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On the shear influence on the free vibration behavior of
magneto-electro-elastic beam
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Summary
A magneto-electro-elastic Timoshenko beam model is presented and employed

to study the effect of the shear strain on the free vibration behavior of the beam.
Once the differential governing equation for Timoshenko magneto-electro-elastic
beam is derived, the Euler-Bernoulli model is obtained by letting be zero some
of the governing equation coefficients. Results for the Timoshenko and Euler-
Bernoulli beam are presented in comparison with two-dimensional finite element
computation.

Introduction
Magneto-electro-elastic composites have recently emerged as a new and in-

teresting materials for sensors and actuators applications, mainly due to their in-
herent and unique capability to convert energy among three different forms: mag-
netic, electric and mechanical. Magneto-electro-elastic composites are made up
by piezoelectric and piezomagnetic phases that, combined together, give rise to
a smarter composite, either in particulate or laminate form [1]. The obtained
composites present both the electro-mechanical and magneto-mechanical coupling,
characteristic of the piezoelectric and piezomagnetic phase respectively. Moreover,
magneto-electro-elastic materials are also characterized by a strong coupling be-
tween the magnetic and the electric fields that stems as product property of the
constituents electro-elastic and magneto-elastic coupling. The magneto-electric
coupling is absent in the original phases and is a peculiar characteristic of the
whole composite. Magneto-electro-elastic composites are exploited for the con-
struction of magnetic field probes, electric packaging, hydrophones, medical ul-
trasonic imaging, sensors and actuators [2]. Because of their inherent multidisci-
plinary nature, a variety of studies are needed to obtain useful and valuable insights
into their typical behaviour. Many research activities have been focused on chem-
ical or technological features [3 - 5]. On the other hand, many aspects related
to analytical or numerical modelling of magneto-electro-elastic media have been
investigated [6-11]. In the present paper a model for free vibration of magneto-
electro-elastic beam is presented. The model relies upon the Timoshenko’s beam
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theory [12], which is extended to the present problem by considering the magneto-
electro-mechanical constitutive relationships and the assumptions that no density
charge and no density current act on the analyzed domain. Comparisons between
the proposed Timoshenko magneto-electro-elastic beam model and the simplified
Euler-Bernoulli [12] beam theory are also presented to highlight the influence of
the shear effect on the magneto-electro-elastic beam free vibration behavior.

Basic assumption and governing equation
In order to write the magneto-electro-elastic beam governing equation, let L

be the beam length and h the beam thickness. Moreover let us assume the electric
and magnetic poling are directed along the thickness direction, namely the y −
axis, and that the electric and magnetic field components transverse to the poling
direction, i.e. along the x−axis, are negligible [13]. With the aim of describing the
electric and magnetic beam characteristics, it is assumed that no external current
density is present in the beam. Thus, both the electric and magnetic fields can be
written in terms of an electric and a magnetic scalar potential functions, ϕ and ψ
respectively, by virtue of the gradient relationships [8]. Under the aforementioned
hypotheses and by assuming monoaxial stress state, the beam magneto-electro-
elastic constitutive relationships read as

σxx = cγxx −eEy −d Hy Dx = e14 γxy Bx = d14 γxy

σxy = c44 γxy Dy = eγxx +ε Ey +η Hy By = d γxx +η Ey + μ Hy
(1)

being σi j and γi j the stress and strain components, Di and Bi the electric displace-
ments and magnetic induction components while Ey and Hy are the electric and
magnetic field components. In Eq.(1) c represents the elastic coefficient, ε and μ
are the dielectric constant and the magnetic permeability of the material while e and
d are representative of the piezoelctric and piezomagnetic coupling, respectively.
The kinematical model is given by the displacement components u and v which
read as

u = −yϑ (x, t),v = v(x, t) . (2)

where ϑ is the cross sectional rotation. Starting from the Gauss’ laws for elec-
trostatic and magnetostatic problem in absence of electric charge density, and in
view of the constitutive relationships and the previously mentioned assumptions, it
follows that

ϕ(x,y, t) =
[

η (d14 +d)−μ (e14 +e)
εμ −η2

∂ϑ
∂x

+
μ e14 −η d14

εμ −η2

∂ 2v
∂x2

]
y2

2
+a1y+a2

ψ(x,y, t) =
[

η (e14 +e)−ε (d14 +d)
εμ −η2

∂ϑ
∂x

+
ε d14−η e14

εμ −η2

∂ 2v
∂x2

]
y2

2
+a3y+a4

(3)
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Thus, by imposing the magneto-electric boundary conditions on the bottom and
top surfaces of the beam, the integration constants ai are set and both the potential
functions distribution along the thickness directions become known.

Once the electro-magnetic variables distribution in the thickness direction is
known, the shear force T and bending moment M can be written as follows

T =
∫ h

2

− h
2

σxydy = S

(
∂v
∂x

−ϑ
)

(4)

M =
∫ h

2

− h
2

σxxydy = Kϑ
∂ϑ
∂x

+Kv
∂ 2v
∂x2 (5)

where S is the bimorph shear stiffness, Kϑ is the magneto-electro-elastic equivalent
bending stiffness of the bimorph beam while Kv is an additional bending stiffness
related to the second derivative of the transverse displacement that is present when
piezoelectric or piezomagnetic coupling exist. Beam stiffness coefficients in Eq(4)
and (5) are computed by using the constitutive relationships to express the stress
components and by taking into account the kinematical model and the gradient
relationships along with the electric and magnetic scalar functions Eq(3).

By virtue of Eq.(4) and (5), the beam equilibrium equations, taking into account
both the translational and rotational inertia, lead to the following free vibration
magneto-electro-elastic governing equation

(Kϑ +Kv)
∂ 4v
∂x4 +(

ρhKϑ

S
+

ρh3

12
)

∂ 4v
∂x2∂ t2 +ρh

∂ 2v
∂ t2 +

ρ2h4

12S
∂ 4v
∂ t4 = 0 (6)

From Eq.(6) it follows that the Euler-Bernoulli beam governing equation is
obtained by letting the beam shear stiffness S tend to infinity.

Modal Analysis
The problem of free vibrations is specified by the homogeneous differential

equation of motion Eq.(6) and the homogenous boundary conditions. Three distinct
boundary conditions configurations are considered in the present work, namely the
simply supported beam, the cantilever beam and the clamped configuration. The
general solution to the homogenous equation of motion is considered in the form

v(x, t) = Vn (x) sinωnt (7)

where ωn is the generic natural frequencies and Vn is the corresponding mode
shapes written as

Vn (x) = Cineλinx, (i = 1,2,3,4) (8)
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thus, by using Eq.(10) and (8) into Eq.(6) the following characteristic equation
is obtained

(Kϑ +Kv)λ 4
ni +

(
ρh3

12
+

ρhKϑ

S

)
ω2

n λ 2
ni +

(
ρhω2

n −
ρ2h4

12S

)
ω2

n = 0 (9)

which links the eigenvalues λni to the eigenfrequencies ωn and allows to express the
mode shape Eq.(8) as function of the eigenfrequency only. Eventually, by writing
the cross sectional rotation as

ϑ (x, t) = Θn (x) sinωnt (10)

and by expressing its mode shape Θn as function of the transverse displacement
mode shape Vn, by means of the equilibrium equation, as follows

Θn =
1+ ρhKϑ

S2 ω2
n

1− ρh3

12S ω2
n

V ′
n +

Kϑ +Kv

S− ρh3

12 ω2
n

V ′′′
n (11)

where prime denotes differentiation with respect to x, the boundary conditions
can be superimposed allowing the computation of the beam natural frequencies and
mode shapes.

Natural frequencies
Some results are presented to show the effectiveness of the model and the

influence of the shear force on the free vibration behavior of a magneto-electro-
elastic beam. In the first application the eigenfrequencies of a cantilever magneto-
electro-elastic beam are calculated and compared to those computed by using a two-
dimensional finite element model, see [11]. The beam length is L = 0.3 m while
its thickness is h = 0.02 m. Material properties of a multiphase magneto-electro-
elastic composite are taken from [6] and are arranged in light of the monoaxial
stress state assumption. The reduced material constants are listed in Tab.(1) and the
composite volume density is ρ = 5550 kg

m3 .

c [GPa] c44 [GPa] e
[

C
m2

]
e14

[
C
m2

]
d

[ N
Am

]
d14

[ N
Am

]
η

[ nNs
VC

]
ε

[ nF
m

]
μ

[
Ns2

C2

]

120.6 45 6.5 0 32.6 180 -8.9 8.85 7.54

Table 1: Magneto-electro-elastic material constants.

The natural frequencies of the cantilever beam, considered as an Euler-Bernoulli
( fEB) or a Timoshenko ( fT ) beam are reported in Tab.(2) where the percentage dis-
crepancies with respect to the FEM analysis ( fFEM) are also highlighted. It appears
from data shown in Tab.(2) that the effectiveness of the simplified Euler-Bernoulli
beam model decreases as the natural frequency value increases reaching a percent-
age discrepancy of about 20% with respect to the finite element two-dimensional
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computation. By taking into account the shear force effect, by mean of the Tim-
oshenko beam theory, the natural frequencies percentage discrepancy with respect
to the FEM analyses, even though it increases with the frequency, is always neg-
ligible. Moreover it is seen that by using the Euler-Bernoulli model the seventh
flexural mode is not captured.

Mode fT fEB fFEM [11] 100 fT− fFEM
fFEM

100 fEB− fFEM
fFEM

1 169 170 169 0 0.591
2 1043 1064 1043 0 2.013
3 2831 2974 2835 -0.141 4.903
4 5323 5817 5337 -0.262 8.993
5 8385 9594 8423 -0.451 13.902
6 11887 14300 11967 -0.668 19.495
7 15720 − 15867 -0.926 −

Table 2: Natural frequencies [Hz] for the flexural mode of the cantilever
magneto-electro-elastic beam

The simply supported and clamped configurations are also studied for the same
beam. Tab.(3) lists the natural frequencies of the simply-supported beam showing
the lack of accuracy for the high-frequency mode and that the fifth mode of vibra-
tion is lost if the shear effect is not taken into account.

Mode fT fEB fFEM [11] 100 fT− fFEM
fFEM

100 fEB− fFEM
fFEM

1 475 478 474 0.210 0.843
2 1861 1915 1858 0.161 3.067
3 4049 4308 4045 0.0988 6.501
4 6900 7660 6896 0.0580 11.07
5 10272 − 10274 -0.0194 −
6 14039 11969 14056 -0.120 -14.848
7 18100 17235 18150 -0.275 -5.0413

Table 3: Natural frequencies [Hz] for the flexural mode of the simply-supported
magneto-electro-elastic beam

The same behavior is observed for the clamped beam, whose natural frequen-
cies for flexural modes are reported in Tab.(4). In this case both the fifth and seventh
modes are not captured by using the Euler-Bernoulli approximation and the forth
frequency of vibration presents a percentage difference with respect to the FEM re-
sult of about 23%. Even in this last case, the Timoshenko beam analytical solution
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has revealed to be effective and reliable in modeling flexural vibration of magneto-
electro-elastic beam showing a percentage discrepancy with the numerical solution
that is always acceptable.

Mode fT fEB fFEM [11] 100 fT− fFEM
fFEM

100 fEB− fFEM
fFEM

1 1053 1085 1054 -0.094 2.941
2 2800 2991 2805 -0.178 6.631
3 5250 5864 5266 -0.303 11.356
4 11675 14482 11758 -0.705 23.167
5 15423 − 15572 -0.956 −
6 19416 20227 19659 -1.236 2.889
7 23593 − 23430 0.695 −

Table 4: Natural frequencies [Hz] for the flexural mode of the clamped
magneto-electro-elastic beam

Conclusions
A magneto-electro-elastic beam model based upon the Timoshenko beam the-

ory to take into account shear force has been presented. Assumptions made on
the electric and magnetic fields have allowed to include the piezoelectric, piezo-
magnetic and electromagnetic coupling in the beam equivalent bending stiffness
coefficients. Free vibration analyses carried out by using the proposed model have
shown that the effect of shear deformation is relevant in computing the natural fre-
quencies and mode shapes of magneto-electro-elastic beam.
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