
Copyright © 2009 ICCES ICCES, vol.9, no.3, pp.130-141

Analytical solution for estimation of
temperature-dependent material properties of metals

using modified morse potential
Kuo-Ning Chiang1, Chan-Yen Chou2, Chung-Jung Wu2

Chao-Jen Huang2, Ming-Chih Yew2

Summary
An atomic-level analytical solution, together with a modified Morse potential,

has been developed to estimate temperature-dependent thermal expansion coeffi-
cients (CTE) and elastic characteristics of bulk metals. In this study, inter-atomic
forces are considered as a set of anharmonic oscillator networks which can be de-
scribed by Morse potential, while the material properties can be defined by these
inter-atomic forces; when temperature increases, the vibration of the anharmonic
oscillator causes the phenomenon of temperature-dependent material properties.
The results of analysis showed that the original Morse potential can give a reason-
able prediction of the thermal expansion coefficients and elastic constants of met-
als at room temperature; however, it has difficulties in giving an accurate result at
low and high temperatures. Therefore, to overcome the deficiency, a temperature-
dependent modified Morse potential is developed and validated with various met-
als.
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Introduction
Potential functions are developed to simplify the complexity of quantum mechanics-

based computation such as ab initio calculations. These functions return a value of
energy based on the conformation of the molecules or atoms. Some potentials
such as Morse potential [Girifalco and Weizer (1959)] and embedded-atom method
(EAM) [Daw and Baskes (1984)] have been proposed to describe the potential en-
ergy of metal atoms. They have been applied successfully in a number of studies
to estimate the material properties of metals at room temperature in many articles
[Chiang, Chou, Wu and Yuan (2006); Foiles and Daw (1988); Jeng and Tan (2002);
Park, Cho, Kim, Jun and Im (2006); Theodosiou and Saravanos (2007)]. However,
there are some difficulties in predicting the thermal and mechanical behaviors of
metals when the temperature condition deviates from room temperature.

Chemical bonds are also treated as anharmonic oscillators. The summation
of the potential and kinetic energy of the oscillator remains a constant and is as
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a function of temperature. The vibrate-kinetic energy reaches the maximum sta-
tus as the stretched/compressed potential energy is in the minimum state, the same
way that the potential energy reaches the maximum status as the kinetic energy
is in the minimum state. Temperature is the physical quantity that implies atomic
vibration, resulting in the shift of the anharmonic vibration center when the temper-
ature increases. Likewise, it causes the phenomenon of thermal expansion, which
is a temperature-dependent behavior. Moreover, other material characteristics of
solids, such as elastic constant and heat capacity, also vary with temperature due
to the nature of anharmonic vibrations. Furthermore, molecular or atomic bond-
ing strengths are presented after taking the differentiation of the potential function.
Bonding strengths are the key factors of the mechanical properties of bulk materi-
als.

Based on the simple-spring-single-lattice (SSSL) calculation [Chiang, Chou,
Wu and Yuan (2006)], this study presents the development of an atomic-level an-
alytical solution together with a modified Morse potential are developed in esti-
mating temperature-dependent thermal expansion coefficients (CTE) and elastic
characteristics of bulk metals. A set of metal elements with its Morse potential
parameters is investigated. This model provides an efficient and rapid way for
evaluating material characteristics once the parameters of potential function and
temperature are determined. At the same time, a temperature-dependent modified
Morse potential is also developed and validated with various metals.

Temperature-Dependent Thermal Expansion Coefficient Calculation
Considering the diatom system shown in Fig. 1, two atoms are bonded together

by an atomic pseudo spring with proper potential energy. The atoms are stationary
at absolute zero, and they start to vibrate as temperature increases. At tempera-
ture T , the disturbing (increased) energy ΔE of one-dimensional diatom motion is
described as 1/2kBT , where kB represents Boltzmann’s constant. ΔE represents
the disturbing energy of diatom vibration with the repulse and attractive vibration
amplitudes r1 andr2, the average distance of this diatom system changes from r0

to (r2 − r1)/2 when the temperature increases from T1 K to T2 K. In comparison
with experimental data, T1 is set to be 0 K in this study. Therefore, the thermal
expansion coefficient of the diatom system is described as following:

CT E =
(r2−r1)

2 − r0

r0(T2 −T1)
(1)

In this study, Morse potential function, which illustrates the bond strength of
the diatom system and which has been used for more than 70 years, is adopted.
It can describe the relationship of potential energy versus diatom distance, as well
as depict the relationship of bond strength versus diatom distance. The potential
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Figure 1: A sketch of CTE calculation
model
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Figure 2: The calculated coefficient of
thermal expansion of metals with exper-
imental validation

energyE(ri j) of two atoms i and j separated by a distance ri j is expressed as fol-
lowing:

E (ri j) = D
[
e−2α(ri j−r0)−2e−α(ri j−r0)

]
(2)

where D is the dissociation energy of the diatom system, r0 is the equilibrium
length, and α is a constant with the dimension of reciprocal distance. By applying
Eq. (2), one can determine the disturbing energy ΔE when temperature increases
from 0 K to T K as shown in Eq. (3):

D
(

e−2α(ri j−r0)−2e−α(ri j−r0)
)

+D =
1
2

kBT (3)

By solving Eq. (3), the vibration amplitudes r1 and r2 are determined; there-
fore, the CTE defined by Eq. (1) becomes

r1 =
αr0− ln

(
1−

√
kBT
2D

)

α
, r2 =

αr0 − ln

(
1+

√
kBT
2D

)

α
(4)

CT E =
−

[
ln

(
1+

√
kBT
2D

)
+ ln

(
1−

√
kBT
2D

)]

2αr0T
(5)

Equation (5) shows that the coefficient of thermal expansion of metals can be
estimated simply by three Morse potential parameters, namely, α , D, r0, and the
disturbing energy which is represented in the form of temperature T . Girifalco and
Weizer [Girifalco and Weizer (1959)] calculated the Morse potential parameters
for cubic metals using the experimental values of the energy of vaporization, the
lattice constant, and the compressibility. Table I shows the Morse parameters for
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cubic metals applied in this study and presents two groups of the metallic lattice
structure that can be categorized. One is the body-centered cubic (BCC) structure
including Na, K, Cr, Fe, Rb, Mo, Cs, Ba, and W, while the other is the face-centered
cubic (FCC) structure including Al, Ca, Ni, Cu, Sr, Ag and Pb.

In Girifalco’s potential model, the dissociation energy is explicitly associated
with two energy equations in equilibrium, and one experimental compressibility
relation. Therefore, the Morse potential is treated as a semi-empirical formulation.
After substituting Morse potential parameters of Table I into Eq. (5), the CTE
of metals at room temperature is obtained as shown in Fig. (2). The calculated
CTE shows reasonable agreement with the experimental one [Davis (1990); Gray
(1973); Lide (2002)].

Applying further Eq. (5) to calculate the CTE at different temperatures, the
results become insensitive to temperature and the prediction does not match ex-
perimental results anymore. Figure (3) shows the comparison of the temperature-
dependent thermal expansion coefficients of Fe, Al, Ag, Ca, and Ni metals. In
reality, the CTE of metals is much smaller at a low temperature than that at room
temperature, and CTE becomes larger when the temperature is close to the melting
point. This is due to the changes in bond strength and shifting of the average posi-
tion of atomic vibration. However, in the analytical solution using original Morse
potential, the calculated CTE is insensitive with temperature which does not fit the
natural thermal behavior of metals. Therefore, a modified Morse potential function
with temperature-dependent parameters is a must in describing the thermal expan-
sion behavior of metals.

There are two terms in the original Morse potential function, one represent-
ing the attractive energy and the other representing the repulsive energy between
atoms. In order to fully describe the thermomechanical characteristics, it is deduced
that a temperature-related parameter should be included in the Morse potential. A
modified Morse potential is developed as following:

E (ri j) = D
[
e−2α(ri j−r0)−A(T )e−α(ri j−r0)

]
(6)

In Eq. (6), the constant of the attractive term is replaced by a temperature-
related function A(T). After substituting the modified Morse potential into the
energy equation ΔE = 1/2kBT , the solved vibration amplitudes are described as
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Table 1: The Morse potential parameters constructed by Girifalco and Weizer1

Metal r0 = Å D (eV) α = Å-1
Na 5.336 0.06334 0.58993
K 6.369 0.05424 0.49767
Cr 2.754 0.4414 1.5721
Fe 2.845 0.4174 1.3885
Rb 7.207 0.04644 0.42981
Mo 2.976 0.8032 1.5079
Cs 7.557 0.04485 0.41569
Ba 5.373 0.1416 0.65698
W 3.032 0.9906 1.4116
Al 3.253 0.2703 1.1646
Ca 4.569 0.1623 0.80535
Ni 2.78 0.4205 1.4199
Cu 2.866 0.3429 1.3588
Sr 4.988 0.1513 0.73776
Ag 3.115 0.3323 1.369

following:

r1 =
αr0− ln

(
1

4D ∗
(

2DA(T )+2

√(
D2A(T )2 +2DkBT −4D2A(T )+4D2

)))

α

r2 =
αr0− ln

(
1

4D ∗
(

2DA(T )−2

√(
D2A(T )2 +2DkBT −4D2A(T )+4D2

)))

α
(7)

In this study, the second-order polynomial equation is applied to determine the
undefined function A(T ).

E (ri j) = D
[
e−2α(ri j−r0)−(

a0 +a1T +a2T 2)e−α(ri j−r0)
]

(8)

where a0, a1 and a2 are curve-fitted by the experimental data [Davis (1990); Gray
(1973); Lide (2002)], and Table II shows the parameters of the modified Morse
potential function.

In the case of the fitting result of aluminum element, the value of A(T) slightly
varies from 2.006 to 1.94 when different temperatures are applied. Figure (4) de-
picts the calculated CTE of Fe, Al, Ag, Ca, and Ni metals with modified Morse po-
tential. Thus, comparing the original Morse potential with the modified Morse po-
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Figure 3: Comparison of temperature-
dependent CTE between original Morse
potential and experiments
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Figure 4: Comparison of temperature-
dependent CTE between modified
Morse potential and experiments

tential, it is observed that the modified Morse potential addresses the temperature-
dependent thermal expansion problem of metals.

For an anharmonic oscillator shown in Fig. 1, it is difficult to calculate the
average position. In this study, the assumption of (r2− r1)/2 being the average po-
sition, which is not far away from the exact average position of a Morse oscillator,
is applied to simplified the complexity of the problem. One can get a more accurate
solution through this procedure once the true average position is obtained.

Temperature-Dependent Elastic Constant Calculation
Based on the SSSL model [Chiang, Chou, Wu and Yuan (2006)], an extensive

study is proposed herein to investigate the temperature-dependent elastic constant
of metals. This model assumes that the average position of atomic vibration of
solid elements can be treated as the positions that achieve minimum total energy.
All interatomic forces, which are described by Morse potential function, can be
transferred into atomic springs from metallic lattice structure. Through the trans-
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Table 2: The parameters of modified Morse potential
Element a0 a1 a2

Na 2.01921 16.696*10−5 10.968*10−8

Cr 2.00379 3.7781*10−5 -4.7839*10−8

Fe 2.00432 0.63508*10−5 -4.5863*10−8

Mo 2.001177 2.2493*10−5 -2.2123*10−8

Ba 2.002339 25.681*10−5 -24.736*10−8

W 2.00083 1.3114*10−5 -1.0097*10−8

Al 2.00379 0.64463*10−5 -10.8*10−8

Ca 2.007344 11.901*10−5 -8.3558*10−8

Ni 2.005466 0.10218*10−5 -5.0596*10−8

Cu 2.000231 1.0371*10−5 -4.7982*10−8

Ag 2.003773 -1.7284*10−5 -5.3719*10−8

Pb 2.002602 -4.673*10−5 -7.2574*10−8

formation, the originally discrete atomic structure can therefore be analyzed in the
continuum level. Moreover, with the assumption of symmetric boundary condi-
tions, the SSSL model can be considered as an infinitely repeated cubic structure,
which assumes that the mechanical behavior is close to the bulk material.

Morse potential, as shown in Eq. (1), is adopted to describe the relationship of
potential energy versus the distance of the diatom system, as well as to depict the
relationship of bond strength versus diatoms distance. The force constants or bond
strengths k(ri j)of the atomic springs are the second derivative of potential energy
E(ri j), as shown in Eq. (9)

k (ri j) =
d2E (ri j)

dr2
i j

= 2α2D
[
2e−2α(ri j−r0)−e−α(ri j−r0)

]
(9)

Figure (5) shows the atomic spring network of BCC and FCC lattice. In the
BCC structure, there are one body-centered atom and eight corner atoms in a single
cubic lattice. With the assumption of symmetric boundary conditions, six virtual
nodes are illustrated in the center of the edge surfaces to evaluate the interatomic
forces between adjacent body-centered atoms. The SSSL model is therefore il-
lustrated including one body-centered node B, eight corner nodes, C1 to C8, six
virtual nodes, V1 to V6, and three sets of atomic springs, as shown in Fig. 5(a).
The spring set 1, BC1 to BC8, is the center-corner spring which represents the in-
teratomic forces between the body-centered atom and the eight corner atoms with
initial lengths of r0. The spring set 2, C1C2 to C7C8, is the corner-corner spring
which represents the interatomic forces between adjacent corner atoms with initial
lengths of 2r0 cosθ , where θ represents the angle between the center-corner spring
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and corner-corner spring. The spring set 3, BR1 to BR6, is the center-center spring
which represents the interatomic forces between adjacent body-centered atoms with
initial lengths of r0.

Similarly, in FCC structure, the SSSL model is illustrated including the face-
centered nodes F1 to F6 and the corner nodes C1 to C8 as shown in Fig. 5(c).
The interatomic forces in the FCC structure are transferred into four sets of atomic
springs. The spring set 1, F1C1 to F6C8, is the center-corner spring which represents
the interatomic forces between the adjacent face-centered atoms and corner atoms
with initial lengths of r0. The spring set 2, F1F2 to F5F6, is the A-center spring
which represents the interatomic forces between the adjacent face-centered atoms
with initial lengths of r0. The spring set 3, C1C2 to C7C8, is the corner-corner spring
which represents the interatomic forces between the adjacent corner atoms with
initial lengths of 2r0cosθ , where θ represents the angle between the center-corner
spring and corner-corner spring. The spring set 4, F1F6, F2F4, F3F5, is the C-center
spring which represents the interatomic forces between the across face-centered
atoms with initial lengths of 2r0 cosθ .

By applying a small prescribed extension on the top nodes of SSSL model, the
elastic constants of cubic metals are calculated in the following equations.

EBCC =
2α2D

[
8+15

(
2e

−2
(

2√
3
−1

)
αr0 −e

−
(

2√
3
−1

)
αr0

)]
√

3r0

EFCC =
10α2D

[
1+

(
2e−2(

√
2−1)αr0 −e−(

√
2−1)αr0

)]
√

2r0

(10)

Equation (10) shows that the elastic constant could be simply estimated by
three Morse potential parameters, namely, α , D and r0. The calculated elastic
constant of SSSL models are shown in Fig. 6 where the Morse potential parameters
α , D and r0 in Table 1 are adopted. To compare with the bulk values [Gschneider
(1964); Kaye and Laby (1995); Lide (2002)], the elastic constants of most metals
obtained by SSSL model are close to the bulk value.

In Morse potential, the parameter r0 indicates the diatom distance at the lowest
energy state, as well as the distance of vibration center of diatoms. When the tem-
perature increases, the anharmonic oscillators between atoms start to vibrate. The
distance of vibration centers r̄0 becomes larger which means the bond strengthk(ri j)
varies with temperature. Equation (4) shows vibration amplitudes r1 and r2 of
Morse oscillator at temperature T , and we assume the diatom distance of vibration
centers is r̄0 = (r1 + r2)/2. After substituting r̄0 into Eq. (10) to replace the pa-
rameter r0, temperature-dependent elastic constants of cubic metals are evaluated.
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In this study, both original Morse function and aforementioned modified Morse
function are taken into account in temperature-dependent elastic constant calcula-
tion. In the elastic constant calculation, all Morse parameter sets shown in Table
I were analyzed. Taking Cu (FCC structure) and Fe (BCC structure) as examples,
the calculation results as against the experimental data [Ledbetter (1977); Rayne
and Chandrasekhar (1961)] are shown in Figure (7) and (8). The results show that
an agreement is achieved on trends between the predicted elastic constants and the
corresponding experimental data. Moreover, the results of the modified Morse po-
tential do not show obvious difference from the original Morse potential.

The reason deduced is that the modified Morse potential is applied to adjust
the material properties of CTE, which is much sensitive to temperature than elastic
constant. In CTE model, The CTE is determined by the average position of Morse
oscillator as shown in Eq. 5. In SSSL model, the elastic constant calculation is
the combination of the second differentiation of Morse potential, as shown in Eq.

Figure 5: Simple-spring-single-lattice model construction. (a) The SSSL model for
the BCC structure (b) Sketch of reaction force calculation for the BCC structure (c)
The SSSL model for the FCC structure (d) Sketch of reaction force calculation for
the FCC structure
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Figure 6: The calculation results of the SSSL model for Girifalco’s potential pa-
rameter set

10. The average position of Morse oscillator varies dramatically when the potential
energy from zero to the dissociation energy D. However, the variation of the second
differentiation of Morse potential is not as much as the average position.

Conclusion
In this study, two temperature-dependent material properties of cubic metals,

the thermal expansion coefficient and the elastic constant, were analyzed using an-
harmonic oscillator networks; several closed-form analytical equations were devel-
oped. The interatomic forces are treated as anharmonic oscillators; the originally
discrete atomic structure can therefore be analyzed in the continuum level.

In the investigation of thermal expansion coefficient, the result showed that the
closed-form solution using the original Morse potential can give a good prediction
of the CTE of metals at room temperature; however, it is not adequate to use its
temperature-insensitive parameters to predict the CTE at low temperature and at
high temperature; a modified Morse potential is therefore proposed and developed
to describe the nature of the thermomechanical behavior of metals. The calculated
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Figure 7: The calculation results of
temperature-dependent elastic constant
of Cu metal
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Figure 8: The calculation results of
temperature-dependent elastic constant
of Fe metal

CTE using modified Morse potential can meet the experimental data quantitatively.

In the investigation of elastic constant, an agreement on trends between the pre-
dicted elastic constants and the corresponding experimental data is also achieved.
Besides, different from CTE calculation results, the results of elastic constant calcu-
lation show that there is no significant discrepancy between original Morse poten-
tial and modified Morse potential application. Though the SSSL-based model much
reduces the complexity of the real bulk metals including their defects, dislocations,
etc., it provides a feasible way to estimate temperature-dependent properties within
a reasonable range.

In the case of SSSL computation, after the closed-form solution is established,
both original Morse potential and modified Morse potential can be taken into con-
sideration immediately. Through the analyzing procedure, one can make a prompt
estimate on the material properties such as the CTE and elastic constant, once the
potential function and lattice structure are determined.
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