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Meshless Unsymmetric Collocation Method
Leevan Ling1

Summary
The history of meshless collocation methods featured plenty of nicely calcu-

lated practical solutions, but a solid mathematical basis was long missing for the
most popular asymmetric technique introduced by E. Kansa. Thus the impact of
this work will be to supply a lasting mathematical foundation which will also im-
prove our general understanding of such technique. Our previous research gave a
convergent algorithm.
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Introduction
In our previous research, we provided the first solvability and convergence re-

sults of the modified Kansa’s unsymmetric collocation formulation. Readers are
referred to the original articles [?, ?, ?] and an extension [?] to weak problems for
details. As mentioned in the previous section, Kansa’s original formulation may
fail in certain cases even though it is widely used by many researchers. To over-
come these problems partially, one has to modify the setting. To get solvability and
error bounds, there should at least be a unique solution to the modified discretized
system that converges to the true solution if the discretization is refined. The first
question requires that if the n test functionals are fixed and are linearly independent,
the system should have rank n provided the n trial centers are chosen properly. The
following theorem addresses that solvability is guaranteed if the trial functions or
equivalently the RBF trial centers are correctly chosen.

Theorem 1 (see [?]) Assume the kernel Φ to be smooth enough to guarantee that
the functions uλ := λ y Φ(y, ·) for λ ∈ Λ are continuous. Furthermore, let the m
functionals λ1, . . . ,λm of Λm be linearly independent over U . Then the set of func-
tions {uλ} for λ ∈ Λm constructed above is linearly independent, and hence the
unsymmetric collocation matrix is nonsingular for properly chosen trial centers.

The theoretical part of our work showed that solvability is possible; in the
practical part, the adaptive subspace selection algorithm (the so-called greedy al-
gorithm) we proposed showed how it can be done efficiently in practice.

Suppose that m collocation conditions and n trial centers are provided; usu-
ally, we have n�m to guarantee the existence of the proper subset of trial centers.
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The greedy algorithm is called matrix–free since the a priori evaluation of the full
m×n matrix is unnecessary. Instead, the algorithm builds small k×k matrices start-
ing with k = 1,2,3, . . . iteratively which are updated by calculations of complexity
O(k2) and it usually stops at rather small values of k. The termination of the algo-
rithm depends on the computational accuracy; the selected trial centers are chosen
properly in the sense that the resultant matrix will not crash the linear solver. If m
and n are moderate in size, a QR-factorization can be employed with some trade-off
of efficiency.

Our next work devoted to the convergence results of the above modified Kansa’s
method. Suppose the PDE is well-posed in a Hilbert space U with solution u∗. Let

‖u‖Λ := sup
λ∈Λ
|λ (u)| (1)

be a norm on U . We would like to construct a numerical approximation v∗ε ∈Uε in
a finite dimensional subspace that solves the following linear optimization problem:

v∗ε = arg min
v∈Uε
‖v−u∗‖Λ. (2)

We can assume that, for all ε > 0, there is a function (e.g. the interpolant of the
solution) vu∗,ε ∈Uε with

‖u−vu∗,ε‖Λ ≤ ε‖u∗‖U . (3)

which is sufficient for our purpose.

Theorem 2 [?, ?] Let U be a normed linear space with norm ‖.‖U , dual space
U ∗ and dual unit sphere U ∗

1 := {λ ∈ U ∗ : ‖λ‖U ∗ = 1}. Let a test set Λ ⊂U ∗
1

be given such that ‖.‖Λ is defined on U with (1). Assume further that the PDE is
well-posed. Let {Uε}ε be a scale of subspaces of U for ε→ 0. For all ε→ 0, take
a function v∗ε defined by (2). Then there is convergence ‖v∗ε −u∗‖Λ→ 0. �

Kansa–type RBF trial spaces with sufficiently dense trial centers form a sequence
of subspaces getting dense in U . We know the RBF interpolant has the required
approximation power in (3) for all ε > 0. Hence, the convergence rate of the unsym-
metric collocation method can be faster than the convergence rate of interpolation
in the trial space Uε with respect to the norm ‖.‖Λ to functions in U .

Mathematical Formulations
Our approach used a fairly recent abstract setting to be explained here. The

general idea for solving PDE problems in strong or weak form by kernel–based
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meshless methods is to write the problem as an uncountably infinite number of
simultaneous scalar equations

λ [u] = fλ ∈R, for all λ ∈ Λ. (4)

The set Λ consists of infinitely many linear real–valued functionals λ that usu-
ally take the form of point evaluations of functions or derivatives at points inside a
domain or on some boundary or interface layer. We call (4) a generalized interpo-
lation problem.

Discretization just consists in replacing the infinite set Λ by some finite un-
structured subset Λm := {λ1, . . . ,λm}. The space spanned by these functionals can
be called the test space, and Λ is the infinite test set.

Weak formulations use functionals of the form λ j[g] := a j(g,u j) with certain
bilinear forms a j and test functions u j such that the discretized problem takes the
familiar form

λi[u] = ai(u,ui) =
n

∑
j=1

α jai(u j,ui) = fλi
, 1≤ i≤ n

of meshless Petrov–Galerkin schemes [?]. In particular, weak formulations always
have a strong built–in connection of test functionals and test functions.

For problems in strong formulation, the connection between test functionals
and test functions is to be established differently. To get a truly meshless technique,
and to allow very general problems, we use a symmetric positive definite kernel
Φ : R

d×R
d → R.

The special case of symmetric collocation now takes the discretized set Λm of
test functionals and defines the trial functions as u j := λ y

j Φ(·,y) for 1≤ j ≤ n = m
where the superscript of λ indicates the variable of Φ on which the functional op-
erates. Then the collocation matrix takes the symmetric form with entries λi[u j] =
λ x

i λ y
j Φ(x,y) for 1≤ i, j≤ n. This technique dates back to [?] and has a solid math-

ematical basis ([?, ?]), as was pointed out earlier in this proposal. Like in the
standard (non–Petrov) Galerkin scheme, the trial and test functions or functionals
are closely related.

If one takes a set Xn := {x1, . . .,xn} ⊂R
d of scattered trial centers, one can use

the trial space U spanned by the trial functions

u j = Φ(·,x j), 1≤ j ≤ n

associated to some differential operations followed by a simple point evaluation
functionals λδ j

with δ j = δ (· − x j). Usually, these centers are irregularly placed
within Ω. This leads to the unsymmetric collocation technique started by Kansa
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for the multiquadric kernel and used by many authors afterwards. The resulting
unsymmetric collocation matrix has the entries

λi[u j] = λ y
i Φ(y,x j), 1≤ i, j≤ n.

Consequently, there are no mathematical results on this technique, though it gives
very good results in plenty of applications in science and engineering.

Lastly, our modified Kansa’s method requires two set Xn := {x1, . . . ,xn} ⊂ R
d

and Ym := {y1, . . . ,ym} ⊂Ω of scattered trial and collocation centers with m≤ n. In
practice, due to the problem of ill-conditioning, a smaller set of trial centers Xn̂⊂ Xn

with n̂≤m is selected by the greedy algorithm. If the overdetermined system

λi[u j] = λ y
i Φ(y,x j), 1≤ i≤m, 1≤ j ≤ n̂. (5)

is solved by linear optimization, the convergence results in Theorem 2 applies.

Discussion
Our developed error estimation is based on the infinite dimensional test space

Λ. The Λ-norm (1) used in our previous work is the L∞-norm of the PDE residual.
After discretizing Λ by Λm, e.g. bringing the error bound from the L∞-norm to
the �∞-norm, we get a linear optimization (LO) problems on a discretized finite
dimensional test space. In [?], such LO process is solved by an adaptive simplex
algorithm.

The first discussion of this talk is to supply new theoretical results underpin-
ning the meshless collocation method with easy implementation. It is well-known
that the least squares optimization is numerically efficient. Since the LO is com-
putationally much more difficult than linear system solving, this proposal focus on
the convergence result when (5) is solved by least-squares (LS) optimization. In
particular, we aim to prove an analog of Theorem 2 that is built upon the �2-norm
of the PDE residual. The numerical part of this stage does not require any algo-
rithm implementation; the proposed algorithm is, in fact, a (much) simpler version
of our previous developed LO-based codes. For demonstration purpose, the new
algorithm will be tested on some elliptic PDEs in 2D and 3D.

The result up to this point may not answer all the concerns posed by many
mathematicians and engineers. It is well-known that scaling r← r/c has a strong
influence to the behavior of RBF. This scaling effect is controlled by a so-called
shape parameter c. If c is too small, the solution is usually inaccurated. On the
other hand, if c is too large, the condition of the resultant matrix system becomes
so bad that linear solvers may crash. Somewhere, not too small and not too large, is
an optimal shape parameter that makes the RBF superior [?]. Thanks to a subspace
selection done by the greedy algorithm, our algorithms (including both the LO-
based algorithm in the previous work and the LS-based algorithm in this project)
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are stable for all c. In [?], we demonstrated the stability of our algorithm even for
some unreasonable large c. This is a relieve to the user of RBF that they should no
longer worrying about picking the wrong c. However, the optimal shape parameter
remains unknown. In order to generate a large trial space, that hopefully includes
the one associated with the optimal shape parameter, the shape parameters will be
reduced in size in successive iterations. Numerically, our proposed method can run
iteratively on the PDE residual. Each iteration employs a constant shape parameter
so that the error analysis in the first stage remains valid level-wise. The theory
needed here is the relationship between RBF trial spaces generated by different
shape parameters.

Conclusion
The future of meshless methods lies in their ability to handle problems which

required complicated or time-varying discretizations. To this end, the meshless
techniques themselves must be made more flexible. This is started by the practical
part of this part. The pre-wavelet property of some radial basis kernels may lead to
parameterfree meshless algorithms for real-life engineering problems.




