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Numerical solution of fractional derivative equations in
mechanics: advances and problems
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Summary
This report is to make a survey on the numerical techniques for fractional

derivative equations in mechanical and physical fields, including numerical integra-
tion of fractional time derivative and emerging approximation strategies for frac-
tional space derivative equations. The perplexing issues are highlighted, while the
encouraging progresses are summarized. We also point out some emerging tech-
niques which will shape the future of the numerical solution of fractional derivative
equations.

The frequency scaling power law of fractional order appears universal in phys-
ical behaviors of complex solids, fluids and soft matter (e.g., polymers, colloids,
emulsions, foams, biomaterials, rock layers, sediments, plastics, glass, rubber, oil,
soil, DNA) and is considered “anomalous” compared with those of the ideal solids
and fluids, in that the various gradient laws of physics, mechanics and chemistry
(e.g., Fickian diffusion, Fourier heat conduction, Darcy’s law) are broken. The par-
ticular examples are viscous dampers in seismic isolation of buildings, anomalous
diffusions in porous media and turbulence, power law dissipation of medical ultra-
sonic imaging, inelastic dissipative vibration of polymers and soil, just to mention
a few. The standard mathematical modeling approach using integer-order time-
space derivatives can not accurately reflect fractional power law, while the frac-
tional derivatives are instead found an irreplaceable modeling approach [1]. For
example, anomalous diffusion equation of fractional derivatives has been recog-
nized as a master equation in nature for multidisciplinary applications (e.g., trans-
port, relaxation, heat conduction) and is stated as [2]

∂ η s
∂ tη + γ (−Δ)μ/2 s = 0, 0 ≺ η ≤ 1, 0 ≺ μ ≤ 2 (1)

where s is the physical quantity of interest (e.g., temperature, density, pressure),
γ the corresponding physical coefficient, (−Δ)μ/2 represents the symmetric non-
local positive definite fractional Laplacian. Note that η and μ are in general real
numbers, and “fractional” in this letter is traditional misnomer in academic nomen-
clature. For the ideal solids and fluids (e.g., water, crystals), η=1 and μ=2; while
for complex fluids and solids, μ ranges from 0 to 2 and η is from 0 to 1.

Despite the fast growing research in fractional derivative modeling in recent
decades, little has been achieved in the developing efficient numerical algorithms
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for fractional order equation systems because of difficulties in numerical solutions
and less attention from scientific computing community. The respective numerical
modeling, however, is very important and in high demand by both scientific and
industrial practitioners, in particular, relating to biomechanics and geophysics. The
fractional derivative equations are known to be computationally expensive, since
they are non-local in nature and the numerical discretization will always produce a
full matrix equation. The traditional numerical techniques such as finite element,
finite difference, finite volume methods and step-by-step time integration schemes,
which are originally designed for integer-order partial differential equations, can
not well handle such challenging problems. Therefore, the innovative numerical
techniques are imperative. On the other hand, numerical analysis theories of sta-
bility and error estimate in this regard are still largely an open question and require
in-depth research. In addition, a careful design and implementation of numerical
software for the fractional order equations can not be found in existing commercial
codes.

For fractional time derivative equations, various standard finite-difference algo-
rithms have been developed in the recent decade based respectively on the Grunwald-
Letnikov definition, Riemann-Liouville definition, and Caputo definition of frac-
tional time derivative. Our study finds that the algorithm based on the Caputo
definition exhibits higher numerical accuracy and better stability. Recent develop-
ments such as explicit, implicit and Crank-Nicholson schemes are also noteworthy
and have been discussed in this report, Through transforming fractional differential
equations into Volterra integral equations, Volterra integral equation method can
avoid singularity of calculation and significantly simplifies computing complexity.

On the other hand, little research has been done on the numerical approxima-
tion of fractional derivative in space. We observe that the finite difference methods
based on the Grunwald-Letnikov definition appear more stable than those based
on Riemann-Liouville definition. The shift Grunwald-Letnikov approach performs
better than the former two, while the algorithm designed from the Riesz-Feller def-
inition can better reflect the physical significance of the equation model.

This survey also discusses some recent algorithms such as Homotopy pertur-
bation method, variational iteration method, Adomian decomposition method, ran-
dom walk model based on statistical process. These methods, however, have their
respective merits of high accuracy and stability and demerits of complex mathe-
matics and tricky skills to define parameters of iterative function.

In the conclusions of this report, we will point out the following emerging
techniques to tackle the bottleneck problems in the numerical solution of fractional
derivative equations:

• Preconditioning techniques to reduce memory requirements and CPU time
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for long history and large spatial domain problems such as fast multipole
method, panel clustering method, etc;

• Global meshfree methods for fractional derivative equations with complex-
shaped boundary such as radial basis function based on the new definition of
fractional Laplacian [3];

• Development of the standard software code for fractional-order systems.

It is expected that the in-depth and systematic study in numerical fractional
derivative equation systems will open new frontiers in scientific computing re-
search.
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