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Alternating iteration method in multi-connected crack
interactions

C. K. Chen1

Summary
A classical alternating iteration method is applied to evaluate the stress inten-

sity factors for a mixed oriented crack approaching semi-infinite plane or a straight
crack. Conventional Gaussian-Legedre quadrature scheme is employed for the nu-
merical integration in the crack vs. free boundary interacting problems; however,
averaged image stresses along crack surfaces are invoked to simplify the alternating
procedures in crack vs. crack interaction. Good correlation was achieved between
the iterated solutions and the available solutions in the literature. As crack approach
the free semi-infinite plane, mode I affect increases, however, maximum mode II
stress intensity factors may shift to the lower angle from its original extreme with
slant angle of 45◦. In the interaction between cracks, the stress intensity factor of
straight crack is enhanced for closely located cracks with a crack of aligned angle
in the range of β = 0◦ ∼ 20◦. Nevertheless, close proximity may jeopardize the
numerical convergence in the alternating iteration due to the inadequacy of conven-
tional integration scheme in dealing with numerical singularities.

keywords: Multi-Connected Domains, Crack, Semi-Infinite Plane, Stress In-
tensity Factors, Mechanics of Fracture

Introduction
Progress in the understanding of fracture has long been limited by incomplete

mathematical descriptions of conditions prevailing near a crack tip, particularly in
ductile materials. The techniques of mathematical formulation for crack problem
have received increasing amounts of attention from researchers in recent years,
and some important advances have been made [1]. The multiple-connected crack
problem is a special branch in mechanics of fracture. Nevertheless, such conditions
occasionally occur in the real world, e.g., multiple-crack on surface of pressure
vessels, transmission pipelines, and underneath crack in rail track etc., due to severe
stress corrosion or thermal fatigue or fretting fatigue.

A region is simply connected if any simple closed contour drawn in the region
can be shrunk continuously to a point without leaving the region, otherwise the
region is said to be multiply connected. As illustrates in Fig. 1(a), a simple con-
nected domain D in which an arbitrary closed curve C can be shrunk continuously
to a point without leaving D. Green’s theorem states that∮

C

(Pdx+Qdy) =
∫∫
D

(
∂Q
∂x

− ∂P
∂y

)
dxdy (1)
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Figure 1: 2-D examples of simply and multiply connected domains (a) simply con-
nected domain (b) multiply connected domain

where P and Q are analytic function in the plane of x − y bounded by a closed
contour C. When the condition

∂Q
∂x

− ∂P
∂y

= 0 (2)

is imposed, the line integral on the left side of Eq. (1) vanishes for every possible
closed contour C. The condition assures single-valuedness of the integral in sin-
gle connected domain. This exact differential of Eq. (1) provides the necessary
and sufficient compatibility in the displacement fields to be single-valuedness in a
simply connected domain. Fig. 1(b) present multiply connected domains in which
L′s are integrating contours and simply connected can be made by introducing cuts
i.e., imaginary boundary which are displayed as broader lines in Fig. 2 (b). For a
multiply connected domain the displacement compatibility may be necessary but
no longer be sufficient. To guarantee single-valuedness of displacement for an as-
sumed strain field, some auxiliary conditions shall be imposed. An (m + 1)-ply
connected region can be made simply connected by using m cuts. In the cut, sim-
ple connected region, m independent simple contours L1, L2, · · · , Lm can be drawn.
Each Li starts from one side of a cut, and ends on the other side of the same cut. All
cuts are thus embraced by the L′s. Then single-valuedness for displacement field
can be assure by imposing m supplementary conditions in Eq.(2.40).∮

L1

(Pdx+Qdy) =
∮
L2

(Pdx+Qdy) = · · ·=
∮
Lm

(Pdx+Qdy) = 0 (3)

Since only simply connected domains can be mapped conformally on a circle
in a one-to-one manner, the multiply connected domains problems need special
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considerations. However, in the multiply connected domains, there retains a simple
relation between mapping function and the Green’s function. As Green’s function
can be constructed for multiple connected domains, that at once suggests a gener-
alization of the integral equation approach. One such generalization has been made
by Mikhlin [2] who reduced the basic problems of plane elasticity in multiply con-
nected domains to the solution of certain Fredholm integral equations which are
described by the kernels depend on Green’s functions. Although Mikhlin’s equa-
tions serve admirably to establish the existence of solutions in multiply connected
domains, they possess the disadvantage of being dependent on the solution of an
auxiliary Dirichlett’s problem for Green’s function. It is essentially desirable to for-
mulate the relevant auxiliary equations which are account for the given boundary
conditions.

Semi-infinite boundaries, interfaces, and material imperfections (such as voids,
inclusions and dislocations) interacting with cracks may play important roles in the
understanding of fracture behavior in solids. Considerable attentions had been re-
ceived for the last few decades in this subject [3]. Mathematically speaking, these
interacting crack problems are within the topic of multi-connected regions in solid
mechanics. Many investigators had developed certain methods in evaluating crack
interaction problems, namely, pseudo-tractions methods [4], Laurent series expan-
sion [5], body force method [6] and integral transform [7]. These analyses are con-
ducted by formulating the complex stress functions and tailored the crack face trac-
tions to yield the correct net tractions for the overall problems. Most versions have
employed truncated polynomial series to expand the crack-face tractions, where
polynomial coefficients are found from a large system of linear algebraic equations.
Nevertheless, another powerful approach known as the distributed dislocation tech-
nique formulates crack interaction problems in terms of singular integral equations
with Cauchy kernels. Common solutions are utilized Gauss-Chebyshev quadrature
to obtain crack tip stress intensity factors. In addition, a monograph by Hills et al
[8] describes in detail for this distributed dislocation technique.

Schwarz’s Alternating Method
Since elastostatic problems in multiply connected domains request serious com-

putational difficulties, it is natural to attempt to reduce their solutions in terms of
sequence of problems in simple connected regions. The multiply connected do-
mains is displayed in Fig. 2, where the overlapping domains R1 and R2 each of
which is bounded by simple close contours C1 and C2. Let the portion of the con-
tour C1 bounding R1 lay within the region R2 be C′

1 and the part outside R2 be C1”.
Then C1 = C′

1 +C1”. The similar denotation is appled to contour C2 respectively.
The region R12 that is common to R1 and R2 is thus bounded by C′

1 and C′
2, while the

region R1+R2 has the enclosed curve C1”+C2” for its boundary. Schwarz achieved
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Figure 2: Overlapping of doubly con-
nected region

Figure 3: Intersection of doubly con-
nected region

the solution of Dirichlet problems by the superposition of a sequence of solutions
in simply connected domains. This treatment was called by himself namely the al-
ternating method [9]. This method can achieve whether the desired solution or not
mainly rely on the properties of the governing operator and the nature of assigned
boundary values. For Dirichlet problems, the governing operator is Laplacian and
the values defined on smooth boundary of the domain are continuous, and thus
Schwarz treatment yield the desired solution.

We now consider the Schwarz method for he doubly connected elastostatic
problem, where the operator is L(φ ,ϕ) and the boundary condition on C1 +C2 is
L(φ (t) , ϕ(t)) = f (t). To obtain the first approximation

(
φ (1),ϕ(1)) to (φ ,ϕ), We

can determine the approximated function φ (1),ϕ(1) in region R1 so that

L
(

φ (1) ,ϕ(1)
)

C1

= f (t)C′
1

(4)

To get the second approximation
(
φ (2) ,ϕ(2)), the solution in R2 is accom-

plished and that

L
(

φ (2),ϕ(2)
)

C2

= f (t)C2 −L
(

φ (1),ϕ(1)
)

C′
2

(5)

For the third approximation, the estimated solution in region R1 can be assumed
as

L
(

φ (3),ϕ(3)
)

C1

= f (t)C1 −L
(

φ (2),ϕ(2)
)

C′
1

(6)

and so forth. It was observed by Neumann that Schwarz method can be modified to
complete the solution for the domain R12 where R12 is the intersection of R1 and R2.
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Figure 4: Schematic draw-
ing of a slant crack inter-
acts with half plane

Figure 5: Geometric rep-
resentation for a crack
with a pair of split nor-
mal and shear forces on
the crack face

Figure 6: Geometric rep-
resentation for a semi-
infinite plane with split
normal and shear forces
on its face

As it is depicted in Fig. 3 for doubly connected domain, the intersection region R12

is formed by the infinite region R1 bounded by C1 with the finite region R2 interior
to C2.

Interactions of Crack vs. Semi-infinite
As denoted in the Schwarz’s alternating iteration algorithm, fundamental ana-

lytic solution is essentially required for each simply connected region respectively.
For the interacting problem of free semi-infinite plane and an internal crack illus-
trated in Fig. 4, analytical solutions for the crack and semi-infinite plane with a
concentrated pair of tensile and shear force demonstrated in Fig. 5 and 6 shall be
recognized in a prior in order to evaluate the interaction outcome in this interacting
question.

The Westergaard function is a powerful semi-inverse method for solving prob-
lems of plane elasticity with cracks. In addition, the Westergaard functions ZI and
ZII with split concentrated tensile force p and shear force q denoted in Fig. 5 can
be found as

{
ZI

ZII

}
=

1
π

{
p

−iq

} √
a2−ξ 2

(z−ξ )
√

z2 −a2
(7)

where a is the half crack length, ξgs the position that the split forces applied, and
the distance z=x+iy is measured from the center of the crack. Following the imple-
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mentation of Westergaard functions, the stress field can be derived as

σx =
[
Re(ZI)−yIm

(
Z′

I

)]
+

[
2Re(ZII)−yIm

(
Z′

II

)]
σy =

[
Re(ZI)+yIm

(
Z′

I

)]
+

[
yIm

(
Z′

II

)]
τxy =

[−yRe
(
Z′

I

)]
+

[−Im(ZII)−yRe
(
Z′

II

)] (8)

Fx =
1

πρ

√
a2 −ξ 2

r1r2

{
cos

(
φ +

θ1 +θ2

2

)

− y
ρ

[
sin

(
2φ +

θ1 +θ2

2

)
+

rρ
r1r2

sin

(
φ −θ +

3(θ1 +θ2)
2

)]}

Gx = − 1
πρ

√
a2 −ξ 2

r1r2

{
2sin

(
φ +

θ1 +θ2

2

)

+
y
ρ

[
cos

(
2φ +

θ1 +θ2

2

)
+

rρ
r1r2

cos

(
φ −θ +

3(θ1 +θ2)
2

)]}

Fy =
1

πρ

√
a2 −ξ 2

r1r2

{
cos

(
φ +

θ1 +θ2

2

)

+
y
ρ

[
sin

(
2φ +

θ1 +θ2

2

)
+

rρ
r1r2

sin

(
φ −θ +

3(θ1 +θ2)
2

)]}

Gy =
y

πρ2

√
a2 −ξ 2

r1r2

[
cos

(
2φ +

θ1 +θ2

2

)
+

rρ
r1r2

cos

(
φ −θ +

3(θ1 +θ2)
2

)]

Fxy =
y

πρ2

√
a2 −ξ 2

r1r2

[
cos

(
2φ +

θ1 +θ2

2

)
− rρ

r1r2
cos

(
φ −θ +

3(θ1 +θ2)
2

)]

Gxy =
1

πρ

√
a2 −ξ 2

r1r2

{
cos

(
φ +

θ1 +θ2

2

)

− y
ρ

[
sin

(
2φ +

θ1 +θ2

2

)
+

rρ
r1r2

cos

(
φ −θ +

3(θ1 +θ2)
2

)]}
(9)



Alternating iteration method in multi-connected crack interactions 169

in which Z
′

is dZ/dz, and Re and Im denote the corresponding real and imaginary
parts of the complex potential. Nevertheless, the explicit depiction of this stress
field can be presented in polar coordinate system [10], i.e. z=reiθ , and the resulting
explicit stress fields are shown in Eq. (9) and (10) where geometric parameters are
referred to Fig. 5.

σ c
x = pFx (a, r1, r1,ρ ,θ1,θ2,φ ,ξ)+qGx (a, r1, r1,ρ ,θ1,θ2,φ ,ξ)

σ c
y = pFy (a, r1, r1,ρ ,θ1,θ2,φ ,ξ)+qGy (a, r1, r1,ρ ,θ1,θ2,φ ,ξ)

τc
xy = pFxy (a, r1, r1,ρ ,θ1,θ2,φ ,ξ)+qGxy (a, r1, r1,ρ ,θ1,θ2,φ ,ξ )

(10)

Considering the stress field in semi-infinite plane of Fig. 6, there exists a basic
solution called the simple radial distribution or Boussinesq solution [11]. This
analytic solution is well known in the field of contact mechanics. However, the
stress field owing to a corresponding concentrated normal and shear fore is depicted
in Eq.(11)-(12).

σ c
x = pMx +qNx

σ c
y = pMy +qNy

τc
xy = pMxy +qNxy

(11)

Mx =
2x3

π
[
x2 +(y−η)2

]2 , Nx = − 2x2 (y−η )

π
[
x2 +(y−η )2

]2

My =
2x(y−η)2

π
[
x2 +(y−η)2

]2 , Ny = − 2(y−η )3

π
[
x2 +(y−η )2

]2 (12)

Mxy =
2x2 (y−η)

π
[
x2 +(y−η)2

]2 , Nxy = − 2x(y−η )2

π
[
x2 +(y−η)2

]2

(12)

Consider the interacting problem shown in Fig 7(a), Büeckner’s superposition
principle can be applied to access the stress intensity factors at both tip of the in-
clined crack. The original problem can be decomposed in to two subproblems as
demonstrated in Fig. 7(b) and 7(c). The traction components (p0

1, q0
1, p0

2 and q0
2) on

the crack surface and semi-infinite plane can be derived as{
p0

1 = σ∞ cos2 β , q0
1 = σ∞ sinβ cosβ

p0
2 = 0, q0

2 = 0
(13)

The subproblems can be solved when each boundary is considered as isolation and
loaded by unknown tractions including interaction effects. Two subproblems of
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Figure 7: Bückner’s superposition for a internal crack interacts with half plane

Fig. 7(b) and Fig. 7(c) can now be appropriately solved by alternating iteration
method, and are thus resolved respectively to free its own boundary tractions. In
each loading system, stress distributions on the imaginary position of cracks are
calculated with corresponding stress functions in Eq. (10) and Eq. (11) where
Green function characteristics can be easily applied for the corresponding stress
field with distributed loading. They are denoted as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σx =
a∫

−a
[p(ξ )Fx +q(ξ )Gx]dξ

σy =
a∫

−a
[p(ξ )Fy +q(ξ )Gy]dξ

τxy =
a∫

−a
[p(ξ )Fxy +q(ξ )Gxy]dξ

(14)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx =
∞∫

−∞
[p(η)Mx +q(η)Nx]dη

σy =
∞∫

−∞
[p(η)My +q(η)Ny]dη

τxy =
∞∫

−∞
[p(η)Mxy +q(η)Nxy]dη

(15)

Whereas only one boundary exists in each iterating cycle, the remaining boundary
is considered as an imaginary boundary. The stress field with negative traction
on each imaginary boundary is then imposed onto the existing stress field to free
boundary traction. In doing so, new image traction may be introduced to the once
image traction free boundary. These remaining image tractions are successively
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reduced by the repeated alternating iteration. A similar process is repeated until
the remaining image traction on both boundaries approach zero simultaneously.
There is an obvious advantage to this iteration method, in which the interaction
effect between boundaries has been particularly considered. The image tractions
on the free surfaces of the prospective crack can then be collected in every iteration
cycle. Therefore, the kthincrement of stress intensity factors at crack tip () owing to
mutual boundaries interaction can be integrated from the concentrated force results
provided in Tada et al [12] and display in Eq. (10), where and are the normal and
shear image stresses function distributed along the crack in the kth iteration.

ΔKk
I (±a) =

1√
πa

a∫
−a

pk
1(x1)

√
a±x1

a∓x1
dx1

ΔKk
II(±a) =

1√
πa

a∫
−a

qk
1(x1)

√
a±x1

a∓x1
dx1

(16)

Therefore the stress intensity factors at the crack tips are

{
KI(±a)
KII(±a)

}
=

⎧⎨
⎩

K0
I (±a)+∑

k
ΔKk

I (±a)

K0
II(±a)+∑

k
ΔKk

II(±a)

⎫⎬
⎭ (17)

where and are the stress intensity factors without considering the interaction. As
depicted in Eq. (18), they are{

K0
I (±a)

K0
II(±a)

}
=

{
σ∞ cos2 β

σ∞ sinβ cosβ

}
(18)

In the study, considerations are made on the interaction of an arbitrarily located
and oriented crack near a free-boundary. The test problems of rectilinear crack
normal to the free boundary are evaluated for different geometric parameters of
d/a. The integral of Eq. (14) and (15) are numerically evaluated with Gauss-
Legendre quadrature rule. The number of discrete points on crack and semi-infinite
plane are selected as 300 to secure the numerical accuracy. In addition, the integral
from is truncated to an interval of. Results are shown in Table 1, good agreement
meet with the singular integral approach of Cook and Erdogan [12]. However, the
accuracy decreases for crack in close proximity to the free boundary. In the cases of
slant crack approaching the free boundary, mode II effect turn out. As illustrated in
Fig. (8)∼(9), the interaction effect of crack and semi-infinite plane is enhanced for
inner tip, and KIA(KIIA) is always greater than KIB(KIIB). In addition, mode I effect
can be very perceptive in slant angle of β ≤ 40◦ for the close proximity between



172 Copyright © 2009 ICCES ICCES, vol.9, no.3, pp.163-178

Figure 8: Normalized KI for different
aligned crack interact with perpendicu-
lar free boundary

Figure 9: Normalized KII for different
aligned crack interact with perpendicu-
lar free boundary interact with perpen-
dicular free boundary

crack and free edge. However, the sensitivity of close proximity effect in mode I
lost for the aligned angle larger than 40◦, and the deviation between KI and KII are
small. KIB(KIIB) retains the maximum value in the range of 30◦ ∼ 45◦, nevertheless,
the close proximity adjust the maximum value of stress intensity factor toward to
the 30◦. Furthermore, there is no difference for KIB(KIIB) in 0◦ ∼ 30◦ and 45◦ ∼
90◦ for any close proximity parameters (d/a). The alternating iteration may fail
to converge for the cases of and . The reason for this trouble may result from
the conventional numerical integration scheme to treat mathematical singularity
unsatisfactorily. For close spaced singularities, thus the degree of polynomials in
numerical integration must be increased radically to achieve reasonable numerical
accuracy. Consequently, this insufficiency ceases this alternating method in cases
of too close proximity problems.

Interactions of Two Equal Length Cracks
Similar approach is applied in the estimation for two cracks interaction. As

denoted in Fig. (10), Büeckner superposition is employed again to separate the
multi-domain into two single regions. Nevertheless, a modified alternating method
was examined in the iteration calculation. The practice is simplified by using the
averaged traction along the crack instead of averaged traction on the existing crack.
The averaged traction for the kth iteration are simply integrated along the crack
length. i.e., simplified iteration method, the traction on the imaginary site are as-
sumed to be only reflected from the averaged traction on the existing crack. The
averaged traction for the kth iteration are simply integrated along the crack length.
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Table 1: Stress intensity factors for a rectilinear crack normal to a semi-infinite
plane

Cook and Erdogan [12] Present results
d
a

KI(−a)
σ ∞√πa

KI
KI(a)

σ ∞√πa
KII

KI(−a)
σ ∞√πa

KI
KI(a)

σ ∞√πa
KII

1.01 1.330 3.720 1.326 3.465
1.05 1.254 2.159 1.255 2.282
1.10 1.211 1.759 1.210 1.769
1.15 1.183 1.575 1.182 1.573
1.20 1.163 1.464 1.161 1.461
1.25 1.146 1.388 1.145 1.385
1.50 1.097 1.204 1.095 1.201
2.00 1.054 1.091 1.052 1.089
5.00 1.009 1.011 1.006 1.008

Figure 10: Büeckner’s superposition for the problem of two interacting cracks
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i.e.,using an integral sequence of Gaussian-Legedre quadrature scheme in the alter-
nation iteration. In this simplified iteration method, the traction on the imaginary
site are assumed to be only reflected from the averaged traction on the existing
crack. The averaged traction for the kth iteration are simply integrated along the
crack length. i.e.,

The Westergaard functions [11] for a crack with averaged traction (p̂) and (q̂)
can be assessed as {

p̂k
j

q̂k
j

}
=

1
2a j

{∫ a j
−a j

pk
j(x j)dx j∫ a j

−a j
qk

j(x j)dx j

}
, j = 1,2 (19)

averaged traction (p̂) and (q̂) can be assessed as

In the case of a polar coordinate system as referred to in Fig. 5, The stress
distributions near the tip of a so called Griffith crack, which is loaded by a set of
uniform normal and shear pressures (p̂ and q̂), could be derived from Eqs (19) and
(20). However, the solution was also obtained using Fourier integral transform by
Sneddon [10].The stress distributions ahead the tip of a pressurizing Griffith crack
tip can be formulated as {

ZI

ZII

}
=

{
p̂

−iq̂

}
(

z√
z2 −a2

−1) (20)

to in Fig. 5, The stress distributions near the tip of a so called Griffith crack, which
is loaded by a set of uniform normal and shear pressures (p̂ and q̂), could be derived
from Eqs (19) and (20). However, the solution was also obtained using Fourier
integral transform by Sneddon [10].The stress distributions ahead the tip of a pres-
surizing Griffith crack tip can be formulated as

σyy (r,θ ) = p̂ [−1+A(r,θ)−B(r,θ )]+ q̂ [2C (r,θ)−D(r,θ)]
σxx (r,θ ) = p̂ [−1+A(r,θ)+B(r,θ )]+ q̂D(r,θ)
τxy (r,θ ) = p̂D(r,θ)+ q̂D [−1+A(r,θ)−B(r,θ)]

(21)

where

A(r,θ) =
r√
r1r2

cos

(
θ − θ1 +θ2

2

)

B(r,θ) =
ra2

(
√

r1r2)3 sinθ sin
3(θ1 +θ2)

2

C (r,θ) =
r√
r1r2

sin

(
θ − θ1 +θ2

2

)

D(r,θ) =
ra2

(
√

r1r2)3 sinθ cos
3(θ1 +θ2)

2

(22)
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Figure 11(a): Variation of mode I inten-
sity factors at the inner tip of crack-1 in
Fig. 2

Figure 11(b): Variation of mode II in-
tensity factors at the inner tip of crack-1
in Fig. 2

This modified model can significantly increase the computation efficiency in
the iteration. The values of the stress intensity factors in this modified iteration
method are accessed by Eq. (16) sequentially. Table 2 lists the iterated stress in-
tensity factors for two identical collinear cracks which are arranged in different
configurations. The error becomes noticeable for closely located cracks. This cal-
culation error may be attributed to the highly non-linear interaction between cracks,
which may destroy the linear average assumption as depicted in Eq. (19) in each
iterative cycle.

Two oriented equal length cracks with different aligned angles, as shown in
Fig. 10, are iterated by employing the proposed alternating iteration procedure.
The changes in the stress intensity factors which are induced by the interaction
of cracks, ΔK∗

I and ΔK∗
II , are evaluated as a specimen with different configurations.

The results in Fig. 11(a) reveal that a strong interaction effect exists between cracks
which are located closely. It also depicts that a smaller aligned angle β may intro-
duce a stronger interaction effect on K∗

I . Fig. 11(b) shows that the induced ΔK∗
II

at the inner tip of crack 1 is slightly conducted. A relative large variation of ΔK∗
II

is found as the cracks are aligned with an angle β between 10◦ ∼ 40◦. Calculated
results indicate that the interaction effect on the mode II SIF is not such significant
as it does on the mode I SIF. However, the interaction effect on K∗

II still can not
be ignored as cracks are located closely. A high K∗

II could produce an out-of-plane
growth for a straight crack, i.e., crack kinking. A similar variation of the ΔK∗

I was
found at the inner tip of crack-2 as depicted in Fig. 12(a). The stress intensity factor
K∗

I is enhanced for a slant angle of β ′s. The induced magnitude of ΔK∗
I at the inner
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Figure 12(a): Variation of mode I inten-
sity factors at the inner tip of crack-2 in
Fig. 2

Figure 12(b): Variation of mode II in-
tensity factors at the inner tip of crack-2
in Fig. 2

tip of crack-2 tends to be the greatest among those existing crack tips. Nevertheless,
the sum of the up total stress intensity factors at the crack tips show that the inner
tip of crack-1 may be the most suspicious fracture initiation site. The results in Fig.
12(b) delineate that the variation of ΔK∗

II at the inner tip of crack 2 is shielded for
a smaller aligned angle case. However, the interaction between the cracks has only
induced a little influence on the stress intensity factor K∗

II . A similar interaction
effect on the outer crack tips of crack 1 and 2 is found. However, the induced ΔK∗

I
and ΔK∗

II at the outer crack tips are far less than those induced at the inner tips. Re-
sults reveal that attention should be drawn to the inner tip of crack-1, because it is
apt to fail in the mix oriented configuration. The stress intensity factor is enhanced
for closely located cracks with an aligned angle in the range of β = 0◦ ∼ 20◦. The
mode II condition is slightly induced for crack-1 by the alignment of crack-2.

Discussions and Conclusions
An alternating iteration method has been applied to calculate the stress inten-

sity factors of a oriented crack when approaching the obstacle of straight crack or
free boundary. Fair good agreements can be drawn if the interacting subjects are
not in close nearness. However, conventional integration scheme using orthogo-
nal polynomial expansion is not good enough to compensate the radical stress field
increment for two approaching stress singularities. But the instinct nature of al-
ternating iteration method for multiple connected domains is, nevertheless a good
scheme to deal with interacting boundary problems in solid mechanics. As internal
crack interacts with free boundary, mode I increase when crack approach the free
semi-infinite plane, however, maximum mode II stress intensity factors shift to the
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Table 2: Stress intensity factors for two collinear aligned cracks
Stress Intensity Factors

Iteration method Analytical method
2a/d with average traction Tada’s Handbook [13]

K∗
IA K∗

IB K∗
IA K∗

IB

0.05 1.0003 1.0003 1.0003 1.0003

0.1 1.0012 1.0013 1.0012 1.0013

0.2 1.0046 1.0057 1.0046 1.0056

0.3 1.0102 1.0138 1.0102 1.0138

0.4 1.0179 1.0272 1.0179 1.0272

0.5 1.0279 1.0479 1.0280 1.0480

0.6 1.0409 1.0802 1.0409 1.0804

0.7 1.0577 1.1325 1.0579 1.1333

0.8 1.0806 1.2258 1.0811 1.2289

0.9 1.1159 1.4358 1.1174 1.4539

0.95 1.1455 1.7058 1.1490 1.7689

dimensionless stress intensity factors for the inner tip
is K∗

IA and that for the outer tip is K∗
IB

lower angle from its original extreme of aligned angle . Mis-oriented dual-crack
problems were also investigated with average traction reflecting simplification in
this alternating iteration method. Results indicate that the accuracy of this modi-
fied alternative iteration method is dependent on the distance between the cracks.
Close proximity may delimit the accuracy of the elastic interaction between cracks.
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