperature of the
static coarse-graining approach of Tadmor et al. It was found that minimization of
Helmholz energy functional will lead to the optimal static nodal configuration and
the best estimation of the Helmholz energy under the given boundary conditions.
This extended quasi-continuum technique can yield the exact solution if it was ap-
plied to pure one-dimensional harmonic chain [11]. Chao et al. [13] proposed
a coarse-grained multi-scale molecular simulation method, called coarse-grained
rigid blob model, for soft matter systems that directly incorporated stereochemical
information. In this method the material was divided into disjoint groups of atoms
or particles, called rigid blobs, which moved as separate rigid bodies. The construc-
tion of transferable interblob potentials that approximated the net intermolecular
interactions was obtained by utilizing a multi-polar expansion technique.
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The potential energy of CGMD is generally constructed by taking Taylor series
expansion of intermolecular potential function. Since only few terms are included
for saving computational effort, these two potential functions only match well near
equilibrium position. In other words, only the region with small deformation can be
accurately simulated by CGMD. In this study, a simple CGMD approach suitable
for mono-crystalline materials is proposed. Intermolecular potential functions for
different size-scale of CGMD with the same lattice structure as atoms can be easily
obtained theoretically instead of determining by taking Taylor series expansion.
Consequently, accurate results can also be obtained even using larger size-scale of
CGMD

Theory of CGMD
CGMD Hamiltonian

In this article, a method of constructing scale-dependent constitutive equations
suitable for different meshes, quite similar to the method of Rudd et al. [9], is pro-
posed and developed. In the regions where the mesh nodes and the atomistic sites
are identical the CGMD equations of motion should agree with the atomistic equa-
tions of motion. In other words, this enables MD regions to be coupled seamlessly
to the regions of CGMD and the interfacial handshaking regions become unneces-
sary. The displacement of mesh node j in CGMD is an average of the atomistic
displacements within this mesh

u j = ∑
μ

f jμuμ , (1)

where f jμ is a weighting function, related to the finite element interpolating func-
tions. Similar relation can be found for the momenta pμ . By the definition of
interpolating functions, the weighting function, f jμ , can then be derived in terms
of shape functions

f jμ = ∑
k

(
∑
ν

NjνNkν

)−1

Nkμ , (2)

where Nkμ = Nk(xμ ). It should be noted that Latin indices, j, k, denote mesh nodes
while Greek indices, μ , ν , denote atoms. The CGMD energy can be defined as
the average of the canonical ensemble of the constrained phase space such that the
position and momentum of the atoms are consistent with the mean displacement
and momentum fields and can be written as [9]

E
(
uk,

.
uk

)
= 〈HMD〉uk,

.
uk

=
∫

dxμdpμHMDe−βHMD Δ/Z, (3)

where Δ = ∏
j

δ
(

u j −∑
μ

uμ f jμ

)
δ

(
.
u
j
−∑

μ

pμ f jμ
mμ

)
, δ (u) is a three-dimensional delta

function; Z is the partition function; β =(kT)−1 is the inverse temperature (energy).
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The atomistic Hamiltonian can be expressed in the form

HMD = ∑
μ

p2
μ

2m
+VMD, (4)

where VMD = ∑
μ ,ν

Vμν .

The mass matrix of CGMD can be derived by using the inverse matrix

E
(
uk,

.
uk

)
= Uint +∑

j,k

1
2

Mjk
.
u
j
· .
u
k
+VCGMD, (5)

where Uint = 3(NMD−NCGMD)kT ; Mjk = m

(
∑
μ

f jμ fkμ

)−1

; VCGMD =VMD = ∑
j,k

Vjk.

It is obvious that the equations of motion for CGMD are identical to those of
MD in the regions where the mesh coincides with the atomistic sites.

Potential function of CGMD
The relationship of potential functions between CGMD and MD analysis should

be identical, i.e.,

∑
μ ,ν

Vμν = ∑
j,k

Vjk. (6)

In the present study, the construction of CGMD potential functions between
Cu atoms are obtained by using the tight–bonding potential theory, proposed by
Cleri and Rosato [14], and Morse potential [15], respectively. The tight-binding
potential, Ec, mainly composed of two terms, i.e. bonding terms, Ei

B, and repulsive
energy term, Ei

R, can be expressed as

EC = ∑
i

(
Ei

B +Ei
R

)
, (7)

where

Ei
B = −

{
∑

j

ξ 2e−2q[ri j/r0]
}1/2

, (8)

Ei
R = ∑

j

Ae−p(ri j/r0), (9)

in which r0 is the equilibrium distance between molecules; A, p, ξ and q are four
key parameters which are determined by experiments [14].

The Morse potential, Φ(r), which is popularly adopted in solid, can be written
as

Φ (r) = D
{

e−2α(r−r0)−2e−α(r−r0)
}

, (10)
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CGMD1(2×2×2) CGMD2(4×4×4) 

 (a) 

             (b)                                (c)

Figure 1: (a) Lattice structures of CGMD; (b) All atomic and CGs potentials and
(c) Force vs. indentation depth curves for all-atom MD and CGMD simulation
models

where the parameter D is the coherent energy; α is the material parameter; r0 is the
equilibrium distance and can be determined by spectrum data.

In general, the parameters of potential function for different size-scale of CGMD
should be determined through either Taylor series expansion of potential function
or curve fitting by comparing to the potential function of all-atom model under
the same deformation condition. In this article, a simple approach is adopted. As
shown in Fig. 1(a), two different CGMD lattices are adopted in atomic simulation.
2 × 2 × 2 and 4 × 4 × 4 lattices of atoms in FCC structure are individually replaced
by 1 lattice of CGMD1 and CGMD2, respectively. In other words, each node in
CGMD1 and CGMD2 lattices is equivalent to 8 and 64 atoms, respectively. It is
found that if CGMD keeps the same FCC lattice structure as the all-atom model,
sound structural stability can be achieved in all the regions especially near the in-
terfaces between different meshes. Consequently, the Morse potential for CGMD1
and CGMD2 lattices can be, respectively, expressed as:

Φ (r) = 8D
{

e−2·α ·(r−r01)−2e−α ·(r−r01)
}

, (11)

Φ (r) = 64D
{

e−2·α ·(r−r02)−2e−α ·(r−r02)
}

, (12)

where r01 and r02 represent the equilibrium distance for CGMD1 and CGMD2
lattices, respectively. It can be easily shown that under the condition of uniform
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deformation Eq. (6) is satisfied if r01 = 2r0 and r01 = 4r0, while the other two
parameters, D and α remain unchanged for CGMDs with two different sizes, re-
spectively. Consequently, the data of these parameters, corresponding to all-atom,
CGMD1, and CGMD2, for Morse and tight-binding potentials are listed in Tables
1 and 2, respectively. The potential functions of CGMD1 and CGMD2 are plot-
ted in Fig. 1(b). Moreover, indentation simulations for the systems, composed of
pure CGMD1 and CGMD2 lattices, are carried out, respectively. Their indentation
load and displacement curves are plotted and compared to the case of all atoms, as
shown in Fig. 1 (c). It can be found that the simulation results are quite consistent.
However, numerical results of CGMD show a little harder stiffness than all-atom;
and the larger the size of CGMD, the harder the stiffness.

Table 1: Data of parameters in Morse Potential
Parameter MD MD CGMD1(2×2×2) CGMD2(4×4×4)

(Cu-Cu) (C-Cu) (Cu-Cu) (Cu-Cu)
D(eV) 0.3429 0.1 0.3429 0.3429
α(−1) 1.3588 1.7 1.3588 1.3588
r0() 2.626 2.2 5.252 10.504

Table 2: Data of parameters in Tight-Binding Potential
Parameter MD CGMD1(2×2×2) CGMD2(4×4×4)

(Cu-Cu) (Cu-Cu) (Cu-Cu)
A(eV) 0.0855 0.0855 0.0855

P 10.96 10.96 10.96
ζ (eV) 1.224 1.224 1.224

q 2.278 2.278 2.278
r0() 2.5662 5.1324 10.2648

Table 3: Hardness and Young’s modulus estimated by four different models
Experimental MD CGMD MD CGMD

[19] (Morse) (Morse) (TB) (TB)
Hardness (GPa) 10 13.8 14.7 10.5 11.5

Young’s modulus (GPa) 135 275 263 302 289

Simulation methodology
The simulation model is composed of single crystalline (100) Cu substrate and

a diamond indenter. In order to demonstrate the accuracy and reliability of CGMD,
both the models of all-atom and CGMD are adopted in the present study. As shown
in the Fig. 2, the size of substrate is 145Å× 145 Å× 94Å, and a Berkovich diamond
indenter with cone angle of 130o is composed of 15212 carbon atoms. For all-atom
MD model, the substrate is composed of 166400 Cu atoms. A model with different
lattices, called the CGMD model, is also adopted in simulation. This model is com-
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posed of 38400 atoms, 6400 small CGMD1 nodes and 1200 large CGMD2 nodes,
totally 45600 particles. Atoms are arranged on the upper side of the system that is
deformed severely; while small and large CGMDs are respectively imposed on the
central and lower sides of the system with small deformation. Selection of suitable
potential functions is very important to ensure reliable results in this indentation
process. For all-atom model, tight-binding potential and Morse potential are used
to depict the interaction between Cu atoms in substrate, respectively; while Morse
potential is used between the Cu atoms in the substrate and the carbon atoms in the
indenter. On the other hand, tight-binding potential and Morse potential are also
used to describe the interaction between small CGMD nodes, as well as between
large CGMD nodes, respectively. The techniques of embedded pseudo particles
and representative particles are adopted to treat the interactions near the interfaces
between atom and small CGMD, as well as between small and large CGMDs. For
instance, to evaluate the forces acted on the atom by small CGMD particles near
the interface between the atom and the small CGMD nodes, embedded pseudo
atoms within the region of cut-off radius for this atom are located first; and then
the interactions between the real and pseudo atoms are evaluated by using the po-
tential function between atoms. Consequently, potentials between atoms, as well
as between the same CGMD nodes can be adopted directly to keep from the nu-
merical instability encountered by mixed rule. To restrict the rigid-body motion of
substrate, atoms at bottom layer are fixed, while the remaining layers are thermal
control layers to impose the substrate temperature. In this work, the simplest way
to control the temperature of the system is adopted. This method just scales the
velocities at each time step to keep the time average of the total kinetic energy of
the system in correspondence with the desired substrate temperature. Moreover,
periodic boundary conditions (PBC) are imposed on the four lateral surfaces. The
indentation process is performed by moving down the indenter at the speed of 300
m/s at a temperature of 300 K under the maximum loading of 1000 nN. The 5th-
order Gear algorithm of the time integration method with time step 1 fs is used in
this study. H-functions [16] are used to monitor the equilibrium of the system. It
is found that the systems with mixed lattices take 12000 and 15000 steps to reach
equilibrium for Morse and tight-binding potentials, respectively, as shown in Fig.
3.

Results and discussion
Nano-indentation process is simulated by four different models, i.e., MD model

and CGMD models using Morse and tight-bonding potential functions, respec-
tively. It is obvious that the tight-binding potential can provide a better prediction
than the Morse potential. Results obtained by different models at three important
instants of time, i.e., the equilibrium state, the instant of maximum deformation,
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(a)
                       

                             (b) 

Figure 2: (a) CGMD and (b) all-atom MD simulation models of single crystal (100)
Cu and diamond indenter

and the state after indentation, are compared to each other. When the indenter
moves down and approached to the upper surface of substrate, oscillation of the
atoms in the upper surface occurs especially near the probe tip. Moreover, some
Cu atoms near the surface of the substrate jump up and are absorbed by the probe,
called the phenomenon of jump to contact due to the attractive force between the
atoms of the substrate and the indenter. When the probe tip continuously moves
down and gradually penetrates into the substrate, the substrate starts to deform due
to the repulsive force induced by the atoms of the probe. As the probe moves down
further, both the contact area between the probe and the substrate and the repulsive
force increase. The stress wave gradually extends from the upper side to the core
region of the substrate. At this time a pile-up effect appears around the periphery
of indent cave due to the occurrence of tensile force between atoms.

At the instant of maximum deformation, the stress wave tends to change its pat-
tern from propagating isotropically to anisotropically along two sides only. Since
the contact area of the probe and the substrate in the right side is larger than the
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Figure 3: Variation of H-function with respect to number of time step for equilib-
rium run

left side due to geometric shape of the probe, as shown in the Fig.4, it can be found
that the influence of the stress wave in the right side of the probe is more significant
than the left side in both simulation results of MD and CGMD. Moreover, it is seen
that the deformation and the dislocation patterns predicted by these two models are
well consistent. They reveal the similar propagations along some specific slip di-
rections. At this moment the wave propagation just beneath the probe tip becomes
slow due to plastic deformation. After maximum deformation the probe starts to
move up and then retract away from the substrate. The elastic strain energy is then
gradually released and the dislocation lines finally appear on the slipping planes
along some specific directions with the weakest bonding, as shown in the Fig. 5.

              (a)                                (b) 

Figure 4: Deformation patterns at the maximum indentation depth for simulation
models of (a) all-atom MD and (b) CGMD using tight-binding potential

Fig. 6 shows the force-indentation depth curves for four different simulation
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(a)                             (b) 

Figure 5: Residual deformation patterns after unloading for simulation models of
(a) all-atom MD and (b) CGMD using tight binding potential

Figure 6: Force vs. indentation depth curves for four different simulation models

models. It is seen that the material using the Morse potential shows a harder stiff-
ness than the tight-binding potential. Moreover, CGMD model behaves harder
stiffness than MD model using the same potential. It was reported that at micro-
/nanometer scales, materials exhibit size-dependent properties [17]. A typical ex-
ample of this size-dependence is hardness. For instance, the hardness of (111)
single crystal Cu and cold-worked polycrystalline Cu increases from less than 1 to
about 2 GPa as the indentation depth decreases from 2000 to 150 nm [18]. More-
over, as the indentation depth decreases to the level about 30 nm, the hardness of
Cu, deposited on the substrate of LiNbO3, increases further to about 10 GPa [19].

Fig. 7 shows the variations of dynamic hardness versus the indentation depth
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Figure 7: Variations of dynamic hardness versus indentation depth for four different
simulation models

Figure 8: RDF simulated by Tight-bonding potential after unloading

for four different simulation models. It is seen that a similar trend of size-dependent
hardness can also be observed in such a small scale from sub-nanometer to a few
nanometers. The hardness predicted by the tight-binding and the Morse potentials
shows a stable tendency as the indentation depth becomes more than 0.6 and 15 nm,
respectively. Table 3 indicates the (a) Young’s modulus and (b) hardness estimated
by four different models. It was reported that the experimental Young’s modulus for
poly-crystal thin film copper is 135 GPa [19-20]. The hardness predicted by MD
using Morse and tight-binding potentials is 13.8 and 10.5 GPa, respectively, while
it is 14.7 and 11.5 GPa by CGMD using Morse and tight-binding potentials, re-
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(a)                               (c) 

(b)                            (d)  

Figure 9: Top views (X-Y plane) on the surface of deformation region (a) at max-
imum loading and (b) after unloading predicted by Morse potential, as well as (c)
at maximum loading and (d) after unloading predicted by tight-binding potential

spectively. On the other hand, the Young’s modulus predicted by MD using Morse
and tight-binding potentials is 275 and 263 GPa, respectively, while it is 302 and
289 GPa by CGMD using Morse and tight-binding potentials, respectively. It can
be found that there exists no significant discrepancy between experimental data and
simulation value in hardness; however, for Young’s modulus, the experimental data
is much lower than the simulation value. Moreover, compared to the experimen-
tal data, the tight-binding potential seems to provide a better result than the Morse
potential. The discrepancy between CGMD and MD results for both hardness and
Young’s modulus using the same potential function is satisfactorily less than 10%
in magnitude. In particular, the computational time of the former takes only 1/5 of
the latter.

Fig. 8 shows the RDF simulated by tight-bonding potential after unloading. It
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               (a)                                (b)

               (c)                                 (d)

Figure 10: Side cross-sectional views (Y -Z plane) of deformation region (a) at
maximum loading and (b) after unloading predicted by Morse potential, as well as
(c) at maximum loading and (d) after unloading predicted by tight-binding potential

is seen that most of the peaks are consistent between MD and CGMD models. In
other words, the real structure of atoms, evaluated by MD model, can also be sat-
isfactorily described by CGMD model. Moreover, coordination number is adopted
to trace and investigate the history of deformation. The normal coordinate number
of Cu is twelve and can be disregarded. The other coordination numbers in the
deformed region just underneath the indenter are marked by four different colors
(CN = 8 as blue, CN = 9 and 10 as green, CN = 11 as yellow and CN > 12 as red).
Blue atoms generally appear on the surfaces or the interfaces between adjacent lay-
ers with different lattices. Green and yellow atoms represent the regions subjected
to tensile deformation to some extent, while the red atoms denote the regions sub-
jected to compressive deformation. Fig. 9 shows the top views of deformation
(a) at the instant of maximum loading and (b) after unloading, predicted by Morse
potential as well as (c) at the instant of maximum loading and (d) after unloading,
predicted by tight-binding potential, induced by the Berkovich tip on the top sur-
face of substrate (X-Y plane). It is seen that the region of indent at the instant of
maximum loading is smaller than that after unloading due to successive propaga-
tion of elastic wave. Fig. 10 shows the side cross-sectional views (Y -Z plane) of
deformation region (a) at the instant of maximum loading and (b) after unloading,
predicted by Morse potential as well as (c) at the instant of maximum loading and
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(d) after unloading, predicted by tight-binding potential. The blue atoms at the top
and the lower sides represent those located on the top surface and at the interface
between atoms and CGMD1 nodes. At the instant of the maximum loading, as
shown in the Figs. 10(a) and 10(c), significant compressive deformation, denoted
by red color, can be seen just underneath the tip. Phenomenon of pile-up is also
clearly exhibited. After unloading, as shown in Figs. 10(b) and 10(d), the depth of
indent and region of compressive deformation are both significantly reduced due
to elastic recovery. The region of residual deformation becomes deeper and wider.
In addition, the deformation region predicted by tight-binding potential is slightly
larger than that predicted by Morse potential. In other words, material using tight-
binding potential behaves softer than Morse potential. It is worth to mention that
the computational time required for CGMD model takes only about 1/5 of the all-
atom MD model using the same potential function.

Conclusions
In this study, a simple and powerful method is proposed to derive the poten-

tial functions for different lattices of CGMD. The accuracy and reliability of these
potential functions for CGMD are validated by comparing to the corresponding
MD model through numerical simulation on nano-indentation process. Well con-
sistent results can be found between MD and CGMD models in various aspects,
such as force-displacement curves, deformation and dislocation patterns, charac-
teristics of RFD, as well as the estimated material properties, such as hardness and
Young’s modulus. In particular, computational time can be significantly saved by
using CGMD model without sacrifice of numerical accuracy. This study thereby
provides a methodology to decrease the gap of size between atomic simulation and
experimental work.
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