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On the collapse condition for a thin-plate subjected to
axial compression

S. Ozaki1, D.H. Chen2

Summary
In the present study, the collapse behavior of a thin-plate subjected to axial

compression is investigated parametrically using the finite element method. It is
revealed that the axial collapse of the plate, which has various hardening charac-
teristics, is induced by two dominant factors: the stress limitation of the material
and the limitation of in-plane deformation at the side edges of the plate. Then, a
simplified collapse condition, which corresponds to two modes, is derived based
on the plastic buckling theory and the effective width concept, and the validity of
the simplified collapse condition is then verified by the comparison of numerical
results obtained using various material and geometric properties.

Introduction
Thin-walled members, such as those constructed of high tensile strength steel

sheets (HTSSS) and Aluminum alloy, are used in a steadily widening range of fields
because newer designs require high-stiffness and lightweight structures. Thus, it is
becoming ever more important to develop methods for evaluating the axial collapse
load of plate, which is a basic component of thin-walled members, in the concep-
tual designing phase. In the present study, we examine the axial collapse mode of
plates having various hardening characteristics and dimensions using finite element
analysis. The simplified collapse conditions are derived based on the combination
of the plastic buckling theory [1] and Karman’s effective width concept [2].

Numerical Analysis Method
In the present study, the commercial FEM analysis package MSC.Marc [3] was

used to simulate the elastoplastic deformation of a plate under axial compression,
as shown in Fig. 1. The plate was discretized using 3,750 four-node quadrilateral
thickness shell elements (Element type 75). The top and bottom of the plate were
completely constrained, and the axial compression was applied from the top by
forced displacements. The boundary condition of side edges (y= 0, b) was set to
the simply supported condition. The width of the plate was set to b= 50 mm, and
its length and thickness were set to 6b and t, respectively. The updated Lagrange
method was used to formulate the geometric nonlinear behavior.

The plate used in the analysis was assumed to be constructed of a homogeneous
and isotropic elastoplastic material and was assumed to conform to the von Mises
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Figure 1: Analyzed model

yield criterion and to be well approximated by the bilinear (or trilinear) stress-strain
relations and the Ludwik’s hardening laws described by the following stress-strain
relations:

σy = σ0 +
EEh

E −Eh
ε̄ p, (1)

σy = σ0 +a(ε̄ p)n, (2)

where σy is the yield stress, E is Young’s modulus, Eh is the work-hardening coeffi-
cient, ε̄ p is the equivalent plastic strain, and a and n are material constants describ-
ing the work-hardening behavior. In the present study, we assume the Poisson’s
ratio to be ν = 0.3, Young’s modulus to be E= 72.4 GPa, and the initial yield stress
to be σ0 = 72.4 MPa. The influence of the material properties on the axial collapse
of a plate was investigated in terms of Eh, a and n.

Effective Width Concept and Collapse Modes
As has been shown by many researchers, plates can carry loads considerably in

excess of the buckling loads because plates have a stable postbuckling behavior by
side edge conditions. A method based on the concept of effective width proposed
by Karman [2] is the most concise technique that can explain the collapse behavior
of plates in postbuckling. In order to simplify design calculations, Karman ignored
the center of the buckled plate and considered two fictitious strips of width be f f (the
effective width), which carry a uniform stress. In addition, he assumed that the
elastic-perfectly plastic plate having a width of be f f collapses when the buckling
stress is equal to the yield stress σ0. Thus, he derived a theoretical formula for the
effective width and the collapse stress σcol , as follows:

be f f

b

√
σ e

buc

σ0
=

√
kπ2E

12(1−ν2)σ0

( t
b

)
(3)
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σcol =
be f f

b
σ0. (4)

However, based on the above-mentioned assumption, in order to evaluate the ef-
fective width at collapse, the stress limitation σ0 must be known. That is, the
conventional effective width concept cannot be applied to materials having a work-
hardening property and a large t/b dimension, in which plastic buckling occurs.

In addition, Hopperstad et al. [4] proposed a sophisticated method of coupling
the plastic buckling theory [1] and the effective width concept [2]. In their method,
the plastic strain increment on the edge of both sides (the effective width) is as-
sumed to be an input value, and the corresponding axial stress is calculated from
the constitutive relation. By assuming the uniaxial stress state, the collapse stress
is given as follows:

σcol =
be f f (εedge)

b
σedge(εedge) (5)

σedge = Esεedge, dσedge = Cepdεedge (6)

These equations show that the effective width be f f and the stress at both sides of
each step are functions of plastic strain εedge. Although evaluation of the effective
width of each step requires knowledge of the stress limitation, they assumed the
following plastic buckling stress for determining the stress limitation:

σ p
buc = ησ e

buc = η
kEπ2

12(1−ν2)

(
t

be f f

)2

= σedge, (7)

where η is the function of the secant modulus Es and the tangential stiffness Cep.
Calculating Eqs. (5)-(7) repeatedly reveals that the collapse stress occurs as a result
of the balance of the reduction of the effective width and the stress increases.

As is evident from the above-mentioned discussion, the stress limitation is
needed in order to employ the effective width concept. However, the collapse stress
occurs after buckling, even if there is no stress limitation (e.g., bilinear hardening
law). We then consider another factor of plate collapse using Fig. 2. Figure 2(b)
shows the relationships between the compressive load P and the displacement u
with the geometric property of t/b = 0.02 and with the material properties shown in
Fig. 2(a). Figure 2(a) shows the trilinear stress-strain relations with same material
properties of σ0 = 72.4 MPa and Eh/E = 0.05, but with different tensile strengths
σu(i)-(v), where the corresponding equivalent plastic strains for the five values of
σu are set to be 0.0, 0.05, 0.1, 0.15, and 0.2, respectively. Figure 2 also shows the
results for the case of bilinear hardening law (vi), i.e., σu = ∞, which indicate that
larger collapse stresses σcol appear with increasing tensile strength σu for stress-
strain relations (i)-(iii). Thus, the dominant factor of plate collapse for stress-strain
relations (i)-(iii) is the stress limitation of the material. In contrast, the collapse
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stresses for stress-strain relations (iv) and (v) do not depend on σu and are in ap-
proximate agreement with the value of the collapse stress for relation (vi). In addi-
tion, the in-plane deformations of folds at collapse are the same for these relations.
Therefore, the dominant factor of plate collapse for stress-strain relations (iv)-(vi)
is thought to be the limitation in-plane deformation. Furthermore, the parametric
study reveals that the collapse mode due to the limitation of in-plane deformation
at the side edge of the plate can be judged by the critical strain εcri, which is given
as follows:

εcri = γ
t
b
, (8)

where the coefficient γ prescribes the effect of the boundary conditions. In the case
of condition S1, γ = 6.
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Figure 2: Collapse behavior of plate for several levels of tensile strength

Simplified Collapse Condition
In this section, we first examine the collapse conditions based on the plastic

buckling theory [1] and the effective width concept [2], and we then attempt to
derive a simplified prediction method for the collapse stress of a plate subjected to
axial compression.

Let the collapse stress correspond to the maximum value of Eq. (5) because
the compressive stress of the plate is a function of plastic strain, i.e.,

dσ
dεedge

∣∣∣∣
σ=σcol

= σedge
dbe f f

dεedge
+be f f

dσedge

dεedge
= 0, (9)

where the first term contributes to the reduction of the effective width due to plastic
strain, and the second term contributes to the increase in axial stress on the edges
due to plastic strain. Considering Eq. (7), the relationship between the effective
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width and the strain at the side edges after plastic buckling is given approximately
as

be f f
∼= t

√
A/εedge. (10)

Using Eqs. (5)-(10), the following expression is derived:

b
dσ

dεedge
= t

(
A

εedge

) 1
2
[
Cep − 1

2
Es

]
. (11)

Thus, the condition of collapse due to the stress limitation of the material is given
by

f = Cep −Es/2 = 0. (12)

In addition to the collapse condition (12), we examine a strain condition to judge
the collapse stress caused by the stress limitation and the in-plane deformation.
Next, we consider the condition whereby the effective width must satisfy be f f ≤ b.
We can then obtain the condition of lower strain εlow by Eqs. (6) and (7) as follows:

t
b

√
A

εlow
≤ 1. (13)

Based on the above considerations, the primary conditions for collapse require Eq.
(12). Furthermore, in order for collapse due to stress limitation to occur, the fol-
lowing strain condition must hold:

εlow < ε < εcri. (14)

Next, we verify the validity of collapse conditions (12) and (14) by comparing
the obtained results with the numerical results obtained by FEM. In the calcula-
tion, the trilinear hardening law is adopted for the plate with t/b= 0.02. Figure 3(a)
shows that the relation between compressive load and displacement with the first
hardening coefficient was set to Eh/E = 0.1 until ε̄ = 0.05, while the second hard-
ening coefficient was varied as E ′

h/E = 0.02, 0.04, 0.06, and 0.08 (see Fig. 3(b)).
Since the critical strain for the plate with t/b= 0.02 is εcri = 0.12, ε̄ = 0.05 satisfies
Eq. (14). The second hardening coefficient that satisfies Eq. (12) is E ′

h/E ≈ 0.057.
Figure 3 indicates that the collapse due to the stress limitation appears in the case
of E ′

h/E < 0.057. In contrast, the collapse due to the in-plane deformation appears
when the strain on the edges reaches εcri, in the case of E ′

h/E < 0.057. As men-
tioned above, we can judge the collapse mode of the plate beforehand by using
proposed conditions (12) and (14).

We now consider the prediction method for the collapse stress due to in-plane
deformation. In the collapse mode of this case, nearly the total load is carried by
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Figure 3: Verification of collapse condition

two strips of width be f f /2 directly adjacent to the edges of the plate, and thus the
effective width concept can be applied. By considering Eqs. (5), (8) and (10), the
effective width at collapse due to in-plane deformation is given by

be f f

b

∣∣∣∣
In−plane

=
t
b

(
A

εcri

)1/2

=
√

t
b

√
A
γ
. (15)
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Figure 4: Comparison of collapse stress due to in-plate deformation between the
proposed method and BEM

Figure 4 compares the values for σcol obtained by the FEM with the values
obtained using Eqs. (5) and (15). These data sets are in reasonably good agreement
with each other.

Conclusions
The collapse mode of a plate subjected to axial compression was revealed. The

simplified collapse condition based on the plastic buckling theory and the effective
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width concept was proposed, the validity of which was verified by comparing sim-
plified collapse condition to the results obtained by FEM. The collapse stress due
to stress limitation can be also predicted using Eqs.(5)-(11).

References

1. Stowell, E.Z., A unified theory of plastic buckling of columns and plates,
NACA Technical Note No.1556 (1948).

2. von Karman, T., Sechler E.E., Donnel, L.H., Strength of thin plates in com-
pression, Trans. ASME, Vol.54 (1932.), pp.53-57.

3. MSC.Marc, User’s Manual, (2003).

4. Hopperstad, O.S., Langseth, M., Tryland, T., Ultimate strength of aluminum
alloy outstands in compression: experiments and simplified analysis, Thin-
Walled Structures, Vol.34 (1999), pp.279-294.




