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An Inverse Problem for the General Kinetic Equation and
a Numerical Method
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Summary
This paper has two purposes. The first is to prove the existence and uniqueness

of the solution of an inverse problem for the general linear kinetic equation with a
scattering term. The second one is to develop a numerical approximation method
for the solution of this inverse problem for two dimensional case using finite differ-
ence method.
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Formulation of the Problem
We consider the linear kinetic equation

Lu ≡ {u,H}+ I1 (u) = λ (x,v) , (1)

{u,H} =
n

∑
i=1

(
∂H
∂vi

∂u
∂xi

− ∂H
∂xi

∂u
∂vi

)
, I1 (u) =

∫
G

K
(
x,v,v′

)
u
(
x,v′

)
dv′

in the domain

Ω = {(x,v) : x ∈ D ⊂ R
n, v ∈ G ⊂ R

n, n ≥ 1}

where the boundaries ∂D, ∂G ∈ C2, ∂Ω = Γ1 ∪Γ2, Γ1 = ∂D×G, Γ2 = D× ∂G
and Γ1, Γ2 are the closures of Γ1, Γ2, respectively. H (x,v) is the Hamiltonian,
K (x,v,v′) is a given function called scattering kernel and λ (x,v) is a source func-
tion satisfying the equation

〈
λ , L̂η

〉
= 0, L̂ =

n

∑
i=1

∂ 2

∂xi∂vi
(2)

for any η ∈ H1,2 (Ω) whose trace on ∂Ω is zero. Here 〈., .〉 is the scalar product
in L2 (Ω) and H1,2 (Ω) is the set of all real-valued functions u(x,v) ∈ L2 (Ω) that
have generalized derivatives uxi , uvi , uxiv j , uviv j (i, j = 1,2, ...,n), which belong to
L2 (Ω) . The standard spaces Cm (G) , C∞

0 (G) and Hk (G) are described in detail,
for example, in [9, 10].
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Problem 1. Determine the functions u (x,v) and λ (x,v) defined in Ω that satisfy
equation (1), assuming that the Hamiltonian H (x,v) ∈C2 (Ω), K (x,v,v′)∈C1

(
Ω

)
are given and the trace of the solution of equation (1) on the boundary ∂Ω is
known: u|∂Ω = u0.

In this paper, we prove the solvability of Problem 1 and develope a numerical
approximation method for the solution of two dimensional inverse problem. To
demonstrate the feasibility of the given method, some numerical experiments are
performed in the last section of the paper.

Kinetic equations are widely used for qualitative and quantitative description of
physical, chemical, biological, and other kinds of processes on a microscopic scale.
They are often referred to as master equations since they play an important role in
the theory of substance motion under the action of forces, in particular, irreversible
processes. Equation (1) is extensively used in plasma physics and astrophysics [1,
8]. In applications, u represents the number (or the mass) of particles in the unit
volume element of the phase space in the neighbourhood of the point (x,v), ∇xH is
the force acting on a particle. Inverse problems for kinetic equations are important
both from theoretical and practical points of view. Interesting results in this field
are presented in [2, 6].

Remark 1. If condition (2) is not imposed on λ , Problem 1 will have infinitely
many solutions. In many classical cases, the main difficulty in studying the in-
verse problems for kinetic equations lies in their over-determinacy. This over-
determinacy is due to the dependence of λ only on x (see [2, 7, 12]). In [2], a
genereal scheme is presented for proving the solvability of these problems: It’s as-
sumed that the unknown function in the problem depends not only on the space
variables x but also on the direction v in a specific way, that is, L̂λ = 0.

Remark 2. The solvability of Problem 1 depends essentially on the geometry of the
domain Ω. More precisely, it is important that Ω can be represented in the form of
the direct product of two domains D and G (see [2], p. 41).

Solvability of the Problem
Let {w1,w2, ...} ⊂ C̃3

0 (Ω) =
{

ϕ : ϕ ∈ C3 (Ω) ,ϕ = 0 on ∂Ω
}

be an orthonor-
mal set in L2 (Ω) and we suppose that the linear span of this set is everywhere
dense in L2 (Ω). We denote the orthogonal projector of L2 (Ω) onto Mn by Pn,
where Mn is the linear span of {w1,w2, ...wn}. The set of all functions u with the
following two properties is denoted by Γ(A):

i. For any u ∈ L2 (Ω) there exists a function F ∈ L2 (Ω) such that for all ϕ ∈
C∞

0 (Ω), 〈u,A∗ϕ〉 = 〈F ,ϕ〉 and Au = F , where Au = L̂Lu and A∗ is the
operator which is conjugate to A in the sense of Lagrange.
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ii. There exists a sequence {uk}⊂ C̃3
0 such that uk → u in L2 (Ω) and 〈Auk,uk〉→

〈Au,u〉 as k → ∞.

Theorem 1. Suppose that H ∈ C2
(
Ω

)
and the inequalities:

n

∑
i, j=1

∂ 2H
∂vi∂v j

ξ iξ j ≥ α |ξ |2 ,
n

∑
i, j=1

∂ 2H
∂xi∂x j

ξ iξ j ≤ 0,

(
α − 1

2
(1+L0)

)
> 0 (3)

hold for all ξ ∈ R
n, (x,v) ∈ Ω. In (3), α is a positive number, L0 = K0 (mesG)2C0

where mesG is Lebesgue measure of G, K0 = max
(x,v)∈Ω

{
K2

v j

}
and C0 is a constant

occurred by virtue of Steklov inequality. Then Problem 1 has at most one solution
(u,λ) such that u ∈ Γ(A) and λ ∈ L2 (Ω).

Proof. The proof of Theorem 1 is similar to Theorem 2.2.1 on p. 60 from [2]. But,
due to the scattered term, this proof requires non-trivial modifications. Let (u,λ)
be a solution to Problem 1 such that u = 0 on ∂Ω and u ∈ Γ(A) . Equation (1) and
condition (2) imply Au = 0. Since u ∈ Γ(A), there exists a sequence {uk} ⊂ C̃3

0
such that uk → u in L2 (Ω) and 〈Auk,uk〉 → 0 as k → ∞. Observing that uk = 0 on
∂Ω, we have

−〈Auk,uk〉 =
n

∑
i=1

〈
∂

∂vi
(Luk) ,ukxi

〉
. (4)

For lu ≡ {u,H},

n

∑
j=1

∂uk

∂x j

∂
∂v j

(luk) =
1
2

n

∑
i, j=1

(
∂ 2H

∂vi∂v j

∂uk

∂xi

∂uk

∂x j
− ∂ 2H

∂xi∂x j

∂uk

∂vi

∂uk

∂v j

)

+
1
2

n

∑
i, j=1

∂
∂v j

[
∂uk

∂x j

(
∂uk

∂xi

∂H
∂vi

− ∂uk

∂vi

∂H
∂xi

)]
+

1
2

n

∑
i, j=1

∂
∂xi

(
∂H
∂vi

∂uk

∂x j

∂uk

∂v j

)

−1
2

n

∑
i, j=1

∂
∂x j

[
∂uk

∂v j

(
∂uk

∂xi

∂H
∂vi

− ∂uk

∂vi

∂H
∂xi

)]
− 1

2

n

∑
i, j=1

∂
∂vi

(
∂H
∂xi

∂uk

∂x j

∂uk

∂v j

)
.(5)

If the geometry of the domain Ω and the condition uk = 0 on ∂Ω are taken into
account, then from (5) we obtain

−〈Auk,uk〉= J (uk)+
n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉
(6)

where

J (uk) ≡ 1
2

n

∑
i, j=1

∫
Ω

(
∂ 2H

∂vi∂v j

∂uk

∂xi

∂uk

∂x j
− ∂ 2H

∂xi∂x j

∂uk

∂vi

∂uk

∂v j

)
dΩ.



128 Copyright © 2009 ICCES ICCES, vol.12, no.4, pp.125-135

We now estimate the second term on the right hand side of (6). Using the Cauchy-
Schwarz inequality and the condition uk|∂Ω = 0, we have

n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉
≤ 1

2

n

∑
j=1

∫
Ω

u2
kx j

dΩ+
n

∑
j=1

K0

2
(mesG)2 C0

∫
Ω

u2
kx j

dΩ (7)

where K0, L0, C0 and mesG are given in the satement of the theorem. Thus from
(3), (6) and (7), we obtain the following inequality

J (uk)+
n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉
≥ α

n

∑
j=1

∫
Ω

u2
kx j

dΩ+
n

∑
j=1

〈
∂

∂v j
(I1uk) ,ukx j

〉

≥ α
n

∑
j=1

∫
Ω

u2
kx j

dΩ− 1
2

(1+L0)
∫
Ω

u2
kx j

dΩ

=
(

α − 1
2

(1+L0)
) n

∑
j=1

∫
Ω

u2
kx j

dΩ (8)

and using definition of Γ(A) we have
∫
Ω

|∇xu|2 dΩ ≤ 0 where ∇xu = (ux1, ...,uxn).

Since u = 0 on ∂Ω, it follows that u = 0 in Ω. Then (1) implies λ (x,v) = 0. Hence
uniqueness of the solution is proven.

Problem 2. Determine the pair (u,λ ) from the equation

Lu = λ +F (9)

provided that F ∈ H2 (Ω), the trace of the solution u on the boundary ∂Ω is zero
and λ satisfies condition (2).

Problem 1 can be reduced to Problem 2, (see [2], p. 65).

Theorem 2. Assume H ∈C2
(
Ω

)
and the following inequalities hold for all (x,v) ∈

Ω, ξ ∈ R
n :

n

∑
i, j=1

∂ 2H
∂vi∂v j

ξ iξ j ≥ α1 |ξ |2 ,
n

∑
i, j=1

∂ 2H
∂xi∂x j

ξ iξ j ≤−α2 |ξ |2 (10)

where α1 and α2 are some positive numbers and F ∈ H2 (Ω). Then there exists a
solution (u,λ) of Problem 2 such that u ∈ Γ(A), u ∈ H1 (Ω) , λ ∈ L2 (Ω).
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Proof. We will utilize the proof of Theorem 2.2.2 on p. 60 from [2] and take into
account the scattering term. Applying the operator L̂ on both sides of (9), the
following auxiliary problem

Au = F (11)

u|∂Ω = 0 (12)

is obtained where F = L̂F . An approximate solution to the Problem (11)− (12)

is sought in the form uN =
N

∑
i=1

αNi wi, αN = (αN1 ,αN2 , ...,αNN ) with the help of the

following relations:

〈AuN −F ,wi〉= 0, i = 1,2, ...,N. (13)

Equalities (13) form a system of linear algebraic equations for the vectors αN . Let’s
multiply ith equation of the homogeneous system (F = 0) by −2αNi and sum from
1 to N with respect to i, then −2〈AuN,uN〉= 0 is obtained. If the following identity
is considered

−〈AuN ,uN〉 = J (uN)+
n

∑
j=1

〈
∂

∂v j
(I1uN) ,uNx j

〉

then the assumptions of Theorem 2 imply ∇uN = 0, ∇uN =
(

uNx1
, ...,uNxn

,uNv1
, ...,uNvn

)
and due to the conditions uN = 0 on Γ1 and uN ∈ C̃3

0 (Ω), we have uN = 0 in Ω. Since
the system {wi} is linearly independent, we obtain αNi = 0, i = 1,2, ...,N. The ho-
mogeneous version of system (13) has only trivial solution and thus, system (13)
has a unique solution αN = (αNi), i = 1, ...,N for any function F ∈ H2 (Ω).

Now we estimate the solution uN in terms of F. We multiply the ith equation
of the system by −2αNi and sum from 1 to N with respect to i. Since F = L̂F ,

−2〈AuN,uN〉 = −2
〈

L̂F,uN

〉
(14)

is obtaned. Observing that uN = 0 on ∂Ω and transferring derivatives with respect
to xi on the function uN , the right-hand side of (14) can be estimated as

−2
〈

L̂F,uN

〉
≤ β

∫
Ω

|∇vF |2 dΩ+β−1
∫
Ω

|∇xuN |2 dΩ

where β−1 < α1 and ∇vF = (Fv1, ...,Fvn). In the proof of Theorem 1, we showed
that 〈AuN ,uN〉 is equal to

J (uN)+
n

∑
j=1

∫
Ω

uNx j

∫
G

Kv j uNdv′dΩ.
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Then using (7), (10) and (14) we have

α2

∫
Ω

|∇vuN |2 dΩ+α 3

∫
Ω

|∇xuN |2 dΩ ≤ β
∫
Ω

|∇vF |2 dΩ+β−1
∫
Ω

|∇xuN |2 dΩ

where α3 = α1 − 1
2 (1+L0). Recalling that Ω is bounded and uN = 0 on Γ1, the

last inequality implies

‖uN‖ ◦
H1(Ω)

≤ C‖|�vF |‖L2(Ω) (15)

where the constant C > 0 does not depend on N. Since
◦

H1 (Ω) is a Hilbert space,
there exists a subsequence in this set, denoted again by {uN} , converges weakly

to a certain function u ∈
◦

H1 (Ω) and ‖u‖ ◦
H1(Ω)

≤ lim
N→∞

‖uN‖ ◦
H1(Ω)

≤ C‖|�vF|‖L2(Ω)

holds. Transferring the operator L̂ to wi in (13) and passing to the limit as N → ∞
yield to 〈

Lu−F, L̂η
〉

= 0 (16)

for any η ∈ ◦
H1,2 (Ω). Setting λ = Lu−F , we see that λ satisfies the condition (2)

for any η ∈ ◦
H1,2 (Ω) and using (15) we obtain

‖λ‖L2(Ω) ≤ C‖�vF‖L2(Ω) +‖F‖L2(Ω) . (17)

In expression (17), C stands for different constants that depend only on the given
functions and the measure of the domain D. Thus we have found a solution (u,λ) to

Problem 2, where u ∈
◦

H1 (Ω) and λ ∈ L2 (Ω). Now it will be proven that u ∈ Γ(A) .
Since u ∈ L2 (Ω), F ∈ H2 (Ω) and F =L̂F , from (16) it follows that F = Au ∈
L2 (Ω) in the generalized sense. Indeed, for any η ∈ C∞

0 (Ω) we have

〈u,A∗η〉=
〈

u,
(

L̂L
)∗

η
〉

=
〈

Lu, L̂η
〉

=
〈

F, L̂η
〉

= 〈F ,η〉 .

To complete the proof, it remains to show the convergence 〈AuN ,uN〉 → 〈Au,u〉 as
N → ∞. From (13), it follows that PNAuN = PNF . Since PN is an orthogo-
nal projector onto Mn, PNF strongly converges to F in L2 (Ω) as N → ∞, i.e.,
PNAuN → F = Au strongly in L2 (Ω) as N → ∞. Then, 〈PNAuN ,uN〉 → 〈Au,u〉
as N → ∞ because {uN} weakly converges to u in L2 (Ω) as N → ∞. By the
definition of PN and uN (since the operator PN is self adjoint in L2), 〈AuN ,uN〉 =
〈AuN,PNuN〉= 〈PNAuN ,uN〉. Hence 〈AuN ,uN〉→ 〈Au,u〉 as N → ∞, which com-
pletes the proof.
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The Finite Difference Method (FDM)
Now we concern with the construction of finite difference approximation for

the following 2-dimensional inverse problem: Find (u,λ) from the relations

Hv (x,v)ux (x,v)−Hx (x,v)uv (x,v) = λ (x,v) (18)

u(x,v)|∂Ω = u0 (x,v)

L̂λ = 0

where Ω = {(x,v)| x ∈ (a,b)⊂ R, v ∈ (c,d)⊂ R}. By applying operator L̂ to both
sides of the equation (18), the following auxiliary Dirichlet boundary value prob-
lem for third order partial differential equation is obtained:

Au ≡ uxvxHv −uvvxHx +uxxHvv−uvvHxx +uxvHvx−uvxHxv +uxHvvx −uvHxvx = 0
(19)

u|∂Ω = u0. (20)

Using the central finite difference formulas in (19), we obtain the following system
of simultaneous algebraic nodal equations:

(−k1 +k2) ũi−1, j−1 +(2k1 −k4 +k6) ũi, j−1 +(−k1 −k2) ũi+1, j−1

+(−2k2 +k3 −k5) ũi−1, j +(−2k3 +2k4) ũi, j +(2k2 +k3 +k5) ũi+1, j

+(k1 +k2) ũi−1, j+1 +(−2k1 −k4 −k6) ũi, j+1 +(k1 −k2) ũi+1, j+1

= 0, i = 1, ..., I, j = 1, ...,J (21)

where I, J are positive integers, Δx = (b− a)/(I + 1) and Δv = (d − c)/(J + 1)
are step sizes in the directions x, v, respectively and ũi, j is the finite difference
approximation for the solution u(xi,v j) = u(a+ iΔx,c+ jΔv),

k1 =
hi, j+1 −hi, j−1

4(Δx)2 (Δv)2 , k2 =
hi+1, j −hi−1, j

4(Δx)2 (Δv)2 ,

k3 =
hi, j+1 −2hi, j +hi, j−1

(Δx)2 (Δv)2 , k4 =
hi+1, j −2hi, j +hi−1, j

(Δx)2 (Δv)2 ,

k5 =
hi+1, j+1 −2hi+1, j +hi+1, j−1 −hi−1, j+1 +2hi−1, j −hi−1, j−1

4(Δx)2 (Δv)2 ,

k6 =
hi+1, j+1 −2hi, j+1 +hi−1, j+1 −hi+1, j−1 +2hi, j−1 −hi−1, j−1

4(Δx)2 (Δv)2 .

Taking into account (20), we have the following discrete boundary conditions

ũ0, j = u(a,v j), ũI+1, j = u(b,v j)
ũi,0 = u(xi,c), ũi,J+1 = u(vi,d)

(i = 0,1, ..., I+1, j = 0,1, ...,J+1).
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The approximate solution ũi, j is obtained at I × J mesh points of Ω by solving the
matrix equation

T Ũ = V

where T is a block tridiagonal matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(1) B(1) 0 · · · 0

C(2) A(2) B(2) . . .
...

0 C(3) . . . . . . 0
...

. . . . . . . . . B(J−1)

0 · · · 0 C(J) A(J)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

IJ×IJ

and A( j), B( j), C( j) are given by

A( j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a(1, j)
1 a(1, j)

2 0 · · · 0

a(2, j)
3 a(2, j)

1 a(2, j)
2

. . .
...

0 a(3, j)
3

. . . . . . 0
...

. . . . . . . . . a(I−1, j)
2

0 · · · 0 a(I, j)
3 a(I, j)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

I×I

B( j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b(1, j)
1 b(1, j)

2 0 · · · 0

b(2, j)
3 b(2, j)

1 b(2, j)
2

. . .
...

0 b(3, j)
3

. . . . . . 0
...

. . . . . . . . . b(I−1, j)
2

0 · · · 0 b(I, j)
3 b(I, j)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

I×I

C( j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c(1, j)
1 c(1, j)

2 0 · · · 0

c(2, j)
3 c(2, j)

1 c(2, j)
2

. . .
...

0 c(3, j)
3

. . .
. . . 0

...
. . . . . . . . . c(I−1, j)

2

0 · · · 0 c(I, j)
3 c(I, j)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

I×I

where a1 =−2k3 +2k4, a2 = 2k2 +k3 +k5, a3 = −2k2 +k3 −k5, b1 = −2k1−k4 −
k6, b2 = k1 −k2, b3 = k1 +k2, c1 = 2k1 −k4 −k6, c2 = −k1 −k2, c3 = −k1 +k2.

V is a column matrix, which consists of boundary values ũ0, j, ũI+1, j, ũi,0 and
ũi,J+1 (i = 0,1, ..., I+1, j = 0,1, ...,J+1) and Ũ is the solution vector:

Ũ = [ũ1,1, ũ2,1,, ..., ũI,1, ũ1,2, ũ2,2, ..., ũI,2, ..., ũ1,J, ũ2,J, ..., ũI,J]
T .
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To calculate λ numerically, the central-difference formulas are used in (18) and the
following difference equation is solved:

ΔxΔv [k1ũi+1, j −k1ũi−1, j −k2ũi, j+1 +k2ũi, j−1] = λ̃ i, j

i = 1,2, ...,I, j = 1,2, ...,J, where λ̃ i, j is the approximation to the function λ (xi,v j) =
λ (a+ iΔx,c+ jΔv).

Numerical Experiments

Example 1. Let’s consider the problem of finding (u,λ) in Ω = (−1,1)× (1,2)

from equation (18) provided that H (x,v) =
1
2

v2 and the boundary conditions

u(−1,v) =
1
2v

(2−v)2 , u(1,v) =
1
2v

(2−v)2

u(x,1) =
1
2v

x2, u(x,2) =
1
4

(
x2 −1

)

are given. The exact solution of the problem is u (x,v) =
1
2v

(
x2 +(2−v)2 −1

)
,

λ (x,v) = x. In the following figures, a comparison between the exact solution (pur-
ple surface) and the finite difference solution (black points) of the inverse problem
for I = J = 39 is presented. The computations are performed using MATLAB 7.0
program on a PC with Intel Core 2 T7200 2.00 GHz CPU, 1 Gb memory, running
under Windows Vista.

Figure 1: (a) Exact and approximate values of u (b) Exact and approximate values
of λ .

The obtained numerical results for u(x,v) and λ (x,v) on some points of the
domain Ω for the different values of I and J are shown in Table 1 and Table 2,
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respectively. In the calculation of u(x,v), the maximum error occured for I = J = 7
is -0.00373585544664928330 and -0.00000095343455730479 for I = 7,J = 511.

Consequently, the computational experiments show that the proposed method
gives efficient and reliable results.

Table 1: Exact u(x,v) and the finite difference solution for I = J = 7 and I = 7,J =
511.

(x,v) Exact u(x,v) FDM I = J = 7 FDM I = 7,J = 511
(−0.75,1.25) 0.050000000000000003 0.049713684855366862 0.049999926776574929
(−0.75,1.75) -0.107142857142857140 -0.107291337599467250 -0.107142894775529030

(0,1.25) -0.175000000000000020 -0.175654434616304120 -0.175000167367829080
(0,1.50) -0.2500000000000000000 -0.250607618136903350 -0.250000154528931650
(0,1.75) -0.2678571428571428500 -0.268196526757965900 -0.267857228874678780

(0.75,1.25) 0.0500000000000000030 0.049713684855366917 0.049999926776574846
(0.75,1.75) -0.107142857142857140 -0.107291337599467210 -0.107142894775529270

Table 2: Exact λ (x,v) and the finite difference solution for I = J = 7 and I = 7,J =
511.

(x,v) Exact λ (x,v) FDM I = J = 7 FDM I = 7,J = 511
(−0.75,1.25) -0.750000000000000000 -0.751227064905570670 -0.7500003138146791300
(−0.75,1.75) -0.750000000000000000 -0.750890882739660650 -0.7500002257960318700

(0,1.25) 0.0000000000000000000 0.0000000000000002220 0.0000000000000021094
(0,1.50) 0.0000000000000000000 0.0000000000000001110 0.0000000000000032196
(0,1.75) 0.0000000000000000000 0.0000000000000000000 0.0000000000000029976

(0.75,1.25) 0.7500000000000000000 0.7512270649055701200 0.7500003138146779100
(0.75,1.75) 0.7500000000000000000 0.7508908827396604300 0.7500002257960316500
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