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Unsupervised Support Vector Machine Based Principal
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Summary
Structural Health Monitoring (SHM) is concerned with identifying damage

based on measurements obtained from structures being monitored. For the civil
structures exposed to time-varying environmental and operational conditions, it is
inevitable that environmental and operational variability produces an adverse effect
on the dynamic behaviors of the structures. Since the signals are measured under
the influence of these varying conditions, normalizing the data to distinguish the ef-
fects of damage from those caused by the environmental and operational variations
is important in order to achieve successful structural health monitoring goals. In
this paper, kernel principal component analysis (kernel PCA) using unsupervised
support vector machine is developed and incorporated with a time prediction model
for data normalization by characterizing the relationship between the extracted fea-
tures and an unmeasured environmental parameter. This method performs a non-
linear principal component analysis by using kernel functions in high-dimensional
feature spaces without involving computationally expensive nonlinear optimiza-
tion. The advantages of the proposed method are demonstrated using a numerical
example with comparison results obtained by applying an autoassociative neural
network.

keywords: Kernel Principal Component Analysis, Novelty Detection, Dam-
age Diagnosis, Environmental and Operational Variations, Support Vector Machine

Introduction
The goal of Structural Health Monitoring (SHM) is to provide reliable informa-

tion regarding damage states including its presence, location and severity. Damage
identification is the first step and, if damage is detected, the subsequent damage
assessments are performed in order to investigate the location and severity. The
basic premise for this diagnosis is that damage alters the dynamic characteristics
of the structures, when the damage occurs. However, in reality the environmen-
tal and operation conditions, such as temperature, often cause an adverse effect
on the dynamic behavior of the structures. Therefore, for the civil structures ex-
posed to time-varying environmental and operational conditions, normalizing the
data to distinguish the effects of damage from those caused by the environmental
and operational variations is important in order to achieve successful SHM goals.
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In this paper, kernel principal component analysis (kernel PCA), i.e., unsuper-
vised support vector machine based PCA, incorporated with a novelty detection
method is introduced for SHM applications. This proposed method characterizes
the relationship between the extracted features and unmeasured environmental pa-
rameters so that the damage states affected by environmental and operational con-
ditions can be effectively predicted. The main procedures of the proposed method
are (1) to extract the damage-sensitive features from the measurements during the
undamaged normal condition, (2) to compute principal components by the pro-
posed kernel PCA, and (3) to predict damage states by novelty indices calculated
with the subsequent data from the possibly damaged structure. Here, the novelty
index is defined to show the degree of divergence between the data obtained from
an undamaged state and those from possibly damaged states. The adopted method
has advantages that no measurements of environmental and operation parameters
are required and no physics-based models are necessary for damage indication.

In the next section, kernel PCA is introduced as a way of nonlinear PCA, and
then a novelty index is defined. An illustrative example of a computer hard disk
shows a damage diagnosis procedure and results with the conclusions followed at
the end.

Kernel Principal Component Analysis
Principal Component Analysis (PCA) is an orthogonal transformation of the

coordinate system in which the given data can be described as new variables [1,2].
This method utilizes the eigenvector decomposition of the data’s covariance matrix,
and new variables, called principal components, are obtained by projecting the data
onto eigenvectors. The new variable projected onto the eigenvector corresponding
to the largest eigenvalue is called the first principal component, and the subsequent
principal components can be computed similarly by projecting the data onto the
subsequent eigenvectors. PCA is a well-known method for reducing dimensionality
of the data, since a small number of principal components are sufficient to account
for most of the structure in the data [1].

Linear PCA can be generalized to nonlinear PCA (NLPCA) to reveal nonlinear
correlations inherent in data. One such method is an auto-associative neural net-
work (AANN) [3-5]. This network consists of three hidden layers such as the map-
ping, the bottleneck, and the de-mapping layers, and it is trained to reproduce input
values as outputs, i.e., in an auto-associative mode. The hidden unit activations
perform NLPCA via the bottleneck layer whose dimension is smaller than those of
input. AANN was applied for damage diagnosis of a computer hard disk consider-
ing temperature as an operational variation [6]. However, AANN needs to solve a
complex nonlinear optimization problem for estimating unknown parameters with
the possibility of getting trapped in local minima as well as the well-known over-
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fitting problem. On the contrary, the proposed kernel PCA method involves solving
only a simple eigenvalue problem. In this section, a mathematical background of
kernel PCA is described which could be translated as a generalization from linear
PCA [7].

Linear Principal Component Analysis (linear PCA)
Let FN = {x j ∈ Rm×1, j = 1, . . .,N} denote a set of N number of centered m-

dimensional feature vector extracted from measurements. Then, linear PCA is per-
formed by an eigenvector decomposition of the covariance matrix C1:

C1 =
1
N

N

∑
j=1

x jx
T
j (1)

which leads to the following eigenvalue problem:

λ ∗w = C1w (2)

where λ ∗ and w are eigenvalues and corresponding eigenvetors, respectively. Here-
after, underlines and boldfaces are used to denote vectors and matrices, respec-
tively. From Eq. (2), m number of eigenvalues and corresponding eigenvectors can
be obtained and the kth principal components for feature vector x j are computed as
a dot product between x j and the corresponding kth eigenvector wk:

(PC(xj))
k = x j ·wk (3)

where (PC(x j))
k represents the kth principal component for feature vector x j.

Kernel Principal Component Analysis (Kernel PCA)
Kernel PCA is a generalization of linear PCA where the original m-dimensional

features are transformed to a higher, possibly infinite, dimension space via nonlin-
ear mapping function, φ (·). Here, φ (x j) denotes the transformed feature of x j

satisfying Σ jφ (x j)=0; this constraint is called centering and an unconstrained sit-
uation is considered shortly. For this centered and transformed feature, φ (x j), the
covariance matrix, C2, can be constructed in a similar manner as C1 in Eq. (1):

C2 =
1
N

N

∑
j=1

φ
(
x j

)
φ

(
x j

)T
(4)

Then, Eq. (4) leads to the same eigenvalue problem as before.

λ v = C2v (5)

where λ and v are eigenvalues and corresponding eigenvetors, respectively.
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Similar to linear PCA, v can be expressed as a span of φ (xi), i = 1, . . .,N, such
as:

v =
N

∑
i=1

αiφ (xi) (6)

where αi is an unknown coefficient. Combining Eq. (5) and Eq. (6) leads to another
eigenvalue problem [9]:

Nλ α = Kα (7)

where α = [α1α2. . .αN ]T ∈ RN×1 and N number of λ and α, i.e., λ k and αk, k =
1, . . .,N, can be obtained. The i jth entity of K matrix ∈ RN×N , Ki j , is defined as:

Ki j ≡ φ (xi) ·φ (x j) = k(xi,x j) (8)

In Eq. (8), kernel, k(xi,x j), is used simply to replace the dot product based on
the Mercer’s theorem and the nonlinearity is achieved in a relatively easy way by
the calculation of this kernel. This kernel method enables the dot products to be
calculated in the lower dimensional input space, even without involving nonlinear
transformation φ (·). Popular kernels are polynomial, radial basis function, and
sigmoid kernels. Further discussion on kernels can be found in [7,8]. Since K
matrix based on Mercer’s theorem is positive-semidefinite, the eigenvalues are non-
negative. Then, normalization of the corresponding eigenvectors is performed for
the first p nonzero eigenvalues to satisfy:(

vk · vk
)

= 1 → Nλ k
(

αk ·αk
)

= 1 (9)

where λ k and αk are the kth eigenvalues and eigenvectors computed from Eq. (7),
respectively, and k = 1, . . ., p.

Finally the kth principal components for feature vector x j are computed as the
projection onto the corresponding kth eigenvector:

(KPC(xj))
k = φ

(
x j

) · vk =
N

∑
i=1

αik
(
xi,x j

)
(10)

where (KPC(xj))
k and vk represent the kth principal component for feature vector

x j and eigenvector in Eq. (5), respectively, and k(xi,x j) is the chosen kernel. In
practice, since the transformed feature, φ (x), are not centered usually, K matrix in
Eq. (7) needs to be modified to Kc as follows:

Kc = K−1N K−K1N +1NK1N (11)

where 1N ∈ RN×N is a matrix with the entity (1N)i j = 1/N. The detailed derivation
of KC can be found in [9].
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Aforementioned Kernel PCA can be also derived in the context of unsupervised
support vector machine (SVM) to consider minimization of the classification errors
as well as regularization to prevent over-fitting [9,10,11].

Novelty Index
A novelty index plays a role in indicating the degree of divergence of data from

those in an undamaged normal condition [6]. This index is defined as:

Novelty Index(xpd) = ||xu −xpd|| (12)

where xu and xpd represent the features extracted from the data measured from
undamaged and possibly damaged conditions of the structure being monitored, re-
spectively.

Since this index uses the signals measured from a structure being monitored,
a structural model is not required. This novelty detection provides how different
the currently-obtained data are from baseline data, i.e., data obtained from an un-
damaged structure. If this index alarms possible indications of damage, then the
detailed inspections of damage can be followed in order to investigate the location
and their severity.

Illustrative Example: Computer Hard Disk
The proposed method of kernel PCA is applied to an illustrative example of

computer hard disk [12]. This case study demonstrates the capability of kernel PCA
incorporated with a novelty detection method to identify damage in the system. The
computer hard disk model can be expressed by using Newton’s law:

J
d2θ
dt2 +C

dθ
dt

+Kθ = Kii (13)

where J is the inertia of the head assembly, C is the viscous damping coefficient
of the bearings, K is the return rotational spring constant, Ki is the motor torque
constant, θ is the angular position of the head, and i is the input current. The
feedback compensator of the hard disk is omitted in this example for the purpose
of the simplicity and comparison with the previous results in [5]. The operational
variability is assumed to depend on temperature, T , and can be reflected on the
values of J, C, K, and Ki such as:

K(T ) =
6
87

(0.1×T−1.5)3 +
4
87

(0.1×T−1.5)+10 (14)

Ki(T ) =
0.01
30

[
(0.1×T−1.5)3 +(0.1×T−1.5)2 +(0.1×T−1.5)+1

]
+

0.14
3
(15)

J(T ) = 0.01

(
T
15

+9

)
(16)
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C(T ) = 0.004× tanh

(
T
30

π − π
2

)
(17)

The temperature dependencies of these variables are arbitrarily assumed, since
the proposed method does not require any physical modeling. Discretization of the
Laplace transformation of Eq. (13) becomes:

H(z) =
b1z+b2

z2 +a1z+a2
(18)

and the coefficients of a1 and a2 are used for features, since they alone are related
with dynamic characteristics of the system being monitored.

Principal Components Estimated by Kernel PCA
Baseline data of a1 and a2 representing an undamaged state are simulated by

varying the temperature in the range of [-15°C, 45°C]. For each temperature, the
coefficients of K(T), Ki(T ), J(T ), and C(T ) are computed from equations (14)-
(17), and then a1 and a2 are extracted from Eq. (18). The total number of baseline
data is 121 and the data set is scaled so that each variable ranges from -1 to 1 in
order to be equally weighted (Figure 1 (a)).

(a) (b) 

Figure 1: Scaled variables of a1 and a2 (a) and correlation between the first princi-
pal component and temperature (b)

Additional data sets are generated as prediction data for verification of the algo-
rithm and damage diagnosis. For verification, 600 temperatures are simulated from
a uniform distribution in the range of [-15°C, 45°C] and the corresponding a1 and
a2 are prepared through the same procedure as those used for baseline data simula-
tion. These data are utilized to verify the performance of the proposed kernel PCA.
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For damage diagnosis, 2,400 data, i.e., 4 Cases×600 data, are simulated accord-
ing to each damage scenario listed in Table 1. For example, the possibly damaged
return rotational spring constants, Kpd, and damping coefficients, Cpd, for damage
case (a) are simulated from [0.85K(20), 0.95K(20)] and C(20), respectively.

Since the parameter affecting the operational variability is temperature alone in
this example, only the first principal component is selected for computing novelty
index. The correlation between the first principal component and the temperature is
shown in Figure 1 (b): this figure shows monotonic increases of the first principal
component as temperature, T, increases.

Table 1: Damage scenarios in this study
Cases Spring constant (Kpd) Damping coefficient (Cpd)

(a) [0.85K(20), 0.95K(20)] C(20)
(b) K(20) [0.90C(20), 1.10C(20)]
(c) [0.95K(20), 1.05K(20)] C(20)
(d) [0.95K(20), 1.05K(20)] [0.90C(20), 1.10C(20)]

Novelty Detection
The values of novelty index are calculated by using prediction data generated

for verification and damage diagnosis. Since the algorithm of kernel PCA does not
work in auto-associative mode, the baseline data, xu, whose first principal com-
ponent has the minimum Euclidean distance from that of prediction data, xpd, is
used for index calculation. For each damage scenario, the computed index values
are shown in Figure 2. Solid (darker) lines corresponding to the first 600 number
of data are for verification, while dashed ones are for damage diagnosis. Case (a)
shows the distinct changes of index, while Case (b) does not. Case (c) and (d)
produce noticeable changes even if they are not as distinct as Case (a).

Advantage of Kernel PCA
The obtained results of damage diagnosis by kernel PCA are very similar to

what were obtained by AANN; novelty index shows noticeable changes in Cases
(a), (c), and (d) for both methods [6].

In summary, the advantages of kernel PCA in comparison with AANN are:
(1) the simple formation of an eigenvalue problem instead of solving a complex
nonlinear optimization problem with a possibility of getting trapped in local min-
ima, (2) evasion of over-fitting problems by employing regularization [11], and (3)
flexibility in computing multiple principal components without redesigning kernel
PCA. (For AANN, the number of nodes in the bottleneck layer should be known a
priori, and the network needs to be designed accordingly).

Conclusions
In this paper, integration of kernel principal component analysis (kernel PCA),
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Figure 2: Novelty indices evaluated at four different damage cases

also known as unsupervised support vector machine based PCA, with novelty de-
tection is proposed for damage diagnosis at the presence of time-varying environ-
mental and operational conditions. The kernel PCA method performs nonlinear
PCA by adopting a kernel method that replaces dot products with kernels and by
solving a simple eigenvalue problem. Then, novelty detection is employed to assess
the health condition of the structure by measuring the degree of the discrepancy be-
tween the data obtained from a possibly damaged state and those obtained from the
undamaged state of the structure.

The computer hard disk example presented in this study demonstrates that the
proposed method is able to detect damage under time-varying temperature condi-
tions without the knowledge of the temperature at hand. Baseline data are gener-
ated from a wide temperature range of the computer hard disk’s intact condition,
and data corresponding to various damage scenarios are simulated by perturbing
the intact system’s stiffness and damping values obtained at 20°C.

The scope of this study is limited to the application of the proposed damage
detection to a simplified numerical model. Additional studies are underway to in-
vestigate the robustness of the proposed method in harsh field environments. In
particular, the sensitivity of the novelty index is further examined taking into ac-
count the uncertainties such as measurement noises.
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