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Summary
A nonliear meshless local Petrov-Galerkin (NMLPG) method for solving non-

linear boundary value problems, based on the nonlinear regular local boundary
integral equation (NRLBIE) and the moving least squares approximation, is pro-
posed in the present paper. No special integration scheme is needed to evaluate the
volume and boundary integrals. The integrals in the present method are evaluated
only over regularly-shaped sub-domains and their boundaries. This flexibility in
choosing the size and the shape of the local sub-domain will lead to a more conve-
nient formulation in dealing with the nonlinear problems. Compared to the original
meshless local Petrov-Galerkin (MLPG) method that has been extensively popu-
larized in recent literature, the present method does not need the derivatives of the
shape functions in constructing the system stiffness matrix, for those nodes with
no displacement specified on their local boundaries. This is very attractive in engi-
neering applications as the calculation of derivatives of the shape functions from the
MLS approximation is quite costly. Also compared to the meshless local boundary
integral equation (MLBIE) method, the present approach does not involve singu-
lar or hyper-singular integrals which have to be tackled in the MLBIE method.
Thus, the present method possesses high accuracy, and is cost effective. Numeri-
cal examples show that the present method converges fast to the final solution with
reasonably accurate results for both the unknown variable and its derivatives.

Introduction
The MLPG methods ([1] – [4]) are effective meshless methods for solving lin-

ear and nonlinear boundary value problems. Since the moving least squares (MLS)
approximation [1] is used for interpolation in MLPG methods, and the shape func-
tions from the moving least squares approximation are not polynomials, the eval-
uation of all integrals in the weak form, especially of those integrals involving
the derivatives of the shape functions, is very expensive. To overcome this disad-
vantage, a modified MLPG approach based on a regular local boundary integra-
tion equation (RLBIE) was proposed in [5], in which no derivatives of the shape
functions are required for internal nodes, thus reducing computational cost. In the
present work, the MLPG approach proposed in [5] is extended to solve nonlinear
problems.

1Department of Mechanical Engineering, Widener University, One University Place, Chester, PA
19013, USA



102 Copyright c© 2008 ICCES ICCES, vol.7, no.2, pp.101-106

The MLPG Based on the Nonlinear Regular Local Boundary Equation
Consider the following nonlinear problem,

∇2u(x)+ω2u(x)+εu3(x) = p(x) x ∈ Ω (1)

with boundary conditions

u = u on Γu (2a)

∂u
∂n

≡ q = q on Γq (2b)

where p is a given source function; ε is a small parameter (|ε | � 1), u and q are
the prescribed potential and normal flux, respectively, on the essential boundary Γu

and on the flux boundary Γq, and n is the outward normal direction to the boundary
Γ.

A local weak form of the differential equation (1) and the boundary conditions
(2), over a local sub-domain Ωs, can then be written as:

∫
Ωs

(∇2u+ω2u+εu3 − p)vdΩ−α
∫

Γsu

(u−u)vdΓ = 0 (3)

where u is the trial function, v is the test function, α >> 1 is a penalty parameter
used to impose the essential boundary conditions, and Γsu is a part of the boundary
∂Ωs of Ωs, over which the essential boundary conditions are specified.

Using (∇2u)v = u,iiv = (u,iv),i − (uv,i),i + uv,ii and the divergence theorem
twice yields:

∫
∂Ωs

v
∂u
∂n

dΓ−
∫

∂Ωs

u
∂v
∂n

dΓ+
∫

Ωs

(u∇2v+ω2uv+εu3v−pv)dΩ−α
∫

Γsu

(u−u)vdΓ = 0

(4)
where ∂Ωs is the boundary of Ωs and n is outward unit normal to the boundary
∂Ωs.

Imposing the natural boundary condition, q = q in equation (4) gives

∫
Ls

qvdΓ+
∫

Γsu

qvdΓ+
∫

Γsq

qvdΓ−
∫

∂Ωs

u
∂v
∂n

dΓ

+
∫

Ωs

(u∇2v+ω2uv+εu3v− pv)dΩ−α
∫

Γsu

(u−u)vdΓ = 0 (5)

where u is the trial function, v is the test function, and Γsu is a part of the boundary
∂Ωs of Ωs, over which the essential boundary conditions are specified. In general,
∂Ωs = Γs ∪ Ls, with Γs being a part of the local boundary located on the global
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Figure 1: The local domains, the supports of nodes, the domain of definition of the
MLS approximation for the trial function at a point, and the domain of influence of
a source point (node)

boundary and Ls being the other part of the local boundary over which no bound-
ary condition is specified, i.e., Γs = ∂Ωs ∪Γ and Ls = ∂Ωs −Γs (see Fig. 1). If
the sub-domain Ωs is located entirely within the global domain Ω, and there is no
intersection between the local boundary ∂Ωs and the global boundary Γ, the bound-
ary integral over Γsu vanishes. In Eq (3), a penalty parameter α >> 1 is used to
impose the essential boundary conditions, as the MLS approximation will be used
to approximate the trial function, and it is not easy to directly impose the essential
boundary conditions, a priori, in the MLS approximation.

The above equation can be further simplified such that the test function v van-
ishes on Ls. This can be easily accomplished by using the weight function in the
MLS approximation as also the test function, with the radius ri of the support of
the weight function being replaced by the radius r0 of the local domain Ωs, such
that the test function vanishes on a circle of radius r0. Using this test function and
rearranging equation (5), we obtain the following regular local boundary integral
equation (RLBIE):

∫
Γsu

(q−αu)vdΓ−
∫

∂Ωs

u
∂v
∂n

dΓ+
∫

Ωs

(u∇2v+ω2uv+εu3v)dΩ
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=
∫

Ωs

pvdΩ−
∫

Γsq

qvdΓ−α
∫

Γsu

uvdΓ . (6)

In the present formulation, the equilibrium equation and the boundary conditions
are satisfied, a posteriori, in all local sub-domains and on their Γs, respectively.
Theoretically, as long as the union of all local domains covers the global domain,
i.e., ∪Ωs ⊃ Ω, the equilibrium equation and the boundary conditions will be satis-
fied, a posterior, in the global domain Ω and on its boundary Γ, respectively.

The nonlinear RLBIE (6) can be linearized to solve the increment Δu:

∫
Γsu

(Δq−αΔu)vdΓ−
∫

∂Ωs

Δu
∂v
∂n

dΓ+
∫

Ωs

(Δu∇2v+ω2Δuv+3εu2Δuv)dΩ

=
∫

Ωs

(t +Δt)pvdΩ−
∫

Γsq

(t +Δt)q∗vdΓ−α
∫

Γsu

(t +Δt)u∗vdΓ

−
∫

Γsu

(q−αu)vdΓ+
∫

∂Ωs

u
∂v
∂n

dΓ−
∫

Ωs

(u∇2v+ω2uv+εu3v)dΩ (7)

where p, u∗, and q∗ are define as

p = t p; u = tu∗; q = tq∗; 0 ≤ t ≤ 1 . (8)

To obtain the discrete equations from the nonlinear RLBIE (7), the MLS ap-
proximation (See [1] for details of the MLS approximation), u(x) = ∑n

i=1 φi(x)ûi,
is used to approximate the trial function u. Using the MLS approximation into
the nonlinear RLBIE (7) for all nodes leads to the following discretized system of
linear equations:

K ·Δû = f (9)

where, the entries of the stiffness matrix K and the load vector f are define by

Ki j =
∫

Γsu

[φ j,n(x)−αφ j(x)]v(xi,x)dΓ−
∫

∂Ωs

φ j(x)
∂v(xi,x)

∂n
dΓ

+
∫

Ωs

[φ j(x)∇2v(xi,x)+ω2φ j(x)v(xi,x)+3εu2(x)φ j(x)v(xi,x)]dΩ (10a)

and

fi =
∫

Ωs

(t +Δt)p(x)v(xi,x)dΩ−
∫

Γsq

(t +Δt)q∗(x)v(xi,x)dΓ

−α
∫

Γsu

(t +Δt)u∗(x)v(xi,x)dΓ−
∫

Γsu

(q(x)−αu(x))v(xi,x)dΓ

+
∫

∂Ωs

u(x)
∂v(xi,x)

∂n
dΓ
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Figure 2: The hardening and softening nonlinearities

−
∫

Ωs

[u(x)∇2v(xi,x)+ω2u(x)v(xi,x)+εu3(x)v(xi,x)]dΩ (10b)

in which φ j is the shape function from the MLS approximation, and v(x,xi) denotes
the test function corresponding to the node at xi.

It is seen from Eq. (10a) that no derivatives of the shape functions are needed in
constructing the stiffness matrix for the internal nodes and for those boundary nodes
with no essential-boundary-condition-prescribed sections on their local boundaries.
This is attractive in engineering applications as the calculation of derivatives of the
shape functions from the MLS approximation is quite costly.

Numerical Example
We consider a problem defined over the domain π ×π , with u = 0 specified on

all sides and the source function p being given by

p(x) = 5t sinx1 sinx2 (11)

in which t is the load parameter with 0 ≤ t ≤ 1. Of course, the exact solution is not
available unless when ε = 0 — the linear problem.

A regular mesh with 36 nodes is tested in this problem. The Gaussian weight
function and quadratic basis (see [1]) are used in the computation. The constant ε
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is taken to be 0.01 and -0.01 in the computation to verify the “hardening” and “soft-
ening” nonlinearities. The values of u at the middle point (x1, x2) = (π/2, π/2)
are computed for different t, and sketched in Figure 2. Figure 2 clearly shows the
hardening and softening nonlinearities of the problem, for ε = 0.01 and ε = −0.01,
respectively.

Conclusions and Discussions
Compared with other meshless techniques based on a global weak form, the

present approach does not require a finite element mesh for interpolation purposes
or for integration purposes, while shadow elements are required to evaluate volume
integrals in meshless methods based on a global weak form. Compared with other
meshless methods based on a local weak form, the present method does not involve
singular or hyper-singular integrals that are inevitable in the MLBIE method, the
present approach is not a subdomain collocation method, and the present method
does not need the derivatives of the shape functions in the domain integrals, which
are inevitable in the original MLPG. It is seen from the implementation that no
derivatives of the shape functions are required in constructing the stiffness matrix
for those nodes with no displacement boundary condition specified on their lo-
cal boundaries. This is attractive in engineering applications as the calculation of
derivatives of the shape functions from the MLS approximation is quite costly.
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